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Estimation of variant age in publicly available data sets

We used GEVA to estimate the age of all variants on Chromosomes 1-22 (biallelic SNPs,

except singletons and variants at alternate allele frequency >99%) in data from two human

genome resources that are available in the public domain:

• 1000 Genomes Project (TGP), Phase 3, final release [1];

• Simons Genetic Diversity Project (SGDP), fully public data set [2].

The two data sets are described in detail further below. In total, we estimated the

age of 45,393,705 variants across all autosomes, for each clock model (mutation clock,

recombination clock, and joint clock). This includes 43,232,520 variants dated in sample

data from TGP, and 15,834,824 variants from SGDP. For the 13,673,639 variants identified in

both TGP and SGDP, we additionally estimated the age after combining information from

both data sources (described in Section 4). Overall, we analyzed 32,087,462,147 (>32 billion)

haplotype pairs. A breakdown of variants dated per chromosome, as well as a summary of

the haplotype pairs analyzed, is given in S1 Table.

We make these results available as a public resource, referred to as the Atlas of Variant

Age for the human genome. All data, including the full age estimation profiles for each clock

model and the results of every pairwise analysis, are available online:

https://human.genome.dating
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Throughout, we applied GEVA using the following specifications. We set Ne=10,000

to internally scale time in units of 2Ne, which adheres to the usually quoted value [3].

Though, we note that more recent estimates of Ne indicate a much lower effective size and

high variability among different human populations [4, 5]. Results are reported in units of

generations, after rescaling time given the specified value for Ne. We assumed a constant

rate of mutation, set to µ = 1.2× 10−8 per base per generation, following recent estimates of

the human mutation rate [6]. We used variable recombination rates according to HapMap

genetic maps as available per chromosome (Phase 2; GRCh37) [7].

The maximum number of concordant and discordant haplotype pairs sampled per variant

(specified by parameters maxC and maxD) differed for the analyses conducted using TGP and

SGDP data (see below). Throughout, variant age was estimated after applying the heuristic

pair rejection method to exclude outliers in the pairwise TMRCA distributions of concordant

and discordant pairs selected per variant, and we report the quality score (QS) for the age

estimated under each clock model.

1 Information about ancestral and derived allelic states

The GEVA method (in its current implementation) assumes that ancestral and derived allelic

states have been correctly assigned to the reference and alternate allele, respectively, as

seen in a given data set. We acquired information as available for the human genome

from Ensembl (human assembly GRCh37; release 92; version 20180221),* to determine the

ancestral allele as predicted through multi-species alignments in the Ensembl Enredo-Pecan-

Ortheus (EPO) pipeline.† We used this information to annotate available variant data, so as to

(optionally) retain those variants in downstream analyses for which the ancestral allele was

known and mapped to the reference allele. In TGP, we matched variant annotations based

on chromosomal position, rsID, and consistent reference and alternate alleles. In SGDP, we

did the same but omitted matching by rsID, as this information was absent in the available

data set.

2 Variants dated in 1000 Genomes Project (TGP) data

The final release TGP sample consists of 2,504 individuals (5,008 genomes) sampled from

26 populations worldwide.‡ We set maxC = 500 and maxD = 500 as the sampling limits for

concordant and discordant pairs, respectively. For the 43.2 million variants dated across

Chromosomes 1-22, we analyzed a total of 8.5 billion concordant and 21.3 billion discordant

pairs, which involved the inference of the locally shared haplotype segment and the TMRCA

posterior distribution at each pair. We recorded an overall computation time of approximately

* ftp://ftp.ensembl.org//pub/release-92/variation/vcf/homo_sapiens/homo_sapiens.vcf.gz
† https://www.ensembl.org/info/genome/compara/multiple_genome_alignments.html
‡ ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/release/20130502/
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2,699,936 hours (308 CPU years); measured as the sum of the system time elapsed per CPU

core (Intel Xeon Gold 6126, Skylake SP, 2.60GHz).

We report the mode, mean, and median of the composite posterior distribution as point

estimates for variant age, as well as a 95% confidence interval. Correlation between estimators

was high throughout (Pearson’s r2 > 0.99; Spearman’s ρ > 0.99, based on all 43.2 million

variants, in all comparisons between mode, mean, and median, under each clock model).

We computed the quality score (QS) after rejecting outlier haplotype pairs for every

variant and under each clock model; see panel A in the figure shown on Page 4. Estimation

quality was high overall; for example, median QS was 0.985 for the joint clock model (0.991

mutation clock; 0.820 recombination clock), and the proportion of variants with QS > 0.95

was 58.3% (joint clock; 61.0% mutation clock; 37.2% recombination clock). Because GEVA,

by default, attempts to estimate the age of the alternate allele (assuming that it is derived

and the reference allele is ancestral), we investigated differences in estimation quality arising

from violations of this assumption, given the ancestral allelic states as predicted from the

Ensembl EPO pipeline (Section 1); see panel B in figure on Page 4. We found that 88.2% of

variants had the ancestral allele as the reference allele; among those, median QS was 0.993

for the joint clock model (0.996 mutation clock; 0.846 recombination clock). Among the 6.9%

of variants where the ancestral allele matched the alternate allele, estimation quality was

lower overall; median QS was 0.645 for the joint clock model (0.680 mutation clock; 0.568

recombination clock). The relative proportion of variants with QS > 0.95 (joint clock) was

62.0%, 16.4%, and 52.2% for sites where the ancestral allele matched the reference, alternate,

or neither allele, respectively. These results suggest that the quality score is informative as a

measure of estimation quality, where low QS values may indicate departures from baseline

model assumptions in GEVA. However, we note that other sources of error exist, and that

high QS values may not validate estimation results.

2.1 Pathogenic variants

We used information from the Ensembl Variant Effect Predictor (VEP; release 75) [8], available

through TGP,* where functional consequences have been assigned to a subset of variants in

the TGP sample (Phase 3; GRCh37). Variant effects have been predicted using PolyPhen-2 [9]

and SIFT [10]. We selected all variants that had annotations from either PolyPhen-2 or SIFT

and obtained their age from the Atlas of Variant Age. The set comprised 70,220 variants

annotated by PolyPhen-2 and 67,539 variants annotated by SIFT, where 67,123 variants

had annotations from both methods. The results shown in S7 Fig were generated on age

estimates obtained from TGP data for the joint clock model, after excluding variants with

low estimation quality (QS ≤ 0.5) and where the reference allele did not match the ancestral

allele.

* ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/release/20130502/supporting/functional_annotation/
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Quality score for variants dated in TGP and SGDP data. Panel A shows the histogram of the quality scores
(QS) computed for variants dated in the 1000 Genomes Project (TGP; top panels) and the Simons Genome
Diversity Project (SGDP; bottom panels), under each clock model. Histograms show the proportion of variants
estimated with QC values within 25 equally distributed bins, relative to the number dated in each data
source; 43,232,520 variants in TGP and 15,834,824 in SGDP. Corresponding to (A), Panel B shows the relative
proportions of allelic class found in each QS bin; here defined as the ancestral allele matching the reference
allele (blue), the ancestral allele matching the alternate allele (red), or where the ancestral allele was either
unknown or did not match the reference or alternate alleles (yellow) at the variants (SNPs) dated in each data
source. Note that GEVA attempts to estimate the age of the alternate allele by default, assuming that the
reference allele represents the ancestral state.
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3 Variants dated in Simons Genome Diversity Project (SGDP) data

Data available from SGDP consists of 276 individuals (556 genomes) from 130 populations

worldwide (fully public data set; hg19/GRCh37). We used the already phased panel

(labelled “PS2”) that had been phased using SHAPEIT2.* Given the relatively small sample

size of the SGDP panel (compared to TGP), we set maxC = 100 and maxD = 100 as the

sampling limits for concordant and discordant pairs per variant. We estimated the age for

15.8 million variants across autosomes, which involved the analysis of 0.7 billion concordant

and 1.5 billion discordant pairs. Overall computation time was 33,168 hours (3.8 CPU years;

Intel Xeon E5-2650 v2, Ivy Bridge EP, 2.60GHz). Note that the processing time was on

average faster compared to the analysis of TGP data, due to the smaller sample size and the

lower sampling limits set per variant.

As with variants dated using TGP data, we found that the mode, mean, and median

as point estimates of variant age were highly correlated (Pearson’s r2 > 0.99; Spearman’s

ρ > 0.99, based on all 15.8 million variants, in all comparisons between mode, mean, and

median, under each clock model).

We additionally re-estimated the age of >0.36 million variants on Chromosome 20 using

maxC = 500 and maxD = 500, to assess differences resulting from estimation with lower and

higher sampling limits. We found that age estimates were highly consistent under each

clock model (Spearman’s ρ > 0.9), indicating that the lower sampling limits (maxC = 100,

maxD = 100) were sufficiently high for the analysis of variants in SGDP; see figure below.

Consistency of variant age estimated with high and low sampling limits. Density scatterplot showing
the relationship between allele age estimated with different sampling limits for concordant and discordant
pairs; set to maxC = 500 and maxD = 500 (x-axis), and set to maxC = 100 and maxD = 100 (y-axis). Age was
estimated for all variants on Chromosome 20 in SGDP (>0.36 million) under each clock model. Colors indicate
the relative density scaled by the maximum per panel. The inserts (bottom) show the correlation between the
two analyses; Spearman rank correlation coefficient (ρ) and the square of the Pearson correlation coefficient
(r2; calculated on log-scaled allele ages).

* https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/PS2_multisample_public/
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Estimation quality, measured after rejecting outlier haplotype pairs per variant and

under each clock model, is shown in panel A of the figure shown on Page 4. For example,

median quality score (QS) was 0.960 for the joint clock model (0.969 mutation clock; 0.905

recombination clock), and the proportion of variants with QS > 0.95 was 51.8% (joint clock;

53.1% mutation clock; 42.8% recombination clock). Differences in quality with regards to

the ancestral state of the reference or alternate allele are shown in panel B on Page 4. As in

the analysis of variants in TGP, the majority of variants in SGDP (81.5%) had the ancestral

allele as the reference allele, for which median QS was 0.980 (joint clock; 0.980 mutation

clock; 0.929 recombination clock). However, compared to estimation in TGP data, we found

that a higher proportion of variants had the ancestral allele as the alternate allele (14.0%),

and differences in quality were not as pronounced as in TGP; median QS was 0.794 (joint

clock; 0.816 mutation clock; 0.737 recombination clock). The relative proportion of variants

with QS > 0.95 (joint clock) was 56.2%, 22.3%, and 64.1% for sites where the ancestral allele

matched the reference, alternate, or neither allele, respectively. Differences in estimation

quality measured for variants dated in TGP and SGDP may also arise from the different

sampling limits applied. Note that we used external data to determine the ancestral allele

(Ensembl EPO pipeline; Section 1), and that we included this information only at sites where

genomic position and bases at both alleles matched unambiguously.

4 Combined age estimation of variants present in TGP and SGDP

The true age of a variant refers to the time of a singular mutation event in the past, which

follows from the assumption (infinite sites model) that mutations occur only once per genomic

locus in the history of the population. Although this assumption is readily violated in reality,

in particular for very old mutations or if the mutation rate is high, we would nonetheless

expect it to hold for the vast majority of variants observed in the (human) genome. Estimating

the age of the same allele in different data sources, in which it has been identified in genomic

sequence data of independent (unrelated) samples, should therefore yield consistent results.

We identified 13,673,639 variants present as biallelic SNPs (non-singletons and below

100% allele frequency) in both TGP and SGDP; matched by genomic position and reference

and alternate alleles. The ages of alleles at corresponding sites, independently estimated from

TGP and SGDP data, were highly consistent; see S5 Fig. We then, additionally, estimated the

age of these variants by combining information from both sources, to implicitly increase the

genealogical resolution, but without combining sequence data directly.

Recall that we estimate the age from the composite distribution of locally inferred TMRCA

posteriors at concordant and discordant haplotype pairs; see S1 Text. The TMRCA posterior

is modeled using the Gamma distribution, where parameters α, β are obtained from the data

as defined by the clock model used (mutation clock, recombination clock, or joint clock). For

each variant, we combined information by recovering TMRCA posteriors from the parameter

values as obtained in the two data sources (without rejecting outliers). We estimated the
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“combined” age, and computed a quality score, after rejecting outlier pairs in the combined

sets of concordant and discordant comparisons.

Again, as with variants dated using TGP or SGDP data alone, we found that the mode,

mean, and median as point estimates of variant age were highly correlated (Pearson’s

r2 > 0.99; Spearman’s ρ > 0.99, based on all 13.7 million variants, in all comparisons between

mode, mean, and median, under each clock model).
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