A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants

Lin et al.

Supplementary Information

This file includes:

Supplementary Figure 1 to Figure 11 with figure legends and Supplementary Table 1.

Supplementary Fig. 1 Quantitative phosphoproteomics reveal the osmotic stress responsive phosphoprofiles. **a** TMT6-plex phosphoproteome analysis was used to identify the protein kinases that have increased phosphorylation after 30 min of mannitol treatment of wild type and *snrk2-dec* mutant plants in biological triplicates. Proteins were extracted, precipitated, and digested using Lys-C followed by trypsin. The phosphopeptides were labeled with TMT6-plex reagents, pooled, and enriched using an IMAC StageTip. The enriched phosphopeptides were fractionated by a basic pH reverse phase StageTip. The fractions were analyzed by FTMS-MS2. **b** PCA of the phosphorylation sites across all four samples representing distinct phosphoproteomic types for different samples and treatments (FDR < 0.05).

Supplementary Fig. 2 Identification of OKs by biochemistry and genetics. **a** In-gel kinase assay showing the SnRK2, OK^{100} , and OK^{130} activities before (left panel) and after (right panel) mannitol treatments in wild type and single mutants of RAFs. Image is representative of two independent experiments. **b** Mutations of B4 group Raf-like kinase genes in OK^{130} -weak and OK^{130} -null alleles. The mutations in OK^{130} -weak are indicated in blue, and additional mutations in OK^{130} -null mutant are indicated in red. Ins, insertion. Del, deletion. **c** Sequencing results showing the mutations in RAFs in the OK^{130} -weak mutant. **d** In-gel kinase assay showing the SnRK2, OK^{100} , and OK^{130} activities in the wild type and OK^{130} -weak allele after the indicated time of mannitol treatment. Image is representative of two independent experiments. **e** Sequencing results showing the SnRK2, OK^{100} , and OK^{130} , OK^{130} -null mutant. **f** In-gel kinase assay showing the SnRK2, OK^{100} , and OK^{130} activities in the wild type, OK^{130} -null mutant. **f** In-gel kinase assay showing the SnRK2, OK^{100} , and OK^{130} -null, and a second null allele of OK^{130} -null-2) after 15 min ABA or mannitol treatment. Image is representative of two independent experiments. **g** Photographs of inflorescences from the wild type, OK^{130} -weak, and OK^{130} -null. **h** Photographs of silique from wild type and OK^{130} -null allele. Source data are provided as Source Data file.

а	- AT1G18160 RAF4	
	AT1G73660, RAF5, SIS8	
	AT1G08720, RAF2, EDR1	
	AT5G03730, RAF1, CTR1	
	AT4G24480, RAF6 — — — — — — —	
	AT4G23050, RAF12 — — — — — — — — —	
	AT1G67890, RAF11	
	AT5G49470, RAF10 - 1854insG - 1675deit	
	AT3G06640, RAF9	
	└── AT3G06630, RAF8	
	AT3G06620, RAF7	
b		
	RAF4 968insT resulted in a frameshift at codon 324.	RAF5 1041insT resulted in a frameshift at codon 347.
	TCGGCGTTCCTTGTCGAATAG-TCAAAGGACAGCA	
	hannon management	
	TCGGCGTTCCTTGTCGATAGTTCAAAGGACAGCA	GTGTTGGTGTTCCTTGTCGATAGT CAAAGGTCAGCAATATACCG
	RAF2/EDR1 389insC resulted in a frameshift at codon 131.	RAF11 1480insG resulted in a frameshift at codon 494.
		2,030 2,040 2,050 2,060 2,070 2,080
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATGGGAGGATTTGACAATTGGAGAACAAATCG-GGCAAGGTGATGTACTCCTTTG
	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
	RAF10 1854insG resulted in a frameshift at codon 551.	
	GARGATTTGACAATTGGAGAACAAATCG <mark>G</mark> GGCAAGGTGATGTACTCC	
С		
	RAF4 968ins I resulted in a frameshift at codon 324.	
	GTGTGATAGTGTCGGCGTTCCTTGTCGAATAG-TCAAAGGACAGCAATATACCGGT	TGCTCCGGTCACCGACGCTGATTCCGCCGT-TGACTTTCTCTCGCTTCGTTATTGG
	RAF5 1037del4 resulted a frameshift at codon 346.	RAF10 1675delT resulted in a frameshift at codon 559.
	1,010 1,020 1,030 1,040 1,050 1,060	1,980 1,990 2,000 2,010 2,020 2,030
	PGTGATAGTGTTGGTGTTCCTTGTCGAATAGGTCAAGGTCAGCAATATACCGG	
	VWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	TTTCTGTACATACAGGTTCATGTGGAACTGTC - ATCACGGTCTATGGTTTGGA
	RAF8 del1095to2400 resulted in deletion of aa243-523 and a frameshift a	at codon 524.
	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MMAMM
	AAGTCAGGTCAAAAATGCGAGCAGG	TATGTCGAAAC
	RAF9 1383insA resulted in a frameshift at codon 461.	RAF7 del1427-1436 resulted in a frameshift at codon 476.
	\TATTGCAGGCTCATGTGGAACTGTCT-ATCACGGTCTTTGGTTTGG	IGCGGAAGTACCAGCAGCAGTGTTATGAACÂAGGTTGATACTG
	mmhmmmmmmmmmmmmmm	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
	\TATTGCAGGCTCATGTGGAACTGTCTMATCACGGTCTTTGGTTTGG	IGCGGAAGTACCAGCAGCAGTGTTATGA N NT GGANGM ACAAGGTTGATACTG
d	RAF2/EDR1 391del47 resulted in an early termination at codon 129.	
	510 520 530 540 550 560 570	
	GGAGGGATTCA TCGGGGGGGGGGGGGGGGGGGGGGGGGG	TTTTTATA

Supplementary Fig. 3 Screening of B2 and B3 RAF high-order mutants. **a** Mutations of RAF genes in the high-order mutants. The mutations are indicated by blue arrows. Ins, insertion. Del, deletion. **b** Sequencing results showing the mutations in *RAF2/EDR1*, *RAF4*, *RAF5*, *RAF10*, and *RAF11* in the *OK*¹⁰⁰-quin mutant. **c** Sequencing results showing the mutations in *RAF3*, *RAF4*, *RAF5*, *RAF7*, *RAF8*, *RAF9*, and *RAF10* in the *OK*-quatdec mutant. **d** Sequencing results showing an additional mutation in *RAF2/EDR1* in the *OK*-quindec mutant.

Supplementary Fig. 4 Expression pattern and localization of RAFs. **a** The fresh weight of seedlings after 4 weeks of growth in the soil. Error bars, SEM (n = 5). Two-tailed paired *t*-tests, **, p < 0.01, ***, p < 0.001. **b** Heat map showing relative abundance of *RAF* transcripts in different tissues. **c** Heat map showing relative abundance of *RAF* transcripts upon different stress treatments in root (left panel) or shoot (right panel). **d** Heat map showing relative abundance of *RAF* swere obtained from the Arabidopsis eFP browser web site <u>http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi</u>. Source data are provided as Source Data file.

Supplementary Fig. 5 Subcellular localization of RAFs. GFP fluorescence showing the subcellular localization of GFP-RAF20, GFP-RAF12, GFP-RAF11, GFP-RAF7 in the *p35S-GFP-RAF* fusion transgenic plants.

Supplementary Fig. 6 RAF high-order mutants hypersensitive to osmotic stresses. **a** The fresh weight of seedlings 7 days after transfer to and growth on medium containing 100 mM NaCl. Error bars, SEM (n = 3). Two-tailed paired *t*-tests, *, p = 0.037. **b** The root length of seedlings 7 days after transfer to and growth on medium containing 100 mM NaCl. Error bars, SEM (n = 3). Two-tailed paired *t*-tests, *, p = 0.025, **, p = 0.002. **c** Photographs of seedlings after 7 days of germination and growth on 1/2 MS medium containing NaCl, mannitol, or PEG. **d** The root length of seedlings after 7 days of germination and growth on 1/2 MS medium containing NaCl, mannitol, or PEG. Error bars, SEM (n = 11). Two-tailed paired *t*-tests, * p = 0.033, ***, p < 0.001. Source data are provided as Source Data file.

Supplementary Fig. 7 RAFs interact with and phosphorylate SnRK2s. **a** In-gel kinase assay showing the SnRK2, OK^{100} , and OK^{130} activities after ABA or mannitol treatments in wild type, *abi1/abi2/pp2ca*, and *abi1-1* mutants. Image is representative of two independent experiments. **b** Immunoprecipitation-mass spectrometry (IP-MS) result showing peptides from SnRK2s that co-immunoprecipitated with GFP-RAF40, GFP-RAF20, or GFP-RAF35, but not with empty GFP. **c** RAF35 interacts with SnRK2s in split LUC complementation assay in *Nicotiana benthamiana* leaves. The RAF35-cLUC and nLUC combination was used as a negative control. **d** RAF40-KD and RAF24-KD phosphorylates SnRK2s *in vitro*. Recombinant RAF40-KD and RAF24-KD were used to phosphorylate recombinant SnRK2s in the presence of $[\gamma^{-32}p]$ ATP. Autoradiograph (upper) and Coomassie staining (bottom) show phosphorylation and loading of purified RAF-KD and SnRK2s, respectively. Source data are provided as Source Data file.

Supplementary Fig. 8 Putative RAF target sites identified in the activation loop of SnRK2.4 and SnRK2.6. **a** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide SSLLHSRPKSTVGTPAYIAPEVLSRR contains the phosphoserines Ser162 and Ser166 in SnRK2.4. **b** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide SSLLHSRPK contains the phosphoserines Ser158 and Ser162 in SnRK2.4. **c** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide STVGTPAYIAPEVLSRR contains the phosphothreonines Thr167 and Thr170 in SnRK2.4. **d** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide STVGTPAYIAPEVLSRR contains the phosphothreonines Thr167 and Thr170 in SnRK2.4. **d** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide STVGTPAYIAPEVLSRR contains the phosphoserine Ser180 in SnRK2.4. **e** The MS/MS spectrum showing that the ¹⁸O-phosphopeptide SSVLHSQPKSTVGTPAYIAPEVLLK contains the phosphoserines Ser171 and Ser175 in SnRK2.6. **f** Phosphorylation of SnRK2.4^{K33R}(KR) and phosphosite-mutated SnRK2.4^{K33R} by recombinant RAF24-KD. Autoradiograph (upper) and Coomassie staining (bottom) show phosphorylation and loading of purified RAF24-KD and SnRK2.4, respectively. Source data are provided as Source Data file.

Supplementary Fig. 9 B2 and B3 subgroup RAFs mediate ABA signaling by phosphorylating SnRK2s. **a** The germination rate of wild type, OK^{130} -null mutant, and OK-quatdec mutant on 1/2 MS medium with or without ABA. Error bars, SEM (n = 4). Two-tailed paired *t*-tests, *, p = 0.017, ***, p = 0.00035. **b** The percentage of seedlings with green cotyledon in wild type, OK^{130} -null mutant, and OK-quatdec mutant on 1/2 MS medium with or without ABA. Error bars, SEM (n = 4). Two-tailed paired *t*-tests, **, p = 0.0017. **c** RAF-KDs phosphorylate SnRK2.4 and SnRK2.6 *in vitro*. **d** RAF6-KD phosphorylates SnRK2s *in vitro*. Autoradiograph (upper) and Coomassie staining (bottom) show phosphorylation and loading of purified RAF6-KD and SnRK2s, respectively. **e** SnRK2.6 but not SnRK2.4 interacts with some B2 and B3 RAFs in a yeast two-hybrid assay. **f** The ABA-induced phosphorylation of the conserved serine corresponding to Ser175 in SnRK2.6 depends on RAFs. **g** Expression of ABA responsive transcription factors in wild type, OK^{130} -null, and OK-quatdec seedlings after 6 hours of mannitol or ABA treatment. Error bars, SEM (n = 3). Two-tailed paired *t*-tests, *, p < 0.05, **, p < 0.01. Source data are provided as Source Data file.

Supplementary Fig. 10 Mutation of OSCA does not affect the RAF and SnRK2 activation. Ingel kinase assay showing the SnRK2, OK¹⁰⁰, and OK¹³⁰ activities in mannitol- and sorbitol-treated wild type and *osca-sep* mutants. Image is representative of two independent experiments. Source data are provided as Source Data file.

Supplementary Fig. 11 Model showing that RAFs mediate early osmotic stress and ABA signaling by phosphorylating SnRK2s.

The gRNAs used in pCambia 1300-6RAFs				
name	gRNA sequence	target gene		
gRNA-1	AGGGGTATGATAGTGCTGCT	RAF40/AT3G24715		
gRNA-2	GACCCTAGAGATGAGGGACT	RAF24/AT2G35050		
DNA 2		RAF18/AT1G16270		
grina-3	AATGAGATGGAAAAACCGTGG	RAF20/AT1G79570		
DNA 4		RAF18/AT1G16270		
grina-4	AGUITIGAATCACCIGGACG	RAF20/AT1G79570		
DNIA 5		RAF35/AT5G57610		
grina-3	GATGAGGATCTTGATGCTT	RAF42/AT3G46920		
DNIA (TTTCCCATCCACTATTTCCA	RAF35/AT5G57610		
gRNA-6	IIIGGGAIGGAGIAIIIGCA	RAF42/AT3G46920		
The aDMAs used in a Cambia 2200 2D 4Es				
name	gRNA sequence	target gene		
gRNA-7	AATGTGTATGGTGAGCACAG	RAF24/AT2G35050		
gRNA-8	AACTACACAAGAACTTCGCA	RAF24/AT2G35050		
gRNA-0	ATAATCCCTAGACCAAGTGA	RAF47/AT3G46920		
σRNA_{-10}	CCGCCCATCTTTCAGCTTC	RAF42/AT3G46920		
grun-10	ecoceanerreaderre	KAI 72/A13070720		
The gRNAs used in pCa	ambia 2300 5RAFs			
name	gRNA sequence	target gene		
σRNA-11	TGTAGTCCAGCTGCATCAGC	RAF4/AT1G18160		
gittina-11	IGIAGICCAGEIGEATEAGE	RAF5/AT1G73660		
$\sigma RN\Delta_{-}12$	<u> GTTCCTTGTCGΔΔΤΔGTCΔΔ</u>	RAF4/AT1G18160		
gittina-12	GITCETTOTEGAATAGTCAA	RAF5/AT1G73660		
gRNA-13	CGTCTCAGTGACTGACGAAG	RAF2/AT1G08720		
gRNA-14	CATCGGAGGTGGTAGCCCAG	RAF2/AT1G08720		
αPNA_{-15}	CAGTGTTAAGTCTGAAAGCC	RAF11/AT1G67890		
grinA-15	CAGIGITAAGICIGAAAGCC	RAF10/AT5G49470		
aDNA 16		RAF11/AT1G67890		
gRNA-10	ATTOCAGACAAATCOOUCA	RAF10/AT5G49470		
The $aRNAs$ used in $pCambia$ 2300 11RAFs				
name gRNA sequence target gene				
	8	RAF3/AT1G18160		
gRNA-12	GTTCCTTGTCGAATAGTCAA	RAF5/AT1G73660		
		RAF7/AT3G06620		
oRNA-17	CAGCAGCAGTGTTATGAACA	RAF11/AT1G67890		
Sid (11 1)		RAF10/AT5G49470		
gRNA-18	AAGCGAGAGAAAAGTCAACGG	RAF3/AT5G11850		
σRNA_{-10}	CAGAAGCTCTCTCTCTCAT	$R \Delta F 6 / \Delta T 4 G 24480$		
gittin-17	елоплостетстетски	$R \Delta F 8 / \Delta T 3 G 0 6 6 3 0$		
	TCATGTGGAACTGTCTATCA	RAF7/AT3G06620		
gRNA-20		RAF11/AT1G67800		
		RAF10/AT5G49470		
		R & FQ/& T3G-066/0		
gRNA-21	TGGAAAGGGAATGAGCAGGA	$\mathbf{P} \mathbf{A} \mathbf{F} 7 / \mathbf{A} \mathbf{T} 3 \mathbf{C} 0 6 6 7 0$		
$\alpha PNA_{-1}A$	CATCGGAGGTCGTAGCCCAG	RAF2/AT1C00720		
$\sigma RN\Delta_2 22$	GACGGGATTGGAGACGGACA	$\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{6} \frac{1}{20}$		
511111-22	GACOUCHIIGUAUACUUACA	NAL 12/ALTO23030		

Supplementary Table 1. The guide RNAs used for genome editing and their target sequences.