Supplementary Information

The Combination of Asymmetric Hydrogenation of Olefin and Direct Reductive Amination

Yuan et al.

Supplementary methods

General remarks. All reactions were performed in the nitrogen–filled glovebox or under nitrogen using standard Schlenk techniques unless otherwise noted. Column chromatography was performed using silica gel 60 (200–300 mesh). ¹H NMR, ¹³C NMR spectral data were obtaineded from Bruker 500 MHz or Bruker AVANCE III HD (400 MHz) spectrometers. Chemical shifts are reported in ppm. Enantiomeric excess values were determined by chiral HPLC on an Agilent 1220 Series instrument. All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo Scientific LTQ Orbitrap XL mass spectrometer.

General procedure A for the synthesis of substrate:

Supplementary Figure 1. Bromination of the α , β -unsaturated aldehyde.

Step 1: To a solution of cinnamaldehyde (10.0g, 75.5 mmol) in DCM (100 mL) was added Br₂ (4.7 mL, 91.5 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was stirred for 15 min, followed by the addition of Et₃N (18.0 mL, 129 mmol, 1.7 equiv.). After stirring for an additional 15 min, the reaction mixture was diluted with DCM and washed sequentially with a 10% NaHSO₃ solution, H₂O, and brine. The organic layer was separated and dried over anhydrous Na₂SO₄, filtered, and concentrated to yield orange oil. After keeping for 3 days at room temperature, the mixture crystallized completely as a bright yellow solid which was confirmed to be the desired (*Z*)–2– bromo–3–phenylacrylaldehyde (15.6 g, 98% yield).^[1]

Supplementary Figure 2. Synthesis of 2,3-diphenyl acrolein and its derivatives.

Step 2: A mixture of A (10 mmol), B (1.1 equiv, 11 mmol), Pd(PPh₃)₄ (2%,0.2 mmol), and K₂CO₃ (4 equiv, 40 mmol) in toluene:H₂O (7:3, 25 mL) was heated at 100 °C for 2 h. The reaction mixture was passed through a plug of Florisil® eluting with hexane:AcOEt = 5:1, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 15:1) to afford **1a–1q**.^[2]

General procedure B for the synthesis of substrate:

Supplementary Figure 3. Synthesis of 2,3-diphenyl acrolein and its derivatives.

To a stirred solution of KOH (0.56g, 0.01 mol) in EtOH (25 mL, 95%) was added aldehyde A (0.01 mol), the mixture was cooled to 0 °C and aldehyde B (0.02 mol) was added slowly so that the reaction temperature did not exceed 10 °C. After being stirred for 6 h, the reaction was quenched by addition of HCl (25 mL, 3 M, aq.) and extraction with Et₂O (3×20 mL). The organic layer was dried over MgSO₄ and concentrated to give the crude product as a color residue. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9/1) to afford substituted cinnamyl aldehydes 1r-1za.^[3]

Known Compounds: $1a^{[4]}$, $1b^{[5]}$, $1c^{[6]}$, $1e^{[7]}$, $1g^{[8]}$, $1k^{[8]}$, $1l^{[8]}$, $1r^{[9]}$, $1s^{[4]}$, $1u^{[4]}$, $1v^{[4]}$, $1za^{[10]}$.

(E)-2-([1,1'-biphenyl]-4-yl)-3-phenylacrylaldehyde (1d): White solid; ¹H NMR (400 MHz,

CDCl₃): δ 9.72 (s, 1H), 7.69–7.49 (m, 4H), 7.44–7.35 (m, 2H), 7.34 (s, 1H), 7.32-7.11 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 192.94, 149.35, 140.33, 140.00, 139.53, 132.98, 131.14, 129.72, 129.26, 128.82, 128.79, 127.78, 127.53, 126.49, 126.45, 126.05. HRMS (ESI) m/z calcd for C₂₁H₁₇O⁺ $(M+H)^+$ 285.12739, found 285.12762.

(*E*)-2-(4-chlorophenyl)-3-phenylacrylaldehyde (1f): White solid; ¹H NMR (400 MHz, CDCl₃):

δ 9.75 (s, 1H), 7.72–6.90 (m, 10H); ¹³C NMR (100 MHz, CDCl₃):δ 192.46, 149.72, 139.51, 133.34, 132.66, 130.58, 129.85, 129.64, 129.44, 128.12, 127.62. HRMS (ESI) m/z calcd for $C_{15}H_{12}ClO^+$ (M+H)⁺ 243.05712, found 243.05711.

(E)-2-(3-methoxyphenyl)-3-phenylacrylaldehyde (1h): White solid;¹H NMR (400 MHz, CDCl₃): δ 9.68 (s, 1H), 7.30 (s, 1H), 7.29-7.11 (m, 6H), 6.92-6.79 (m, 1H), 6.72–6.67 (m, 1H), 6.66 (dd, J = 2.6, 1.4 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.74, 158.91, 149.05, 140.60, 133.69, 132.88, 129.77, 129.27, 128.98, 127.49, 120.50, 113.53, 113.07, 54.19. HRMS (ESI) m/z calcd for $C_{16}H_{15}O_2^+$ (M+H)⁺ 239.10666, found

239.10670.

(E)-N-(3-(3-oxo-1-phenylprop-1-en-2-yl)phenyl)acetamide (1i): White solid; ¹H NMR (400

NHAc

MHz, CDCl₃): δ 9.74 (s, 1H), 7.92 (s, 1H), 7.64 (d, *J* = 2.2 Hz, 1H), 7.40 (s, 1H), 7.36–7.17 (m, 7H), 6.85 (d, *J* = 7.5 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.52, 168.60, 151.20, 141.29, 139.03, 133.88, 133.67, 130.94, 130.58, 129.63, 128.60, 124.50, 120.10, 119.80,

24.44. HRMS (ESI) m/z calcd for $C_{17}H_{16}NO_2^+$ (M+H)⁺ 266.11756, found 266.11777.

(E)-2-(3,5-dimethylphenyl)-3-phenylacrylaldehyde (1j): White solid; ¹H NMR (400 MHz, CDCl₃): δ 9.75 (s, 1H), 7.34 (s, 1H), 7.32–7.19 (m, 5H), 7.01 (s, 1H), 6.79 (s, 2H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.22, 149.77, 142.13, 138.41, 134.12, 133.24, 130.84, 130.18, 130.04, 128.46, 126.69, 21.34. HRMS (ESI) m/z calcd for $C_{17}H_{17}O^+$ (M+H)⁺ 237.12739, found 237.12732.

(E)-2-(2-fluorophenyl)-3-phenylacrylaldehyde (1m): Pale yellow solid; ¹H NMR (500 MHz,

CDCl₃): δ 9.77 (s, 1H), 7.54 (s, 1H), 7.45–7.36 (m, 1H), 7.35–7.29 (m, 1H), 7.27-7.10 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 192.85, 160.85, 158.88, 151.59, 136.11, 133.91, 131.36, 130.66, 130.41, 128.71, 124.60, 124.58, 121.37, 116.23. HRMS (ESI) m/z calcd for $C_{15}H_{12}FO^+$ (M+H)⁺ 227.08667, found 227.08652.

(E)-2-(2-chlorophenyl)-3-phenylacrylaldehyde (1n): Pale yellow solid; ¹H NMR (400 MHz,

 $CDCl_3$): δ 9.76 (s, 1H), 7.53 (s, 1H), 7.51 (dd, J = 7.9, 1.4 Hz, 1H), 7.40– 7.28 (m, 3H), 7.28–7.21 (m, 2H), 7.19–7.09 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.71, 149.72, 138.47, 132.74, 132.52, 132.10, 129.89, 129.63, 129.48, 128.94, 128.85, 127.69, 126.33. HRMS (ESI) m/z calcd for

 $C_{15}H_{12}ClO^+$ (M+H)⁺ 243.05712, found 243.05714.

(E)-2-(naphthalen-2-yl)-3-phenylacrylaldehyde (10): White solid; ¹H NMR (400 MHz, CDCl₃):

δ 9.84 (s, 1H), 7.95–7.78 (m, 3H), 7.75 (s, 1H), 7.57–7.47 (m, 2H), 7.46 (s, 1H), 7.33–7.13 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 193.95, 150.38, 141.51, 133.97, 133.50, 133.07, 130.79, 130.70, 130.30, 128.75, 128.54, 128.51, 128.26, 127.75, 127.02, 126.41, 126.13.. HRMS (ESI) m/z calcd for $C_{19}H_{15}O^+$ (M+H)⁺ 259.11174, found 259.11185.

(E)-2-(naphthalen-1-yl)-3-phenylacrylaldehyde (1p): White solid; ¹H NMR (400 MHz, CDCl₃):

δ 9.92 (s, 1H), 7.96–7.87 (m, 2H), 7.70 (s, 1H), 7.61 (d, *J* = 1.1 Hz, 1H), 7.56–7.40 (m, 2H), 7.42–7.32 (m, 1H), 7.28 (dd, *J* = 7.1, 1.2 Hz, 1H), 7.25–7.17 (m, 1H), 7.15–6.98 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 192.94, 150.14, 139.42, 132.80, 132.76, 130.69, 130.07, 129.81, 129.43,

127.82, 127.57, 127.54, 125.97, 125.50, 125.16, 124.79, 123.81. HRMS (ESI) m/z calcd for $C_{19}H_{15}O^+$ (M+H)⁺ 259.11174, found 259.11194.

(Z)-3-phenyl-2-(thiophen-2-yl)acrylaldehyde (1q): Brown solid; ¹H NMR (400 MHz, CDCl₃): δ 9.73 (s, 1H), 7.44 (s, 1H), 7.43 (dd, J = 4.9, 1.4 Hz, 1H), 7.40–7.26 (m, 5H), 7.12–7.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 191.77, 149.96, 133.64, 132.93, 131.66, 129.41, 129.38, 127.58, 127.39, 126.48, 126.22. HRMS (ESI) m/z calcd for $C_{13}H_{11}OS^+$ (M+H)⁺ 215.05251, found

215.05241.

(E)-3-(4-(tert-butyl)phenyl)-2-phenylacrylaldehyde (1t): White solid; ¹H NMR (400 MHz,

CDCl₃): δ 9.67 (s, 1H), 7.39–7.31 (m, 3H), 7.28 (s, 1H), 7.21–7.11 (m, 4H), 7.10–7.04 (m, 2H), 1.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 194.03, 154.02, 150.25, 141.08, 133.71, 131.18, 130.77, 129.28, 128.88, 128.20, 125.55, 34.88, 31.02. HRMS (ESI) m/z calcd for

 $C_{19}H_{21}O^{+}(M+H)^{+}$ 265.15869, found 265.15881.

(E)-2-phenyl-3-(3-(trifluoromethyl)phenyl)acrylaldehyde (1w): White solid; ¹H NMR (400 MHz, CDCl₃): δ 9.81 (s, 1H), 7.59-7.50 (m, 1H), 7.48-7.38 (m, 5H), 7.37-7.30 (m, 2H), 7.24–7.12 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 192.40, 146.55, 142.17, 133.73, 132.37, 131.50, 128.10, 128.03, 127.96, 127.71, 126.31 (q, J = 4.0 Hz), 125.44 (q, J = 3.7 Hz), 123.87, 121.16. HRMS (ESI) m/z calcd for $C_{16}H_{12}F_{3}O^{+}(M+H)^{+}277.08348$, found 277.08362.

(E)-3-(3,5-dichlorophenyl)-2-phenylacrylaldehyde (1x): Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 9.77 (s, 1H), 7.48–7.40 (m, 3H), 7.27 (t, J = 1.9 Hz, 1H), 7.25 (s, 1H), 7.19–7.12 (m, 2H), 7.04 (d, J = 1.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 193.18, 145.99, 143.73, 136.84, 135.05, 132.08, ĊI 129.66, 129.08, 129.04, 128.95, 128.56. HRMS (ESI) m/z calcd for $C_{15}H_{11}Cl_2O^+$ (M+H)⁺ 277.01815, found 277.01849.

(E)-3-(2-chlorophenyl)-2-phenylacrylaldehyde (1y): White solid; ¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H), 7.72 (s, 1H), 7.44 (dd, J = 8.1, 1.2 Hz, 1H), 7.39–7.28 (m, 3H), 7.25–7.09 (m, 3H), 7.00–6.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 193.56, 145.99, 143.06, 135.12, 132.60, 132.27, 131.04, 130.71, 129.81, 129.59, 128.63, 128.42, 126.32. HRMS (ESI) m/z calcd for $C_{15}H_{12}ClO^+$ (M+H)⁺ 243.05712, found 243.05719.

(E)-3-(2-fluorophenyl)-2-phenylacrylaldehyde (1z): White solid; ¹H NMR (400 MHz, CDCl₃):

δ 9.81 (s, 1H), 7.64 (s, 1H), 7.47-7.33 (m, 3H), 7.32-7.24 (m, 1H), 7.23-7.16 (m, 2H), 7.14–7.03 (m, 1H), 6.98–6.88 (m, 1H), 6.87–6.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 192.57, 161.40, 158.88, 141.87, 131.79, 130.94, 129.41, 129.39, 128.27, 127.78, 122.79, 122.76, 114.86. HRMS (ESI) m/z calcd for $C_{15}H_{12}FO^+$ (M+H)⁺ 227.08667, found 227.08650.

General Procedure for Asymmetric Reductive Amination

In a nitrogen-filled glovebox, [Rh(COD)Cl]₂ (5 µmol) and L (11 µmol) was dissolved in anhydrous CH₃COOCH₃ (1.0 mL), stirred for 20 min, and equally divided into 10 vials charged with aldehyde (0.1 mmol) and aniline (0.1 mmol) in anhydrous CH₃COOCH₃ solution (0.5 mL). Then $4Cl-PhSO_3H$ (0.3 equiv.), NaSbF₆ (0.05 equiv), were added and the total solution was made to 2.0 mL (MeOAc:DMF = 4:1) for each vial. The resulting vials were transferred to an autoclave, which was charged with 50 atm of H₂, and stirred at 60 °C for 24 h. The hydrogen gas was released slowly and the solution was quenched with aqueous sodium bicarbonate solution. The organic phase was concentrated and passed through a short column of silica gel to remove the metal complex to give the crude products, which were purified by column chromotography and then analyzed by chiral HPLC determine the enantiomeric excesses.

126.25, 117.48, 113.09, 48.58, 47.07, 41.14. HRMS (ESI) m/z calcd for $C_{21}H_{22}N^+$ (M+H)⁺ 288.17468, found 288.17487. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 6.76 min (minor), 8.53 min (major).

Supplementary Figure 4. HPLC spectra for racemic and chiral 3a.

113.13, 48.67, 46.63, 41.24, 21.18. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19040. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 5.44 min (minor), 6.03 min (major).

Supplementary Figure 5. HPLC spectra for racemic and chiral 3b.

Supplementary Figure 6. HPLC spectra for racemic and chiral 3c.

Supplementary Figure 7. HPLC spectra for racemic and chiral 3d.

38.93. HRMS (ESI) m/z calcd for $C_{21}H_{22}NO^+$ (M+H)⁺ 304.16959, found 304.16980. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA = 90:10, 1 mL/min, 220 nm, 16.17 min (major), 20.48 min (minor).

Supplementary Figure 8. HPLC spectra for racemic and chiral 3e.

determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 9.90 min (minor), 11.04 min (major).

Supplementary Figure 9. HPLC spectra for racemic and chiral 3f.

40.81. HRMS (ESI) m/z calcd for $C_{22}H_{21}F_3N^+$ (M+H)⁺ 356.16206, found 356.16217. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 13.10 min (minor), 14.49 min (major).

Supplementary Figure 10. HPLC spectra for racemic and chiral 3g.

55.24, 48.56, 47.10, 41.02. HRMS (ESI) m/z calcd for $C_{22}H_{24}NO^+$ (M+H)⁺ 318.18524, found 318.18509. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 10.11 min (major), 11.13 min (minor).

Supplementary Figure 11. HPLC spectra for racemic and chiral 3h.

2.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 168.57, 147.93, 143.73, 139.75, 138.34, 129.31, 129.23, 129.10, 128.37, 126.23, 123.85, 119.15, 118.44, 117.42, 113.00, 48.47, 47.01, 40.91, 24.64. HRMS (ESI) m/z calcd for C₂₃H₂₅N2O⁺ (M+H)⁺ 345.19614, found 345.19608. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 19.06 min (major), 21.66 min (minor).

Supplementary Figure 12. HPLC spectra for racemic and chiral 3i.

6.37347

2.6912

0.7995 338.44708

21.663 VV

2

128.47, 128.27, 126.09, 125.58, 117.29, 113.02, 48.32, 46.76, 41.14, 21.33. HRMS (ESI) m/z calcd for $C_{23}H_{26}N^+$ (M+H)⁺ 316.20598, found 316.20593. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=99.2:0.8, 1 mL/min, 220 nm, 10.89 min (minor), 11.62 min (major).

Supplementary Figure 13. HPLC spectra for racemic and chiral 3j.

129.42, 129.36, 129.01, 128.52, 126.54, 118.86, 117.84, 113.00, 112.71, 48.51, 46.92, 40.64. HRMS (ESI) m/z calcd for $C_{22}H_2 1N_2^+$ (M+H)⁺ 313.16993, found 313.17020. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=80:20, 1 mL/min, 220 nm, 13.57 min (minor), 14.71 min (major).

Supplementary Figure 14. HPLC spectra for racemic and chiral 3k.

41.45, 19.71. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19019. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 11. 01 min (minor), 12. 01 min (major).

Supplementary Figure 15. HPLC spectra for racemic and chiral 31.

39.66. HRMS (ESI) m/z calcd for $C_{21}H_{21}FN^+$ (M+H)⁺ 306.16525, found 306.16534. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 7. 26 min (minor), 7. 87 min (major).

Supplementary Figure 16. HPLC spectra for racemic and chiral 3m.

127.92, 127.25, 126.38, 114.92, 114.32, 55.87, 48.43, 42.72, 40.09. HRMS (ESI) m/z calcd for $C_{22}H_{23}CINO^+$ (M+H)⁺ 352.14627, found 352.14603. Enantiomeric excess was determined by chiral HPLC: Chiralpak AS-H column, Hex/IPA=95:5, 1 mL/min, 220 nm, 9.83 min (minor), 10.62 min (major).

Supplementary Figure 17. HPLC spectra for racemic and chiral 3n.

126.06, 125.75, 125.56, 117.41, 113.01, 48.43, 47.09, 40.95. HRMS (ESI) m/z calcd for $C_{25}H_{24}N^+$ (M+H)⁺ 338.19033, found 338.19052. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 10.29 min (minor), 11.19 min (major).

峰高 峰 保留时间 类型 峰宽 峰面积 峰面积 [mAU*s] [mAU] # [min] [min] % 10.291 BB 0.1673 169.46053 15.53405 1.2746 1 2 11.191 BV 0.1834 1.31261e4 1082.87939 98.7254

Supplementary Figure 18. HPLC spectra for racemic and chiral 30.

139.89, 138.79, 134.02, 132.12, 129.10, 129.08, 129.00, 128.36, 127.26, 126.24, 126.07, 125.56, 125.52, 122.90, 117.32, 112.88, 47.71, 40.89. HRMS (ESI) m/z calcd for $C_{25}H_{24}N^+$ (M+H)⁺ 338.19033, found 338.19019. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 14. 88 min (minor), 16. 27 min (major).

Supplementary Figure 19. HPLC spectra for racemic and chiral 3p.

129.18, 128.99, 128.33, 126.72, 126.32, 124.71, 123.71, 117.52, 113.08, 49.33, 42.50, 41.72. HRMS (ESI) m/z calcd for $C_{19}H_{20}NS^+$ (M+H)⁺ 294.13110, found 294.13116. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 7. 52 min (minor), 8. 24 min (major).

Supplementary Figure 20. HPLC spectra for racemic and chiral 3q.

Ζ

6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 148.35, 140.47, 129.17, 129.10, 128.26, 125.93, 117.08, 112.72, 49.85, 41.36, 35.00, 18.04. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 7.69 min (minor), 8.11 min (major).

 ## [min]
 [min]
 [mAU*s]
 [mAU]
 %

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 1
 7.685
 BV
 0.1207
 166.50104
 21.42282
 3.0359

 2
 8.111
 VV
 0.1308
 5317.93506
 615.53784
 96.9641

Supplementary Figure 21. HPLC spectra for racemic and chiral 3r.

135.53, 129.11, 128.94, 128.89, 128.60, 127.84, 126.73, 117.30, 112.96, 48.45, 46.96, 40.56, 20.99. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19049. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 5. 16 min (minor), 5.94 min (major).

Supplementary Figure 22. HPLC spectra for racemic and chiral 3s.

112.93, 48.46, 46.80, 40.47, 34.32, 31.36. HRMS (ESI) m/z calcd for $C_{25}H_{30}N^+$ (M+H)⁺ 344.23728, found 344.23737. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=99:1, 1 mL/min, 220 nm, 5. 65 min (minor), 7. 15 min (major).

Supplementary Figure 23. HPLC spectra for racemic and chiral 3t.

138.22, 131.85, 130.34, 129.19, 128.69, 128.32, 127.83, 126.93, 117.51, 113.00, 48.55, 46.98, 40.18. HRMS (ESI) m/z calcd for $C_{21}H_{21}CIN^+$ (M+H)⁺ 322.13570, found 322.13599. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 11. 62 min (minor), 12. 10 min (major).

Supplementary Figure 24. HPLC spectra for racemic and chiral 3u.

128.60, 128.12, 127.80, 126.84, 126.73, 126.04, 117.29, 112.96, 48.42, 46.81, 40.94, 21.33. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19040. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 6. 70 min (minor), 7. 10 min (major).

Supplementary Figure 25. HPLC spectra for racemic and chiral 3v.

130.53 (q, J = 32.0 Hz), 129.22, 128.74, 128.60, 127.82, 127.05, 125.72 (q, J = 3.8 Hz), 125.22, 123.14, 117.62, 113.03, 48.53, 46.92, 40.61. HRMS (ESI) m/z calcd for $C_{22}H_{21}F_3N^+$ (M+H)⁺ 356.16206, found 356.16229. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 10.06 min (minor), 10.72 min (major).

Supplementary Figure 26. HPLC spectra for racemic and chiral 3w.

Ζ

129.25, 128.80, 127.74, 127.47, 127.17, 126.39, 117.66, 113.03, 48.51, 46.60, 40.15. HRMS (ESI) m/z calcd for $C_{21}H_{20}Cl_2N^+$ (M+H)⁺ 356.09673, found 356.09702. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 7.45 min (minor), 7.86 min (major).

Supplementary Figure 27. HPLC spectra for racemic and chiral 3x.

128.71, 127.91, 127.68, 126.93, 126.53, 114.85, 114.35, 55.82, 49.37, 45.25, 38.77. HRMS (ESI) m/z calcd for $C_{22}H_{23}CINO^+$ (M+H)⁺ 352.14627, found 352.14472. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 11.41 min (minor), 12.03 min (major).

Supplementary Figure 28. HPLC spectra for racemic and chiral 3y.

127.94 (d, J = 8.0 Hz), 127.85, 126.92, 123.84 (d, J = 3.5 Hz), 115.34, 115.16, 114.87, 114.39, 99.99, 55.82, 49.49, 45.86, 34.11. HRMS (ESI) m/z calcd for $C_{22}H_{23}FNO^+$ (M+H)⁺ 336.17582, found 336.17575. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 10. 74 min (major), 11. 46 min (minor).

 1
 10.738 MF
 0.2270 6632.17139
 486.95319
 97.5365

 2
 11.461 FM
 0.2098 167.50859
 13.30424
 2.4635

Supplementary Figure 29. HPLC spectra for racemic and chiral 3z.

147.90, 142.33, 141.10, 129.18, 128.67, 127.64, 126.91, 117.40, 112.98, 110.21, 106.49, 48.64, 44.18, 32.95. HRMS (ESI) m/z calcd for $C_{19}H_{20}NO^+$ (M+H)⁺ 278.15394, found 278.15408. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 6.07 min (minor), 7.38 min (major).

Supplementary Figure 30. HPLC spectra for racemic nd chiral 3za.

N-(2-methylpentyl)aniline (3zb): 56% yield, 17% ee, colorless oil.¹H NMR(500 MHz, CDCl₃): δ 7.18 (d, J = 7.5 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 7.9 Hz, 2H), 3.67 (s, 1H), 3.06 (dd, J = 12.2, 5.9 Hz, 1H), 2.89 (dd, J = 12.2, 7.2 Hz, 1H), 1.80–1.71 (m, 1H), 1.50–1.38 (m, 2H), 1.37–1.29 (m, 1H), 1.23–1.12 (m, 1H), 0.97 (d, J = 6.7 Hz, 3H), 0.92 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ

148.65, 129.21, 116.92, 112.63, 50.35, 37.09, 32.72, 20.10, 18.04, 14.35. HRMS (ESI) m/z calcd for $C_{12}H_{20}N^+$ (M+H)⁺ 178.15903, found 178.15909. Enantiomeric excess was determined by chiral HPLC: Chiralpak OJ–3 column, Hex/IPA=99:1, 1 mL/min, 220 nm, 9.33 min (major), 9.72 min (minor).

Supplementary Figure 31. HPLC spectra for racemic and chiral 3zb.

chiral HPLC: Chiralpak IB-3 column, Hex/IPA=99:1, 1 mL/min, 220 nm, 15.20 min (minor), 15.90 min (major).

Supplementary Figure 32. HPLC spectra for racemic and chiral 3zc.

 $C_{23}H_{26}N^+$ (M+H)⁺ 316.20598, found 316.20624. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA=90:10, DEA 0.1%, TFA 0.2%, 1 mL/min, 220 nm, 8.93 min (minor), 10.17 min (major).

Supplementary Figure 33. HPLC spectra for racemic and chiral 3zd.

129.01, 128.59, 128.21, 127.82, 126.73, 126.05, 114.77, 114.34, 55.71, 49.51, 46.93, 41.01. HRMS (ESI) m/z calcd for $C_{22}H_{24}NO^+$ (M+H)⁺ 318.18524, found 318.18527. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 9.18 min (major), 9.85 min (minor).

Supplementary Figure 34. HPLC spectra for racemic and chiral 3ab.

48.89, 46.92, 41.00, 20.33. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19031. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 5.83 min (minor), 6.119 min (major).

Supplementary Figure 35. HPLC spectra for racemic and chiral 3ac.

N-(2,3-diphenylpropyl)-4-fluoroaniline (3ad): 98% yield, 98% ee, colorless oil.¹H NMR(500 MHz, CDCl₃): δ 7.30 (t, J = 7.4 Hz, 2H), 7.23 (dd, J = 7.4, 4.9 Hz, 3H), 7.19–7.13 (m, 3H), 7.10–7.05 (m, 2H), 6.80 (t, J = 8.7 Hz, 2H), 6.37–6.28 (m, 2H), 3.39 (dd, J = 11.8, 4.5 Hz, 1H), 3.33 (s, 1H), 3.25–3.09 (m, 2H), 2.97 (d, J = 7.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.68, 154.82, 144.24, 142.53, 139.76, 129.01, 128.67,

128.29, 127.79, 126.85, 126.15, 115.61, 115.43, 113.82, 113.77, 49.14, 46.89, 41.01. HRMS (ESI) m/z calcd for $C_{21}H_{21}FN^+$ (M+H)⁺ 306.16525, found 306.16510. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 5.81 min (minor), 7.65 min (major).

Supplementary Figure 36. HPLC spectra for racemic and chiral 3ad.

N-(2,3-diphenylpropyl)-3-methylaniline (3ae): 98% yield, 98% ee, colorless oil.¹H NMR(500

MHz, CDCl₃): δ 7.34–7.25 (m, 2H), 7.26–7.19 (m, 3H), 7.19–7.12 (m, 3H), 7.08 (d, J = 7.4 Hz, 2H), 6.99 (t, J = 7.7 Hz, 1H), 6.48 (d, J = 7.5 Hz, 1H), 6.27–6.17 (m, 2H), 3.43 (dd, J = 12.1, 4.8 Hz, 2H), 3.28–3.10 (m, 2H), 3.03–2.91 (m, 2H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 147.93, 142.71, 139.86, 138.85, 129.05, 128.98, 128.60,

128.24, 127.82, 126.74, 126.08, 118.28, 113.68, 110.16, 48.46, 46.95, 40.94, 21.53. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19034. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 4.92 min (minor), 5.67 min (major).

Supplementary Figure 37. HPLC spectra for racemic and chiral 3ae.

12.4, 4.9 Hz, 1H), 3.26 (dd, J = 12.4, 9.0 Hz, 1H), 3.21–3.12 (m, 1H), 3.05–2.90 (m, 2H).; ¹³C NMR (125 MHz, CDCl₃): δ 148.03,

142.31, 139.60, 131.45 (q, J = 31.7 Hz), 129.48, 128.97, 128.76, 128.39, 127.76, 126.99, 126.28, 125.39, 123.23, 115.90, 113.66 (q, J = 4.0 Hz), 108.94 (q, J = 3.9 Hz), 48.18, 46.83, 40.94. HRMS (ESI) m/z calcd for $C_{22}H_{21}F_3N^+$ (M+H)⁺ 356.16206, found 356.16202. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=98:2, 1 mL/min, 220 nm, 6.53 min (minor), 7.45 min (major).

Supplementary Figure 38. HPLC spectra for racemic and chiral 3af.

for $C_{23}H_{26}N^+$ (M+H)⁺ 316.20598, found 316.20578. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 5.59 min (major), 6.69 min (minor).

Supplementary Figure 39. HPLC spectra for racemic and chiral 3ag.

128.65, 128.29, 127.76, 127.00, 126.83, 126.13, 122.10, 116.88, 109.83, 48.61, 46.85, 40.83, 17.01. HRMS (ESI) m/z calcd for $C_{22}H_{24}N^+$ (M+H)⁺ 302.19033, found 302.19034. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=95:5, 1 mL/min, 220 nm, 6.40 min (minor), 7.50 min (major).

Supplementary Figure 40. HPLC spectra for racemic and chiral 3ah.

114.42, 112.73, 49.11, 47.04, 40.75. HRMS (ESI) m/z calcd for $C_{21}H_{22}NO^+$ (M+H)⁺ 304.16959, found 304.16949. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 16.93 min (major), 18.00 min (minor).

Supplementary Figure 41. HPLC spectra for racemic and chiral 3ai.

119.28, 117.08, 111.24, 48.25, 46.84, 40.47. HRMS (ESI) m/z calcd for $C_{21}H_{21}ClN^+$ (M+H)⁺ 322.13570, found 322.13568. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=99:1, 1 mL/min, 220 nm, 6.04 min (minor), 6.25 min (major).

Supplementary Figure 42. HPLC spectra for racemic and chiral 3aj.

119.66, 117.31, 104.35, 48.75, 46.88, 41.06. HRMS (ESI) m/z calcd for $C_{25}H_{24}N^+$ (M+H)⁺ 338.19033, found 338.19031. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB–3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 9.15 min (minor), 11.56 min (major).

Supplementary Figure 43. HPLC spectra for racemic and chiral 3ak.

(*E*)–*N*–(2,3–diphenylallyl)aniline (4): colorless oil.¹H NMR(500 MHz, CDCl₃): δ 7.38–7.25 (m, 3H), 7.25–7.13 (m, 4H), 7.11–7.03 (m, 3H), 6.98–6.90 (m, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.65 (d, *J* = 8.3 Hz, 3H), 4.10 (s, 2H), 3.94 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 147.99, 139.56, 139.36, 136.70, 129.28, 129.24, 128.85, 128.68, 127.97, 127.51, 127.19, 126.71, 117.64, 113.19, 52.28.

Procedure for the derivatization of 3y and 3n

Supplementary Figure 44. Derivatization of **3y** and **3n** for the synthesis of cyclic chiral amine **6** and **7**.

General procedure:^[12]

An oven-dried vial equipped with a magnetic stir bar and fitted with a Teflon septum was charged with $Pd_2(dba)_3$ (0.05 equiv) and JohnPhos (0.1 equiv). The vessel was evacuated three times and backfilled with argon. Subsequently, the TAA (3 mL) was added via a syringe and the mixture was preheated at 100 °C for 30 min. Another oven-dried vial was charged with tBuOK (1.4 equiv) and substrate 3y or 3n. Also, this vessel was evacuated three times and backfilled with argon. The solution of the activated catalyst was transferred from the first vial into the second one via a syringe. The vessel was then heated at 100 °C until the starting component was fully consumed (control by TLC). The mixture was then diluted with EtOAc and filtered through a small plug of Celite® S which was subsequently thoroughly washed with EtOAc. The filtrate was concentrated in vacuo and the residue was purified by column chromatography.

column, Hex/IPA=90:10, 1 mL/min, 220 nm, 7.78 min (minor), 8.75 min (major).

Supplementary Figure 45. HPLC spectra for racemic and chiral 6

determined by chiral HPLC: Chiralpak IA-3 column, Hex/IPA=90:10, 1 mL/min, 220 nm, 8.30 min (major), 9.05 min (minor).

Supplementary Figure 46. HPLC spectra for racemic and chiral 7.

Supplementary Figure 47. ¹H NMR spectrum of 1d in CDCl₃.

Supplementary Figure 48. ¹³C NMR spectrum of 1d in CDCl₃.

Supplementary Figure 49. HRMS of 1d.

Supplementary Figure 50. ¹H NMR spectrum of 1f in CDCl₃.

Supplementary Figure 51. ¹³C NMR spectrum of 1f in CDCl₃.

Supplementary Figure 52. HRMS of 1f.

Supplementary Figure 53. ¹H NMR spectrum of 1h in CDCl₃.

Supplementary Figure 54. ¹³C NMR spectrum of 1h in CDCl₃.

Supplementary Figure 55. HRMS of 1h.

Supplementary Figure 56. ¹H NMR spectrum of 1i in CDCl₃.

Supplementary Figure 57. ¹³C NMR spectrum of 1i in CDCl₃.

Supplementary Figure 58. HRMS of 1i.

Supplementary Figure 59. ¹H NMR spectrum of 1j in CDCl₃.

Supplementary Figure 60. ¹³C NMR spectrum of 1j in CDCl₃.

Supplementary Figure 61. HRMS of 1j.

Supplementary Figure 62. ¹H NMR spectrum of 1m in CDCl₃.

Supplementary Figure 63. ¹³C NMR spectrum of 1m in CDCl₃.

Supplementary Figure 64. HRMS of 1m.

Supplementary Figure 65. ¹H NMR spectrum of 1n in CDCl₃.

Supplementary Figure 66. ¹³C NMR spectrum of 1n in CDCl₃.

Supplementary Figure 67. HRMS of 1n.

Supplementary Figure 68. ¹H NMR spectrum of 10 in CDCl₃.

Supplementary Figure 69. ¹³C NMR spectrum of 10 in CDCl₃.

Supplementary Figure 70. HRMS of 10.

Supplementary Figure 71. ¹H NMR spectrum of 1p in CDCl₃.

Supplementary Figure 72. ¹³C NMR spectrum of 1p in CDCl₃.

Supplementary Figure 73. HRMS of 1p.

Supplementary Figure 74. ¹H NMR spectrum of 1q in CDCl₃.

Supplementary Figure 75. ¹³C NMR spectrum of 1q in CDCl₃.

Supplementary Figure 76. HRMS of 1q.

Supplementary Figure 77. ¹H NMR spectrum of 1t in CDCl₃.

Supplementary Figure 78. ¹³C NMR spectrum of 1t in CDCl₃.

Supplementary Figure 79. HRMS of 1t.

Supplementary Figure 80. ¹H NMR spectrum of 1w in CDCl₃.

Supplementary Figure 81. ¹³C NMR spectrum of 1w in CDCl₃.

Supplementary Figure 82. HRMS of 1w.

Supplementary Figure 83. ¹H NMR spectrum of 1x in CDCl₃.

Supplementary Figure 84. ¹³C NMR spectrum of 1x in CDCl₃.

Supplementary Figure 85. HRMS of 1x.

Supplementary Figure 86. ¹H NMR spectrum of 1y in CDCl₃.

Supplementary Figure 87. ¹³C NMR spectrum of 1y in CDCl₃.

Supplementary Figure 88. HRMS of 1y.

Supplementary Figure 89. ¹H NMR spectrum of 1z in CDCl₃.

Supplementary Figure 90. ¹³C NMR spectrum of 1z in CDCl₃.

Supplementary Figure 91. HRMS of 1z.

Supplementary Figure 92. ¹H NMR spectrum of 4 in CDCl₃.

Supplementary Figure 93. ¹³C NMR spectrum of 4 in CDCl₃.

Supplementary Figure 94. ¹H NMR spectrum of 3a in CDCl₃.

Supplementary Figure 95. ¹³C NMR spectrum of 3a in CDCl₃.

Supplementary Figure 96. HRMS of 3a.

Supplementary Figure 97. ¹H NMR spectrum of 3b in CDCl₃.

Supplementary Figure 98. ¹³C NMR spectrum of 3b in CDCl₃.

Supplementary Figure 99. HRMS of 3d.

Supplementary Figure 100. ¹H NMR spectrum of 3c in CDCl₃.

Supplementary Figure 101. ¹³C NMR spectrum of 3c in CDCl₃.

Supplementary Figure 102. HRMS of 3c.

÷

Supplementary Figure 103. ¹H NMR spectrum of 3d in CDCl₃.

Supplementary Figure 104. ¹³C NMR spectrum of 3d in CDCl₃.

Supplementary Figure 105. HRMS of 3d.

Supplementary Figure 106. ¹H NMR spectrum of 3e in CDCl₃.

Supplementary Figure 107. ¹³C NMR spectrum of 3e in CD₃OD.

Supplementary Figure 108. HRMS of 3e.

Supplementary Figure 109. ¹H NMR spectrum of 3f in CDCl₃.

Supplementary Figure 110. ¹³C NMR spectrum of 3f in CDCl₃.

Supplementary Figure 111. HRMS of 1f.

Supplementary Figure 112. ¹H NMR spectrum of 3g in CDCl₃.

Supplementary Figure 113. ¹³C NMR spectrum of 3g in CDCl₃.

Supplementary Figure 114. HRMS of 3g.

Supplementary Figure 115. ¹H NMR spectrum of 3h in CDCl₃.

Supplementary Figure 116. ¹³C NMR spectrum of 3h in CDCl₃.

Supplementary Figure 117. HRMS of 3h.

Supplementary Figure 118. ¹H NMR spectrum of 3i in CDCl₃.

Supplementary Figure 119. ¹³C NMR spectrum of 3i in CDCl₃.

Supplementary Figure 120. HRMS of 3i.

÷

Supplementary Figure 121. ¹H NMR spectrum of 3j in CDCl₃.

Supplementary Figure 122. ¹³C NMR spectrum of 3j in CDCl₃.

Supplementary Figure 123. HRMS of 3j.

Supplementary Figure 124. ¹H NMR spectrum of 3k in CDCl₃.

Supplementary Figure 125. ¹³C NMR spectrum of 3k in CDCl₃.

Supplementary Figure 126. HRMS of 3k.

Supplementary Figure 127. ¹H NMR spectrum of 31 in CDCl₃.

Supplementary Figure 128. ¹³C NMR spectrum of 31 in CDCl₃.

Supplementary Figure 129. HRMS of 31.

Supplementary Figure 130. ¹H NMR spectrum of 3m in CDCl₃.

Supplementary Figure 131. ¹³C NMR spectrum of 3m in CDCl₃.

Supplementary Figure 132. HRMS of 3m.

Supplementary Figure 133. ¹H NMR spectrum of 3n in CDCl₃.

Supplementary Figure 134. ¹³C NMR spectrum of 3n in CDCl₃.

Supplementary Figure 135. HRMS of 3n.

Supplementary Figure 136. ¹H NMR spectrum of 30 in CDCl₃.

Supplementary Figure 137. ¹³C NMR spectrum of 30 in CDCl₃.

Supplementary Figure 138. HRMS of 10.

Supplementary Figure 139. ¹H NMR spectrum of 3p in CDCl₃.

Supplementary Figure 140. ¹³C NMR spectrum of 3p in CDCl₃.

Supplementary Figure 141. HRMS of 3p.

Supplementary Figure 142. ¹H NMR spectrum of 3q in CDCl₃.

Supplementary Figure 143. ¹³C NMR spectrum of 3q in CDCl₃.

Supplementary Figure 144. HRMS of 3q.

Supplementary Figure 145. ¹H NMR spectrum of 3r in CDCl₃.

Supplementary Figure 146. ¹³C NMR spectrum of 3r in CDCl₃.

Supplementary Figure 147. ¹H NMR spectrum of 3s in CDCl₃.

Supplementary Figure 148. ¹³C NMR spectrum of 3s in CDCl₃.

Supplementary Figure 149. HRMS of 3s.

Supplementary Figure 150. ¹H NMR spectrum of 3t in CDCl₃.

Supplementary Figure 151. ¹³C NMR spectrum of 3t in CDCl₃.

Supplementary Figure 152. HRMS of 3t.

Supplementary Figure 153. ¹H NMR spectrum of 3u in CDCl₃.

Supplementary Figure 154. ¹³C NMR spectrum of 3u in CDCl₃.

Supplementary Figure 155. HRMS of 3u.

Supplementary Figure 156. ¹H NMR spectrum of 3v in CDCl₃.

Supplementary Figure 157. ¹³C NMR spectrum of 3v in CDCl₃.

Supplementary Figure 158. HRMS of 3v.

Supplementary Figure 159. ¹H NMR spectrum of 3w in CDCl₃.

Supplementary Figure 160. ¹³C NMR spectrum of 3w in CDCl₃.

Supplementary Figure 161. HRMS of 3w.

Supplementary Figure 162. ¹H NMR spectrum of 3x in CDCl₃.

Supplementary Figure 163. ¹³C NMR spectrum of 3x in CDCl₃.

Supplementary Figure 164. HRMS of 3x.

Supplementary Figure 165. ¹H NMR spectrum of 3y in CDCl₃.

Supplementary Figure 166. ¹³C NMR spectrum of 3y in CDCl₃.

Supplementary Figure 167. HRMS of 3y.

Supplementary Figure 168. ¹H NMR spectrum of 3z in CDCl₃.

Supplementary Figure 169. ¹³C NMR spectrum of 3z in CDCl₃.

Supplementary Figure 170. HRMS of 3z.

Supplementary Figure 171. ¹H NMR spectrum of 3za in CDCl₃.

Supplementary Figure 172. ¹³C NMR spectrum of 3za in CDCl₃.

Supplementary Figure 173. HRMS of 3za.

Supplementary Figure 174. ¹H NMR spectrum of 3zb in CDCl₃.

Supplementary Figure 175. ¹³C NMR spectrum of 3zb in CDCl₃.

Supplementary Figure 176. HRMS of 3zb.

Supplementary Figure 177. ¹H NMR spectrum of 3zc in CDCl₃.

Supplementary Figure 178. ¹H NMR spectrum of 3zd in CDCl₃.

Supplementary Figure 179. ¹³C NMR spectrum of 3zd in CDCl₃.

Supplementary Figure 180. HRMS of 3zd.

Supplementary Figure 181. ¹H NMR spectrum of 3ab in CDCl₃.

Supplementary Figure 182. ¹³C NMR spectrum of 3ab in CDCl₃.

Supplementary Figure 183. HRMS of 3ab.

Supplementary Figure 184. ¹H NMR spectrum of 3ac in CDCl₃.

Supplementary Figure 185. ¹³C NMR spectrum of 3ac in CDCl₃.

Supplementary Figure 186. HRMS of 3ac.

Supplementary Figure 187. ¹H NMR spectrum of 3ad in CDCl₃.

Supplementary Figure 188. ¹³C NMR spectrum of 3ad in CDCl₃.

Supplementary Figure 189. HRMS of 3ad.

Supplementary Figure 190. ¹H NMR spectrum of 3ae in CDCl₃.

Supplementary Figure 191. ¹³C NMR spectrum of 3ae in CDCl₃.

Supplementary Figure 192. HRMS of 3ae.

Supplementary Figure 193. ¹H NMR spectrum of 3af in CDCl₃.

Supplementary Figure 194. ¹³C NMR spectrum of 3af in CDCl₃.

Supplementary Figure 195. HRMS of 3af.

Supplementary Figure 196. ¹H NMR spectrum of 3ag in CDCl₃.

Supplementary Figure 197. ¹³C NMR spectrum of 3ag in CDCl₃.

Supplementary Figure 198. HRMS of 3ag.

Supplementary Figure 199. ¹H NMR spectrum of 3ah in CDCl₃.

Supplementary Figure 200. ¹³C NMR spectrum of 3ah in CDCl₃.

Supplementary Figure 201. HRMS of 3ah.

Supplementary Figure 202. ¹H NMR spectrum of 3ai in CDCl₃.

Supplementary Figure 203. ¹³C NMR spectrum of 3ai in CDCl₃.

Supplementary Figure 204. HRMS of 3ai.

Supplementary Figure 205. ¹H NMR spectrum of 3aj in CDCl₃.

Supplementary Figure 206. ¹³C NMR spectrum of 3aj in CDCl₃.

Supplementary Figure 207. HRMS of 3aj.

Supplementary Figure 208. ¹H NMR spectrum of 3ak in CDCl₃.

Supplementary Figure 209. ¹³C NMR spectrum of 3ak in CDCl₃.

Supplementary Figure 210. HRMS of 3ak.

Supplementary Figure 211. ¹H NMR spectrum of 6 in CDCl₃.

Supplementary Figure 212. ¹³C NMR spectrum of 6 in CDCl₃.

Supplementary Figure 213. HRMS of 6.

Supplementary Figure 214. ¹H NMR spectrum of 7 in CDCl₃.

Supplementary Figure 215. ¹³C NMR spectrum of 7 in CDCl₃.

Supplementary Figure 216. HRMS of 7.

Supplementary References:

- 1. C. B. Gilley, M. J. Buller and Y. Kobayashi. New entry to convertible isocyanides for the Ugi reaction and its application to the stereocontrolled formal total synthesis of the proteasome inhibitor omuralide. *Org. Lett.* **2007**, *9*, 3631.
- 2. T. Matsuda, Y. Sakurai. Palladium-catalyzed ring-opening alkynylation of cyclopropenones. *Eur. J. Org. Chem.* **2013**, 20, 4219.
- 3. M. Larsson, H. E. Hogberg. Diastereoselective addition of methylmetal reagents to 2-methylaldehydes. *Tetrahedron* **2001**, *57*, 7541.
- Parthasarathy Gandeepan, P. Rajamalli, Chien-Hong Cheng. Palladium-catalyzed dehydrogenative β-Arylation of simple saturated carbonyls by aryl halides. ACS Catalysis 2014, 4(12), 4485-4489.
- B. O. A. Tasch, L. Bensch, T. J. J. Müller. Masuda borylation–Suzuki coupling (MBSC) sequence of vinylhalides and its application in a one-pot synthesis of 3,4-biarylpyrazoles. *Org. Biomol. Chem.* 2013, 11,6113-6118.
- 6. X.-L. Zhang, Y.-Q. Wang. Dehydrogenative β-Arylation of saturated aldehydes using transient directing groups. *Org. Lett.* **2019**, 21, 2731–2735.
- 7. X. Song, A. Song, W. Wang. Direct stereoselective α-arylation of unmodified enals using an organocatalytic cross-coupling-like reaction. *Nature commun.* **2011**, 2, 524.
- J. Liu, X. Wen, C. Qin, N. Jiao. Oxygenation of simple olefins through selective allylic C–C bond cleavage: A direct approach to cinnamyl aldehydes. *Angew. Chem. Int. Ed.* 2017, 56, 11940-11944.
- 9. N. Lahmar, J. Aatar, T. B. Ayed, M. Bellassoued. A general route to α-alkyl (E)-α,β-unsaturated aldehydes. J. Organomet. Chem. 2006, 691, 3018-3026.
- 10. J.-H. Kim, R. J. Kulawiec. A tandem epoxide isomerization-aldol condensation process catalyzed by palladium acetate-tributylphosphine. *J. Org. Chem.* **1996**, 61, 7656-7657.
- I. Choi, S. Chun, Y. K. Chung. Bimetallic Cobalt–Rhodium canoparticle-catalyzed reductive amination of aldehydes with nitroarenes under atmospheric hydrogen. J. Org. Chem. 2017, 82, 12771-12777.
- H. Doušová, R. Horák, Z. Růžičková. An intramolecular C–N cross-coupling of β-enaminones: a simple and efficient way to precursors of some alkaloids of Galipea officinalis. *Beilstein J. Org. Chem.* 2015, 11, 884–892.