
Supplementary Information
“Pattern generation and symbolic dynamics in a nanocontact vortex oscillator”

Yoo et al.

1



SUPPLEMENTARY FIGURES

Modulation wave
(by core switching)

Output signal
(Carrier + Modulation)

T+T-

T0

t

t

t

Carrier wave
(by core gyration)

Commensurate, fmod / f0 = 1/3

Tmod (= 4T0)

Commensurate, fmod / f0 = 1/4

p = -1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

0! 0! 0! 0! 0! !Phase shift ⇒

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

Tmod (= 3T0)

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

Incommensurate

t

t

a

b

c

e

f

Experimental results
(Idc = 12.5 mA)

d

t

Supplementary Figure 1 | Ratio between fundamental and modulation frequencies. a, A sinusoidal carrier wave

with a period of T0 = 1/ f0. b, A square modulation wave for the case of fmod/ f0 = 1/4. T+ and T− are duration times

for p = +1 and −1, respectively.The red and blue colours represent the core polarity, p = +1 and −1, respectively. c,

The output signal obtained from the carrier and modulation by a phase shift. The shifted phase are represented above

the graph. The red and blue colours correspond to those in b. d, An experimentally measured time-resolved voltage

oscillation at the commensurate state ( fmod/ f0 = 1/4). e, as in b but in the case of fmod/ f0 = 1/3. f, as in b but in the

incommensurate case.
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Supplementary Figure 2 | Noise reduction filter. a, A measured non-filtered time trace at Idc = 13.2 mA. The

red and blue areas represent t0 ≤ t < t0 + δt and τ ≤ t < τ + δt which are the regions of the functions of f and

g, respectively. b, f (t − t0) (red line) and g(t − τ) (blue line) which are correspond with the colour regions in a. c,

( f (t − t0) ∗ g(t − τ)) as a function of τ. The dashed line represents a tolerance value and red circles indicate the valid

peak positions (τi = τ1, τ2, · · · ) which heights are larger than the tolerance. d, Collected short-term waveforms from

τi, V(τi ≤ t ≤ τi + δt) (black lines). The red curve is a filtered data obtained by averaging the black lines. e, Measured

non-filtered signals (black) and filtered signals (red). f, Power of the fast Fourier transformation (FFT) as a function

of the input current, Idc, calculated from the non-filtered (left) and filtered (right) time traces.
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Supplementary Figure 3 | Pattern generations from micromagnetic simulations a, Time evolution of an average

of magnetization, 〈m〉 for the commensurate ( fmod/ f0 = 1/4) (black line). x axis is normalised by 1/ f0, where f0 is the

gyration frequency. The green line is the core polarisation associated with the right axes. The colour regions indicate

corresponding pn patterns defined in Fig.2g in the main text. On the right side, the corresponding core trajectories are

presented. The red and blue lines are the core trajectories when p = +1 and −1, respectively. The red circles and blue

squares indicate the core switching positions from p = +1 to −1 and from −1 to +1, respectively. b, as in a but in the

incommensurate case. c, as in a but in the case of fmod/ f0 = 1/3.
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Supplementary Figure 4 | Symbolic dynamics using a different partition. a-c, Poincaré maps for Idc = 12.6 mA,

13.2 mA, and 14.0 mA. The red dashed line is a new partition to divide the regions, RA and RB for symbolic dynamics.

The gray arrows in a and c show a dynamics of the intersection points in the case of the commensurate state. d-f,

Symbolic dynamics based on the newly defined partition.
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Step 1
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Supplementary Figure 5 | Tree diagrams and Markov matrices. (Left) Tree diagrams of moving for three steps.

Numbers at the arrows show probabilities of the moving including their previous states. The black, red, blue, and

green colours represent the movings of 0→ 0, 0→ 1, 1→ 0, and 1→ 1, respectively. (Right) Markov matrices for

each Idc by assuming one step memory dynamics. Pi, j indicates the probability of the moving from i to j. Source data

are provided as a Source Data file.
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Supplementary Figure 6 | Bit sequences from non-filtered data by convolutions. a, Kernel functions of “0” and

“1” for Idc = 13.2 mA. b, A non-filtered time trace at Idc = 13.2 mA. c, Convolutions, c0 and c1, between the non-

filtered time trace and the kernels, k0 (Top) and k1 (Bottom), respectively. The dashed lines show prescribed tolerances

for c0 and c1. The open circles are valid peaks for embedding bits. Cross marks in c1 are fallacious peaks which need

to be ignored . d, An obtained bit sequence recognised from the non-filtered data by the convolutions. The gray

dashed arrows from c show the corresponding peaks. e, Red circles indicate bit sequences directly obtained from the

non-filtered data, and black squares represent the bits calculated from the filtered data.

SUPPLEMENTARY NOTES

Supplementary Note 1. Ratio between fundamental and modulation frequencies

In this note we discuss the meaning of the frequency ratio, fmod/ f0, as explained in the main text (Fig.

1c), where f0 and fmod are fundamental and modulation frequencies, respectively. The oscillatory signals

from the nanocontact vortex oscillator (NCVO) can be considered as phase-modulated sinusoidal waves by

the vortex core switching, because the core reversal inverts a sense of the core gyration. The sinusoidal

oscillations of the carrier wave originates from the vortex core gyration (Supplementary Figure 1a), whose

frequency corresponds with the gyration frequency, f0 = 1/T0, where T0 is a time period of the gyration;

the core switching generates the a square-shaped phase modulation signal of which frequency is fmod =

7



1/(Tmod) = 1/(T+ + T−), where Tmod is a period of the modulation and T+ and T− are dwell times for the

upward core (p = +1) and downward core (p = −1), respectively. p is a core polarity. An example of the

modulation of fmod = f0/4 and the modulated output signal are represented in Supplementary Figure 1b

and c, respectively. The schematic output signal is qualitatively in a good agreement with the experimental

results (compare with Supplementary Figure 1d).

From Supplementary Figure 1a-c, we can conclude that fmod/ f0 can be expressed approximately as

fmod

f0
=

T0

Tmod
=

1
n+ + n−

, (S1)

in the typical commensurate state, where n+ = T+ f0 and n− = T− f0 are required gyration numbers for the

core switching in the cases of p = +1 and −1, respectively. In Supplementary Figure 1b, for example, n+ =

2 and n− = 2, thus fmod/ f0 = 1/4. In Supplementary Figure 1e, n+ = 2 and n− = 1, thus fmod/ f0 = 1/3. For

the incommensurate case, we replace the gyration numbers by their time-averaged values, 〈n+〉 and 〈n−〉,

respectively.

Supplementary Note 2. Noise reduction filtering

To reduce thermal noise from the measured time traces, we refine them by averaging short-period wave-

forms. This method is available in this case, since the output signals are composed by only few simple

patterns even in the incommensurate state (Supplementary Figure 3), therefore, we can find sufficient num-

bers of similar short-term waveforms from long-term measured data. The process are stated below.

1. V(t) is the measured time-domain signal. Choose an interesting short-time period (t0 ≤ t < t0 + δt),

then obtain the kernel function, f (t − t0) = V(t − t0)χ(t), where χ(t) is a step function defined as

χ(t) =


1 if 0 ≤ t < δt,

0 if otherwise.
(S2)

In this study, δt = 7.5 ns (red region in Supplementary Figure 2a and red curve in Supplementary

Figure 2b).

2. Set g(t− τ) = V(t− τ)χ(t) (blue region in Supplementary Figure 2a and blue curve in Supplementary

Figure 2b).

3. Calculate the convolution f (t − t0) ∗ g(t − τ) as a function of τ (Supplementary Figure 2c).

4. Find positions of peaks, τi, whose heights are larger than a predetermined tolerance value (Supple-

mentary Figure 2c).
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5. Collect the waveforms from V(τi ≤ t < τi + δt) (black curves in Supplementary Figure 2d).

6. Average all the collected short-term traces (red curve in Supplementary Figure 2d).

7. Repeat the same process for different t0.

In both the time and frequency domains, we compare the filtered signal with the non-filtered data (Sup-

plementary Figure 2e and 2f), which show reasonably similar results, although some high-frequency infor-

mation can be lost by the filtering through the averaging process.

Supplementary Note 3. Chaotic pattern generation using micromagnetic simulations

In the main text (Fig. 2a-c), we show chaotic sequences of patterns, pn, from the experiments, where p

and n are a core polarity and a required gyration number for the core switching, respectively. Here we show

identical pattern generations using micromagnetic simulations at zero temperature.

For the micromagnetic simulations, we solve the Landau-Lifshitz-Gilbert equation with in-plane spin-

torque terms using the MuMax3 software [1]. We chose a 1280 × 1280 × 20 nm3 film which is uniformly

discretized with 512 × 512 × 1 finite difference cells. The magnetic parameters used here correspond to

those of a NiFe film: an exchange stiffness constant of Aex = 10 pJ m−1, a saturation magnetization of

Ms = 0.8 MA m−1, a Gilbert damping constant of α = 0.013, and a spin polarisation of P = 0.5. The

spatial distributions of the current and its associated Oersted field were computed using a finite-element

method [2]. The initial state used for the simulations is obtained by sweeping an in-plain magnetic field

with an applied DC current of 10 mA. To mimic an asymmetry between the p = +1 and −1, we apply

both a perpendicular DC field of Bz = −18 mT and an in-plane DC field of By = 3 mT simultaneously. In

the experiments, the asymmetry is induced by an exchange interaction between the vortex and its magnetic

configurations around the vortex.

The simulations were conducted for the commensurate state (Supplementary Figure 3a and 3c) and the

incommensurate state (Supplementary Figure 3b), then we extracted a spatial average of magnetization, 〈m〉,

in the saturated magnetisation direction of the reference layer, which is proportional to the output voltage

amplitude. We assume that the magnetisation of the reference layer is saturated to −135◦ from the x axis,

and calculated 〈m〉 only in 100 nm from the center of the nanocontact.

The results are plotted in Supplementary Figure 3 for the commensurate and incommensurate states as

well as the corresponding core trajectories. The obtained 〈m〉 are qualitatively in good agreements with the

experimental results (see Fig. 2a-c in the main text); they show sinusoidal oscillations delimited by cusp
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points. We also plot the time evolution of the core polarity, p (green lines in Supplementary Figure 3),

which directly shows that the cusp positions correspond with the core reversal as discussed in the main text.

In the commensurate cases (Supplementary Figure 3a and 3c), we can find periodic repetition of two pat-

terns of [−2, +2] and [−1, +2], respectively. On the other hand, in the incommensurate state (Supplementary

Figure 3b), the sequence is composed of three patterns, [−2, −1, +2], and they are erratically ordered. We

also calculated the correlation dimension, Dc, from the time traces of the simulations. Dc is very close to

1 in the commensurate cases (Dc = 1.05 ± 0.01 for Idc = 12.6 mA and Idc = 1.08 ± 0.002 for 13.3 mA),

while the dimension has a higher value, Dc = 1.42 ± 0.02, in the incommensurate state (Idc = 13.1 mA).

This result is in good qualitative agreement with the experimental result in Figs. 1 and 2 in the main text,

and shows that the chaotic signals at the incommensurate state have deterministic characteristics, although

thermal noise affects the dynamics in real experiments.

Supplementary Note 4. Partition on Poincaré map for symbolic dynamics

For symbolic dynamics, we arbitrarily choose a proper Poincaré surface of section and partition. The

surface and partition in the main text are one of a successful case for generating meaningful bit sequences.

Here, by using an unsuitable partition on the same surface, we show an example of failing to generate

bit sequences. In Supplementary Figure 4a-c, we display the Poincaré maps on the Poincaré section and

their dynamics using gray arrows. The red dashed line is the new partition which divide clearly the maps.

However, as shown in Supplementary Figure 4d-f, the embedded symbols with the partition always generate

only periodic sequences of [A,B] even in the incommensurate state. Please compare the symbolic dynamics

with the dynamics generated in the main text (see Fig. 3d-f). This result shows that the new partition is not

suitable to be used for generating meaningful bit sequences.

Supplementary Note 5. Tree diagrams

From bit sequences in the incommensurate cases, we obtain tree diagrams (Supplementary Figure 5).

The result shows dependences of the moving probability on their history which is related to the grammar of

the symbolic dynamics. If the probabilities do not depend on their history, the dynamics can be considered

suitable for a Markov system.

For the trees, we use a finite length of bit sequences (∼9,300), thus it is not easy to be assured whether

the dynamics is suitable for the Markov system or not. In the case of Idc = 13.0 mA and 13.2 mA, all

probabilities does not vary largely like one step memory dynamics. However, when Idc = 13.4 mA, P0,0 is
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varied from 0.05 to 0.24 by the history. This change of the probability may originate from the dependence

on the previous steps or may come from a lack of a number of the samples, which can increase the error of

the probability.

In the main text, we assume one step memory dynamics, and obtained the probabilities, Pi, j based on

the Markov system. We also represent Markov matrices for each Idc which corresponds with Fig. 4d in the

main text.

Supplementary Note 6. Entropy rate of the Markov-Chain description of NCVO

According to Information Theory (See Ref. [3]), the entropy rate of a source {Xi}i=1,n is defined by

h∞ = lim
n→∞

1
n

H(X1, . . . , Xn) = lim
n→∞

H(Xn|Xn−1, . . . , X1). (S3)

For a memoryless source, the conditional entropy satisfies H(Xn|Xn−1, . . . , X1) = H(Xn) and as a result the

entropy rate is equal to the binary entropy: h∞ = −P0 log2(P0) − (1 − P0) log2(1 − P0), which is maximum

at 1 bit/symbol, if P0 = P1 = 0.5. Considering the Markovian property, we have P(Xn|Xn−1, . . . , X1) =

P(Xn|Xn−1), thus simplifying the mathematical definition of the entropy rate h∞ = limn→∞ H(Xn|Xn−1), and

as a result, we can exploit the transition probability in the computation of the entropy rate. The binary

symbols generated by the NCVO can be described using a binary Markov-chain representation with the

following transition matrix

π =

 P0,0 P0,1

P1,0 P1,1

 =

 1 − α β

α 1 − β

 . (S4)

The stationnary probability distribution is given here by µ :
[
µ0 = α

α+β ; µ1 =
β
α+β

]
. The entropy rate then

reads here h∞ = −
∑

i, j=0,1 µiPi, j log2 Pi, j, which simplifies into the following expression:

h∞ =
β

α + β
Hb(α) +

α

α + β
Hb(β). (S5)

Where the Shannon block entropy and the LZ complexity are maximum (at Idc = 13.1 mA), we have for

the transition probabilities α = 0.4985 and β = 0.7430. This leads to entropy rate for the NCVO:

h∞ ≈ 0.93 bit per symbol. (S6)

The analysis in terms of entropy rate of the Markov-chain description for the NCVO capture the asymp-

totic behaviour of the bit extracted from the NCVO chaotic alternation of patterns and shows that de-

spite the asymmetry in transition probability, high level of entropy per symbol are achieved. This level
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is consistent with the correlation analysis, with a lower bound for the KS entropy at hKS ≈ 0.12 ns−1 for

h∞ ≈ 0.093 bit ns−1 (NB: on average, one binary symbol is emitted approximately every 10 ns by the

NCVO, so the entropy rate h∞ can be expressed in bit ns−1).

Supplementary Note 7. Pattern recognition

In Figs. 3d-f in the main text, we show generated bit sequences from filtered time series, however,

the data filtering takes substantial time. Here we discuss a method to directly extract the bits from the

non-filtered data by using kernel functions. The process is described below:

1. Prepare kernel functions for 0 and 1, k0 and k1, (Supplementary Figure 6a) from preliminary mea-

surements.

2. Measure a new time trace (Supplementary Figure 6b), then calculate the convolutions, c0 (for k0) and

c1 (for k1), between the non-filtered data and the kernels as a function of shifting time (Supplementary

Figure 6c).

3. Find the peaks from c0 and c1 whose heights are higher than tolerance values (circles and cross marks

in Supplementary Figure 6c). Record the corresponding bit when the peaks appear (Supplementary

Figure 6d).

We discard spurious peaks in c1 which are very close to the peak positions in c0. The cross marks in

the bottom panel of Supplementary Figure 6c indicate the spurious peaks. We do not use these peaks for

recording “1”. In Supplementary Figure 6e, we plot the bit sequence obtained using the convolutions (red

dots and curve), which is in a good agreement with that obtained from the filtered data (black squares and

lines).
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