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Figure S2
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Dataset 1
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Figure S9
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Supplemental Figure Legends

Figure S1: Sample overview, related to Figure 2

(A) Overview of the sample and study composition of all three datasets. The GSE number and the number
of samples per disease are depicted for each study.

Figure S2: Comparison of bone marrow and PBMC samples, related to Figure 1

(A) Workflow: Dataset 2 was used to sample bone marrow and PBMC samples of AML patients and controls
in equal numbers. (B) The resulting dataset of 332 samples was scaled and gene expression values of the
top 25% variable genes were clustered and shown in a dendrogram.

Figure S3: Prediction of AML in random sampling scenarios (dataset 1), related to Figure 2

(A) Workflow: Dataset 1 (Affymetrix HG-U133 A) was RMA normalized and subjected to 100 times random
sampling of training and test data, with training data samples from niain = 100 t0 ntain = 2000 samples and
test data of nest = 500 samples. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on the whole dataset 1. (C) Accuracy, sensitivity and specificity for nine different prediction
algorithms on leukemia samples of dataset 1 (AML, ALL, CML, CLL, MDS and down syndrome transient
myeloproliferative disorder). Errorbars depict the standard deviation.

Figure S4: Prediction of AML in random sampling scenarios (dataset 2), related to Figure 2

(A) Workflow: Dataset 2 (Affymetrix HG-U133 2.0) was RMA normalized and subjected to 100 times random
sampling of training and test data, with training data samples from Nirain = 100 t0 nwain = 6679 samples and
test data of nest = 1669 samples. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on the whole dataset 2. (C) Accuracy, sensitivity and specificity for nine different prediction
algorithms on leukemia samples of dataset 1 (AML, ALL, CML, CLL, MDS). Errorbars depict the standard
deviation.

Figure S5: Prediction of AML in random sampling scenarios (dataset 3), related to Figure 2

(A) Workflow: Dataset 3 (RNA-seq) was normalized using DESeg2 and subjected to 100 times random
sampling of training and test data, with training data samples from ngain = 100 to nwain = 945 samples and
test data of nest = 236 samples. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on the whole dataset 3. Prediction of leukemia samples only was not possible due to small
sample sizes (see Figure S1). Errorbars depict the standard deviation.

Figure S6: Prediction of AML in cross-study sampling scenarios (dataset 1), related to Figure 2

(A) Workflow: Dataset 1 (Affymetrix HG-U133 A) was RMA normalized and subjected to 100 times cross-
study sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on cross-study sampling on the whole dataset 1, with training data samples from nyain = 100 to
Nrain = 1865 (Mean) samples and test data of neest = 500 samples. (C) Accuracy, sensitivity and specificity
for nine different prediction algorithms on cross-study sampling of leukemia samples of dataset 1 (AML,
ALL, CML, CLL, MDS and down syndrome transient myeloproliferative disorder), with training data samples
from nwain = 100 to nwain = 1480 (mean) samples and test data of nest = 436 samples. Errorbars depict the
standard deviation.



Figure S7: Effective prediction of AML in cross-study sampling scenarios (dataset 2), related to
Figure 2

(A) Workflow: Dataset 2 (Affymetrix HG-U133 2.0) was RMA normalized and subjected to 100 times cross-
study sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on cross-study sampling on the whole dataset 1, with training data samples from nuain = 100 to
Nain = 5926 (mean) samples and test data of nest = 1669 samples. (C) Accuracy, sensitivity and specificity
for nine different prediction algorithms on cross-study sampling of leukemia samples of dataset 1 (AML,
ALL, CML, CLL and MDS), with training data samples from niain = 100 t0 nNyain = 1750 (mean) samples and
test data of nwest = 1210 samples. Errorbars depict the standard deviation.

Figure S8: Effective prediction of AML in cross-study sampling scenarios (dataset 3), related to
Figure 2

(A) Workflow: Dataset 3 (RNA-seq) was normalized using DESeq2 and subjected to 100 times cross-study
sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction
algorithms on cross-study sampling on the whole dataset 3, with training data samples from nyain = 100 to
Nrain = 889 (Mean) samples and test data of nest = 236 samples. Prediction of leukemia samples only was
not possible due to small sample sizes (see Figure S1). Errorbars depict the standard deviation.

Figure S9: Addon RMA normalization, related to Figure 2

(A) Schema for addon RMA normalization on dataset 1. The 2500 samples were subjected to 50 times
cross-study sampling, which corresponds to the first 50 permutations in Figure 5SA. Different to the
aforementioned approach, the data was not normalized beforehand, but after splitting the samples into
training and test data. Training data was RMA-normalized and testing data was normalized “onto” the
training data using addon normalization. (B) Accuracy, sensitivity and specificity of addon normalization as
shown in (A) (light blue), compared to performance of the “standard” cross-study sampling approach as
described in Figure 5SA.

Figure S10: Translating predictive sighature across technological platforms (setting 1), related to
Figure 4

(A) Workflow: Datasets were normalized individually and trimmed to 12,708 common genes. The predictors
were trained on subsamples of different sizes on dataset 1 and tested on all samples of dataset 2. (B)
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 1 with training sample size from
Nirain = 100 to nrain = 2500 and tested on the full dataset 2 (nwest = 8348). (C) Accuracy, sensitivity and
specificity of lasso prediction trained on rank transformed dataset 1 with training sample size from Nain =
100 to nwrain = 2500 and tested on the full dataset 2 (nwest = 8348, rank transformed). Errorbars depict the
standard deviation.

Figure S11: Translating predictive signature across technological platforms (setting 2), related to
Figure 4

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes. The predictors
were trained on subsamples of different sizes on dataset 2 and tested on all samples of dataset 3. (B)
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 2 with training sample size from
Nwain = 100 to nwain = 8348 and tested on the full dataset 3 (nwest = 1181). (C) Accuracy, sensitivity and
specificity of lasso prediction trained on rank transformed dataset 2 with training sample size from Niain =
100 to nwain = 8348 and tested on the full dataset 3 (nwest = 1181, rank transformed). Errorbars depict the
standard deviation.



Figure S12: Translating predictive signature across technological platforms (setting 3), related to
Figure 4

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes. The predictors
were trained on subsamples of different sizes on dataset 1 and tested on all samples of dataset 3. (B)
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 1 with training sample size from
Nrain = 100 to nrain = 2500 and tested on the full dataset 3 (nwest = 1181). (C) Accuracy, sensitivity and
specificity of lasso prediction trained on rank transformed dataset 1 with training sample size from Nyain =
100 to nwain = 2500 and tested on the full dataset 3 (ntwst = 1181, rank transformed). Errorbars depict the
standard deviation.

Figure S13: F1 scores of AML prediction in random sampling, cross-study and cross-platform
scenarios, related to Figures 2 and 5

F1 scores of prediction results in random and cross-study sampling scenarios in dataset 1, all samples
(A), dataset 1, leukemia samples only (B), dataset 2, all samples (C), dataset 2, leukemia samples only
(D), and dataset 3, all samples (E). F1 scores for cross-platform prediction results for the settings
depicted in Figure 5. (F-K).

Figure S14: Pan-leukemia classification across platforms, related to Figure 4

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes and samples
were filtered to include only AML, ALL, CML, CLL and healthy samples. A multilabel logistic regression
model was fit on dataset 2 and then tested on the independently normalized datasets 1 and 3. (B,C)
Confusion matrices comparing predicted labels to true labels for all tested leukemia types for testing on
dataset 1 and 3, respectively. (D,E) Balanced accuracy, sensitivity and specificity of the multiclass
prediction on dataset 1 and 3.

Figure S15: Workflow: Comparing differentially expressed and predictive genes, related to Figure 5

(A) Workflow to Figure 5: Dataset 2 was used to compare DE and the sparse predictive models. First, a
global analysis of DE genes and lasso genes was performed and visualized in a heatmap. Second, dataset
2 was permuted and 35 genes that appeared at least 50 out of 100 times as “DE gene” or “lasso gene”
were visualized in a heatmap. Third, predictive signatures were trained on all 12708 genes, with and without
155 known AML genes (genes included in DO and KEGG terms). Results were visualized in a boxplot.
(B) Comparison of “lasso genes” of the prediction AML vs. all samples and AML vs. other leukemia samples
of dataset 2 (same prediction setting as in Figures 2D, E).



Transparent Methods

Study search strategy

All data sets published in the National Center for Biotechnology Information Gene Expression Omnibus
(GEO, (Edgar, 2002)) on 20 September 2017 were reviewed for inclusion in the present study. Basic
criteria for inclusion were the cell type under study (human peripheral blood mononuclear cells (PMBCs)
and/or bone marrow samples) as well as the species (Homo sapiens). Both tissues are considered
equivalent in the diagnosis of AML. We compared bone marrow and PBMC samples of dataset 2 and did
not identify overall differences in gene expression (Figure S2) and therefore did not differentiate between
bone marrow and PBMC samples throughout the study. Furthermore, we excluded GEO SuperSeries to
avoid duplicated samples (Table S1). We filtered the datasets for data generated with Affymetrix HG-
U133 A microarrays, Affymetrix HG-U133 2.0 microarrays and high-throughput RNA sequencing (RNA-
seq) and excluded studies with very small sample sizes (< 50 samples for microarray and < 10 samples
for RNA-seq data). We then applied a disease-specific search, in which we filtered for acute myeloid
leukemia, other leukemia and healthy or non-leukemia-related samples.

The results of this search strategy were then internally reviewed and data were excluded based on the
following criteria: (i) exclusion of duplicated samples, (ii) exclusion of studies that sorted single cell types
(e.g. T cells or B cells) prior to gene expression profiling, (iii) exclusion of studies with inaccessible data.
Other than that, no studies were excluded from our analysis (see also Table S1). In addition, we included
one unpublished dataset (in dataset 1). The above steps gave rise to the data referred to above as dataset
1 (Affymetrix HG-U133 A microarrays), dataset 2 (Affymetrix HG-U133 2.0 microarrays) and dataset 3
(RNA-seq). The RNA-seq data contained was not filtered for any particular protocol and contained paired
and well as single-end data of different sequencing depth. AML subtype annotations were taken from the
respective metadata-files on GEO. Subgroups of FAB-classifications were combined to represent the major
FAB class (e.g. AML M3 and AML M3v were combined to AML M3).

Pre-processing

All raw data files were downloaded from GEO. For normalization, we considered all platforms
independently, meaning that normalization was performed separately for the samples in dataset 1, 2 and
3, respectively. Microarray data (datasets 1 and 2) were normalized using the robust multichip average
(RMA) expression measures (Irizarry et al., 2003), as implemented in the R package affy (Gautier et al.,
2004). RNA-seq data (dataset 3) was preprocessed using kallisto (Bray et al., 2016) and normalized with
the R package DESeqg2 using standard parameters (Love et al., 2014). In order to keep the datasets
comparable, we filtered the data for genes annotated in all three datasets, which resulted in 12,708 genes.
No filtering of low-expressed genes was performed. All scripts used in this study for pre-processing are
provided as a docker container on Docker Hub (https://hub.docker.com/r/schultzelab/aml_classifier).

Prediction

Prior to classification, data sets were split into non-overlapping training and test data. For the comparisons
of AML vs. all samples, all non-AML samples were used as controls, which would in clinical terms, reflect
finding a diagnosis. For the prediction of AML vs. other leukemia, all non-AML leukemias, namely chronic
myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), chronic lymphoblastic leukemia (CLL),
Myelodysplastic syndrome (MDS) and down syndrome transient myeloproliferative disorder were used as
non-AML labels, which would be the equivalent of finding a differential diagnosis between different
leukemias. All main classification tasks were performed in the programming language R (R Core Team,
2016). All main results were obtained using li-penalized logistic regression using the package gimnet
(Friedman et al., 2010). Non-zero coefficients were extracted for feature ranking (Figure 4). The
regularization parameter was set using 10-fold cross-validation (using training set data only). To assess
predictive performance, accuracy, sensitivity, specificity and F1 score were calculated as well as positive
predictive value (PPV) under several prevalence scenarios. For assessing the performance of support
vector machines (SVMs), we used the R package €1071 for SVMs (linear, radial, polynomial and sigmoid
kernels) (Meyer et al., 2015). The R package randomForest was used for random forest classification (Shi
et al., 2004). K nearest neighbors classification was done using the knn function implemented in the class
package in R (Venables and Ripley, 2002). Linear discriminant analysis was performed with the Ida function
implemented in the R package MASS (Venables and Ripley, 2002). For RNA-seq data, features with zero
variance were excluded for LDA. Prediction analysis of microarrays was done with the pamr package



(Hastie et al., 2014). Neural networks were built using Keras (Chollet et al., 2017) with a Tensorflow
backend (10 layers, ~7x108 parameters). Unless otherwise noted, default settings were used for tuning
parameters as implemented in the respective packages.

Rank transformation to normality

As an example of a simple data transformation that would facilitate translation between gene expression
platforms, we performed a rank transformation to normality. For this, gene expression values were
transformed from microarray intensities (dataset 1 & 2) or RNAseq counts to their respective ranks. This
was done gene-wise, meaning all gene expression values per gene were given a rank based on ordering
them from lowest to highest value. The rankings were then turned into quantiles and transformed via the
inverse cumulative distribution function of the Normal distribution. This leads to all genes following the exact
same distribution (that is, a standard Normal with a mean of 0 and a standard deviation of 1) across all
samples (Zwiener et al., 2014).

Differential expression analysis

For differential expression analysis of dataset 2 the R package limma was used (Ritchie et al., 2015). A
linear model was fit on the data with inclusion of the study as a factor. Differentially expressed genes were
called using an FDR-corrected p-value < 0.05 and a minimum fold change of +/- 2. For the permutation-
based approach, 4174 samples were randomly drawn 100 times from the dataset. In each subset, DE
genes were called as before, but without correcting for any batch in the model. The number of times each
gene was called was summed up over all 100 permutations. Genes were ranked according to their overall
DE count.

In addition to that a l1-penalized logistic regression was performed using the package gimnet (Friedman et
al., 2010) on the whole dataset and on each of the permutations. Genes were called to be of predictive
importance if features had non-zero coefficients. The number of times each feature was of predictive
importance was summed up, which resulted in a feature ranking of all “lasso genes”.

Hierarchical Clustering

35 genes which had a stability of > 50% over 100 permutations for lasso and DE genes were visualized
using the R package pheatmap (Kolde, 2015) (Figure 6B). The data was z-scaled and columns clustered
according to Euclidean distance. Rows were ordered according to diseases. Two gene clusters were
visualized.

Exclusion of gene sets from prediction

In order to evaluate the robustness of our classification results (Figure 6C), we excluded 155 genes present
in either the KEGG or the disease ontology term “Acute Myeloid Leukemia” and compared this to the results
achieved when all 12078 genes of the dataset are included (random sampling, dataset 2).
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