
 
  
 

Supplemental Methods: 

Human Cell Sources 

Collection and processing of all human work was done under institutional review board-approved             

protocol# 11-E1-0245 at NIH. A total of 15 iPSC-RPE cell lines were used in this paper, obtained from 10                   

different donors. The iPSC-RPE lines were obtained from three types of patients: healthy, AMD patients, and                

OCA patients. The iPSC-RPE from healthy patients were derived from iPSC lines Healthy-1 and Healthy-2               

respectively. The iPSC-RPE from AMD patients were referred to in the paper according to donor number and                 

clone number. For example, AMD1A means the cells came from AMD donor #1 and clone A. The different                  

clones for each donor were replicates, where each clone was completely replicated from generation of iPSCs                

to iPSC-RPE differentiation. The AMD clones were previously reported (25). A summary of the number of                

clones per donor is as follows: AMD1 had Clone A and Clone B, AMD2 had Clone A, Clone B, and Clone C,                      

and AMD3 had Clone A, Clone B, and Clone C. The iPSC-RPE obtained from OCA patients (also referred to                   

as albino patients), came from five different patients (a single clone each) and indicated by OCA8, OCA26,                 

OCA103, OCA9, and OCA71. Details on the age and sex of each donor are provided in Table S6. 

Cell Culture Conditions and Media 

All cells were cultured in a cell culture incubator at 37°C and 5% CO2. Depending on the stage of cell                    

development, different cell medium was used. A complete list of the different cell media used in this manuscript                  

are as follows: 

Neuro Ectoderm Induction Medium (NEIM) - DMEM/F-12 (Thermo Fisher, 11330-032), KOSR (CTS            

KnockOut SR XenoFree Kit, Thermo Fisher, A1099201), supplemented with 1% (mass/volume) N-2 (Thermo             

Fisher, A13707-01), 1x B-27 (Thermo Fisher, 17504-044), LDN-193189 10 µmol/LM (Stemgent, 04-0074-10),            

SB 431452 10 nmol/L (R&D Systems, 1614), CKI-7 dihydrochloride 0.5 µmol/L (Sigma Aldrich, C0742-5mg),              

and IGF-1 1 ng/ml (R&D Systems, 291-GMP-5.5ug). 
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RPE Induction Medium (RPEIM) - DMEM/F-12 (Thermo Fisher, 11330-032), KOSR (Thermo Fisher,            

A1099201), supplemented with 1% N-2 (Thermo Fisher, A13707-01), 1x B-27 (Thermo Fisher, 17504-044),             

LDN-193189 100 µmol/L (Stemgent, 04-0074-10), SB 431452 100 nmol/L (R&D Systems, 1614), CKI-7             

dihydrochloride 5 µmol/L (Sigma Aldrich, C0742-5mg), IGF-1 10 ng/ml (R&D Systems, 291-GMP-5.5ug), and             

PD0325901 1 µmol/L (Stemgent 04-0006). 

RPE Commitment Medium (RPECM) - DMEM/F-12 (), KOSR (Thermo Fisher, A1099201),           

supplemented with 1% N-2 (Thermo Fisher, A13707-01), 1x B-27 (Thermo Fisher, 17504-044), nicotinamde 10              

mmol/L (Sigma Aldrich, PHR1033-1G), and Activin A 100 ng/ml (R&D Systems, AFL 338). 

RPE Growth Medium (RPEGM) – MEMα (Thermo Fisher, 12571-063), supplemented with 1% N-2             

(Thermo Fisher, A13707-01), 1% (mass/volume) Glutamine (GlutaMAX Supplement, Thermo Fisher,          

35050-061), 1% (mass/volume) non-essential amino acids (MEM Non-Essential Amino Acids Solution (100X),            

Thermo Fisher, 11140-050), 0.25 mg/ml taurine (Sigma Aldrich, PHR1109-1G), 20 ng/ml hydrocortisone (50             

µmol/L solution, Sigma Aldrich, H-6909), 13 pg/ml triiodo-thyronin (Sigma Aldrich, T5516), 5% (volume/volume)             

FBS (fetal bovine serum, GE Healthcare/Hyclone, SH30071.03). 

RPE Maturation Medium (RPEMM) - MEMα (Thermo Fisher, 12571-063), supplemented with 1%            

(mass/volume) N-2 (Thermo Fisher, A13707-01), 1% (mass/volume) Glutamine (Thermo Fisher, 35050-061),           

1% (mass/voume) non-essential amino acids (Thermo Fisher, 11140-050), 0.25 mg/ml taurine (Sigma Aldrich,             

PHR1109-1G), 10 ng/ml hydrocortisone (Sigma Aldrich, H-6909), 13 pg/ml yriiodo-thyronin (Sigma Aldrich,            

T5516), 5% (volume/volume) FBS (GE Healthcare/Hyclone, SH30071.03), 50 uM PGE2 (Prostaglandin E2,            

R&D Systems, 2296).  

Transformation and Differentiation of Human iPSC-RPE 

All iPSC-RPE were developed using a clinical grade protocol that has been outlined previously (25).               

Briefly, iPSCs clones were derived from CD34+ PBMCs using a previously published protocol (42). iPSCs cells                
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were then seeded on 5 ug/ml vitronectin (ThermoFisher, A14701S) coated tissue culture plates (Thermo Sci.,               

140675) or T75 flasks (Corning, 430641U) with E8 Medium (Essential 8 Medium, ThermoFisher, A1517001).              

After 2 days, cell media was changed to RPEIM for 10 days and then to RPECM for 10 more days. On day 22,                       

cell media was switched to RPEGM. At day 27 cells were disassociated using Versene Solution (0.2 g EDTA                  

(ethylenediaminetetraacetic acid) per liter of phosphate buffered saline, Thermo Fisher, 15040-066) and            

reseeded in a new culture plate (Thermo Sci., 140675) or T75 flask (Corning, 430641U) with RPEGM. On day                  

42, cells were disassociated using CTS TrypLE Select Enzyme (Thermo Fisher, A12859-01) and reseeded at               

500,000 cells/ml on to biodegradable nanofiber scaffolds [Stellenbosch Nanofiber Company, FiberScaff-RPETM           

3D cell culture scaffolds] (AMD lines) or onto 12-well 0.4 μm polycarbonate transwell plates (Corning, 3401)                

(Healthy and OCA lines) and cultured with RPEMM. Healthy cell lines were cultured on polycarbonate               

transwell plates due to the high transparencey of the transwell membrane. AMD lines were cultured on a more                  

clinically relevant biodegradable fibrous membrane, something potentially more difficult to image through. Day             

42 seeded RPE were considered to be time 0 iPSC-RPE and all timing for drug treatments, imaging, assay                  

collection, etc. in the experiments outlined in this manuscript count from this day.  

Quantitative Bright-field Absorbance Microscopy 

Underlying Principle 

The basic principle behind QBAM imaging was the absorbance measurement, which is an absolute              

measurement of light attenuation: 

 (λ)  A = I(λ)
I (λ)0

 Equation 1 

 

A is the absorbance value at wavelength 𝜆, I(𝜆) is the intensity of light passing through a sample and                   

I0(𝜆) is the intensity of light when no sample was present. One reason why absorbance was of interest in this                    
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study was that the Beer-Lambert law establishes the relationship between absorbance and chemical             

concentration: 

 (λ) lCA = ε  Equation 2 

 
  

C is the chemical concentration in a sample, 𝜀 is the molar attenuation coefficient, and ℓ is the path                   

length of the beam of light. In the case of retinal pigment epithelial cells (RPE), melanin is produced by healthy                    

RPE as they mature. Therefore, a doubling of absorbance would indicate a doubling of the amount of melanin                  

within a cell. By converting pixel values in an image of RPE to absorbance values, images become melanin                  

concentration maps that can be tracked over time and non-invasively. However, it should be noted that not all                  

of the signal can be attributed to melanin alone. Scattering effects form the cell membrane and organelles                 

contribute to the absorbance value recorded at a pixel. For the purposes of this paper we assume that this                   

effect is nominal, and all signal is coming from melanin.  

Besides the relationship to melanin concentration, there were several advantages to using absorbance             

imaging but the most significant was reproducibility. Calculation of absorbance values require internal             

references that make values comparable between microscopes with different configurations. With QBAM            

imaging, each pixel value was converted to an absorbance value by dividing each pixel’s intensity in an image                  

of a sample (I(𝜆)) by the corresponding pixel in an image captured when no sample was present (I0(𝜆)). As                   

with most measurements, there were several factors to consider when making a measurement to ensure               

reproducibility. QBAM imaging mitigates some of the sources of error through a variety of procedures including                

benchmarking, internal calibration, and real time statistics. 

Calculation of Pixel Level Absorbance 

For QBAM imaging, three different images were required to calculate absorbance at every pixel: i) an                

image captured with the light shutter closed (IDark(𝜆)) at exposure time 𝜖, ii) an image captured with the light                   
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shutter open without any sample in the field of view (IBright(𝜆)) at exposure time 𝜖, and iii) an image of the                     

sample (I(𝜆)). With respect to Equation 1, IBright(𝜆) was the blank reference image, I0(𝜆), but an additional                 

term for IDark(𝜆) needed to be included to account for the camera bias and read current: 

  A(λ)i,j =
I(λ)  − I (λ)i,j Dark i,j

I (λ)  − I (λ)Bright i,j Dark i,j
 Equation 3 

  

The subscripts i and j indicate pixel positions at the ith row and jth column of each image. Note that the                     

calculation of transmittance (the terms inside of the log function) is the a priori background correction method                 

described by (43). This means that calculation of pixel level absorbance inherently corrects for uneven               

illumination and was one factor that makes QBAM imaging robust across microscope configurations. 

Calculation of Pixel Level Confidence Intervals 

From Equation 3, there were three different measurements made to calculate absorbance, each with its               

own potential source of error. To improve reproducibility of pixel level absorbance measurements, our QBAM               

imaging method uses statistics to calculate confidence intervals for the absorbance value at every pixel. The                

goal of these statistical methods was to capture sufficient image data to make sure absorbance values at every                  

pixel have a 95% confidence interval of 0.01 absorbance units (10 mAU). This means that the lower end of the                    

dynamic range of QBAM will be 10 mAU. 

The standard deviation of absorbance values was calculated as follows:  

  σA(λ)i,j
= √( σI(λ)i,j

I(λ) n (10) i,j ln l )2
+ ( σI (λ)Bright i,j

I (λ) n (10) Bright i,j
ln l )2

 Equation 4 

  

In Equation 4, 𝜎A(𝜆)i,j is the standard deviation of the absorbance value at location (i, j). 𝜎I(𝜆)i,j and                  

𝜎IBright(𝜆)i,j indicate the standard deviation in pixel intensity values for a pixel at location (i, j) in the sample                   
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image, I(𝜆)i,j, and the bright reference image, IBright(𝜆)i,j, respectively. Equation 4 was derived using              

propagation of uncertainties, and two things should be noted about the derivation. First, it was assumed that                 

I(𝜆)i,j and IBright(𝜆)i,j were uncorrelated. This was not experimentally verified, but if the variables were               

correlated then an additional term would be subtracted from Equation 4, which means the standard deviation of                 

absorbance was being overestimated by this formula. Second, we ignore the error introduced by the dark                

reference image, IDark(𝜆), because the standard deviation of the dark reference image accounted for less than                

1% of the standard deviation of absorbance.  

To ensure absorbance measurements were reproducible, a criterion was placed on pixel calculations             

so that pixel absorbance values have a 95% confidence interval of 0.01 absorbance units. Assuming a normal                 

distribution: 

 .01≥0 √n

1.96 σ* A(λ)i,j  Equation 5 

Where n is the number of images captured for I(𝜆)i,j. Note that the right-hand side of Equation 5                  

represents an overestimation of the confidence interval since n is only the images captured of the sample and                  

does not include the number of images captured of IBright. 

Mitigation of Chromatic Aberrations with Color Filters 

When comparing images between different transmitted light microscopes, one reason that images            

appear to be different is the light spectrum. Everything about how the light spectrum is produced, manipulated                 

with optical components, and collected in the microscope can be different from microscope to microscope. For                

example, different light sources emit different light spectra that can change with age and temperature, different                

objectives correct for chromatic aberrations differently, and different cameras have different sensitivities to light              

of different wavelengths. While the absorbance measurement can mitigate issues associated with spectral             

emission of the light source and spectral sensitivity of the camera for a single microscope configuration, a color                  

filter is needed to be reproducible between imaging sessions and microscopes. For the current study, images                
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of fixed RPE (AMD and OCA cells) were captured on a Zeiss AxioImager M2 microscope using three different                  

color filters: 405nm (ET405/10x, Chroma, Bellows Falls, VT), 548nm (ET548/10x, Chroma, Bellows Falls, VT),              

and 640nm (ET640/20x, Chroma, Bellows Falls, VT). Images of living RPE (Healthy-2 cells) were captured on                

a Zeiss AxioObserver Z1 using three different color filters: 461 nm (FF01-461/5-25, Semrock, Rochester, NY),               

541nm (FF01-541/3-25, Semrock, Rochester, NY), and 671nm (FF01-671/3-25, Semrock, Rochester, NY). 

Microscope Benchmarking and Blank Image Capture 

The purpose of benchmarking is to determine if pixel intensities in microscope images respond linearly               

to changes in lighting. For QBAM imaging, this is accomplished by finding how pixel intensity changes as                 

camera exposure time is varied, since a doubling of the exposure time should double the pixel intensity. The                  

benchmarking protocol calculates the following quantities: pixel intensity as a function of exposure time, pixel               

intensity variance as a function of mean pixel intensity, optimal exposure time, and minimum allowed pixel                

intensity. These quantities and their calculation are described in detail below. This benchmarking protocol is               

used for each image filter since the image characteristics can change with respect to wavelength. A brief                 

overview of the benchmarking protocol is shown in Figure S1. 

The first step of the benchmarking protocol involves capturing images at different exposure times with               

the camera shutter closed and open. Prior to capturing images, the number of images, n, captured at every                  

exposure time is defined by the user. Then the camera shutter is closed, and n-images were captured at 1ms,                   

2ms, 4ms, etc, up to 1024ms, and all images were saved for quality control. The camera shutter is then                   

opened, and n-images were captured at 1ms, 2ms, and 4ms. For each set of images captured at one exposure                   

time, the mean and standard deviation of pixel intensity were calculated for every pixel. Then the exposure                 

time is doubled, n-images were captured, and the mean and standard deviation were calculated for every pixel                 

and this process is repeated until the images were overexposed. Overexposure at a particular exposure time                

was determined by: 
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  √∑
 

i,j
I J*

σ2
I(λ,ϵ−1)i,j > √∑

 

i,j
I J*

σ2
I(λ,ϵ)i,j  Equation 6 

 
   

Where 𝜎I(𝜆,𝜖)i,j2 is the variance in intensity at pixel (i,j) captured at wavelength 𝜆 and exposure time 2𝜖                  

ms, and I∗J is the total number of pixels in the image. Since overexposure is defined by reaching the maximum                    

pixel intensity value of the camera, the standard deviation of overexposed pixels will be 0. Therefore, Equation                 

6 is satisfied when the images captured at exposure time 2𝜖 have less variability than the image captured at                   

the previous exposure time 2𝜖−1. However, this is a coarse test for overexposure since the standard deviation                 

can fall off sooner than the maximum pixel intensity value (when full well capacity is reached) while still not                   

fitting the criterion for overexposure in Equation 6. For charge coupled devices (CCDs) it is known that pixel                  

intensity follows a Poisson distribution (44), so a function to estimate the standard deviation based on pixel                 

intensity was created: 

 (p) ασλ =  √p + β  Equation 7 

 
  

Where 𝜎𝜆(p) is the pixel intensity standard deviation at wavelength, 𝜆, for pixel intensity, p, and 𝛼 and 𝛽                   

were parameters calculated from a linear regression of mean pixel intensities to standard deviations in images                

captured at 1ms, 2ms, and 4 ms. 

A linear regression was then performed to determine how pixel intensity changes with exposure time.               

Camera exposure times that resulted in overexposed images were excluded from the linear regression, and               

images were classified as overexposed if images captured at an exposure time had more than 5% error with                  

respect to Equation 7. Following the linear regression of pixel intensity with respect to exposure time, the ideal                  

exposure time was calculated as: 

 ελ =  a
p  − 3σ (p ) − bD λ D  Equation 8 
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Where 𝜖𝜆 is the ideal exposure time, pD is the maximum camera pixel bit depth, 𝜎𝜆(pD) is the standard                   

deviation estimate (from Equation 7), and a and b were the slope and intercept from the linear regression of                   

pixel intensity with respect to exposure time. The ideal exposure time is where the mean exposure time should                  

be three standard deviations below the maximum possible pixel intensity, which minimizes the number of               

individual overexposed pixels. 

Once the ideal exposure time was determined, the number of images to capture and average to obtain                 

IBright was calculated using the standard deviation estimation function from Equation 7: 

  nBright =  ( E
1.96 σ (p )* λ ε )2

 Equation 9 

 
   

Where nBright is the number of images required to have a 95% confidence interval of E for the pixel                   

intensity at the ideal exposure, p𝜖. For the present study E was set to 2 pixel intensity units, and this                    

represented ≈0.05% error for the 12-bit cameras used in the study. Setting E=2 allowed an approximation of                 

Equation 9, nBright≈𝜎𝜆(p𝜖)2, but this approximation should not be used for cameras with a different bit depth. 

The minimum pixel intensity (pmin) to precisely calculate absorbance was determined. Absorbance is a              

log-scaled function, and low pixel intensities relative to IBright can have much larger errors than higher pixel                 

intensities. During live cell imaging, if any pixels in an image had values smaller than the minimum pixel                  

intensity, then there would be a high likelihood that the absorbance value of that pixel would not have a 95% CI                     

that was less than 0.01. Using Equation 7 and Equation 4, it is possible to estimate the smallest pixel intensity                    

value that satisfies Equation 5: 

  pmin = 0.01( > √n
1.96√ σ (p)λ

p ln n (10) * l + σ (p )λ ε
p ln n (10) ε* l )   Equation 10 
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The minimum pixel intensity value is used during live cell imaging to adjust how images were captured                 

to satisfy Equation 5. 

Assessment of Microscope Equilibrium 

For QBAM imaging to work, a microscope must be capable of capturing images in the same field of                  

view with little variability. Multiple factors can alter how images taken at the same field of view could change                   

from one image capture to the next, such as a change in bulb intensity as the bulb heats up or changes in the                       

sensitivity of the camera as it heats up from use. If images were repeatedly captured, then the microscope                  

should reach an equilibrium state where consecutive images have marginal variability between them. The              

benchmarking methods described above were used to create an equilibrium metric that determined when the               

microscope reached equilibrium. The equilibrium metric was: 

 
q  E = at

∑
i=t

i=t−6
7
ai

 Equation 11 

 
   

Where Eq is the equilibrium metric, at is the slope obtained from the linear regression of pixel intensity                  

with respect to exposure time described in the benchmarking section, and ∑i=t−6i=tai7 is the average slope                

from the current linear regression and the six previous linear regressions. Equation 11 is like the equation for                  

absorbance (Equation 1) except the slope of pixel intensity as a function of exposure time is used to factor in                    

fluctuations in pixel intensity as exposure time changes. The equilibrium metric Eq should have a value near 0                  

when the microscope is at equilibrium, and a value larger or smaller than 0 if the microscope is not in                    

equilibrium. To ensure the microscope is in equilibrium, Eq was calculated at least seven times and the                 

microscope was determined to be in equilibrium is the absolute mean value of Eq values was less than 5*10-5                   

with no individual Eq value having a magnitude larger than 10-4. If the first seven Eq values do not meet the                     

equilibrium criteria, then the older Eq value is discarded and a new Eq value is calculated after running the                   

benchmarking protocol again. The process is repeated until the seven most recent Eq values meet the                
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equilibrium criteria. We found that these equilibrium criteria were met for microscopes only after the               

microscope was on for 30 minutes to 1 hour. This protocol was run prior to every live RPE imaging session to                     

ensure microscopes were in equilibrium. 

Sample Imaging and Calculating Absorbance 

After ensuring that the microscope is in equilibrium, the microscope is benchmarked and reference              

images were captured (IBright and IDark), and then a sample is imaged. For each field of view of the sample, n                     

images were captured and averaged. The bright reference image was always captured when the microscope               

was focused on the same medium that the sample was prepared in. For fixed samples of cells mounted on                   

microscope slides, the bright reference image was captured when focused on a blank section of the                

microscope glass. For live cell imaging, the bright reference image was captured in a well containing the same                  

volume of medium that the cells were cultured in. If the average of any pixel value was less than the minimum                     

pixel value calculated during benchmarking, pmin, then the ideal exposure time was doubled and an additional                

n images were captured and averaged. This process of doubling the exposure time and capturing additional                

images was repeated until all pixels in the averaged image were larger than pmin. All images captured at each                   

exposure time were saved and used when converting pixels to absorbance values to increase confidence in                

the measurement. 

To calculate absorbance for each field of view, Equation 3 was used with the mean value of n images                   

used for I(𝜆)i,j. For I(𝜆)i,j<pmin, images captured at a longer exposure time were used to calculate absorbance                 

at the pixel by dividing the pixel intensity by the fold increase in exposure time. Since pixel intensity follows a                    

Poisson distribution, dividing the pixel intensity by the fold increase in exposure time decreases the standard                

deviation by the same factor resulting in a smaller confidence interval. 

Culture, Assays, and Imaging of iPSC-RPE 

Immunostaining 
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Tissue preparation for immunohistochemistry was done by placing wells in 4% (mass/volume)            

paraformaldehyde (Electron Microscopy Science, 157-4-100) for 20 minutes. Immunohistochemistry blocking          

solution (IBS) consisted of 500 ml of 1x DPBS (Dulbecco's phosphate-buffered saline, Life Technologies,              

14190250), 5% (mass/voume) bovine serum albumin (Sigma Aldrich, A3311), 0.5% (mass/volume)Triton           

X-100 (Sigma Aldrich, X100-100ML), and 0.5% (mass/volume) TWEEN20 (Sigma Aldrich, P2287-100ML).           

Fixed cells were washed with IBS three times and permeabilized for 2 hours with IBS at room temperature.                  

Cells were then stained with the following primary antibody for 1 hour at room temperature: RPE65                

(anti-RPE65 monoclonal antibody [1:300, Abcam, ab13826), Ezrin (monoclonal anti-ezrin antibody, 1:100,           

Sigma Aldrich, E8897), or GT335 (anti-polyglutamylation modification monoclonal antibody, 1:1000, Adipogen,           

AG-20B-0020). After primary staining, samples were washed with IBS and a goat anti-mouse IgG Alexa Fluor                

594 secondary antibody (1:300, Thermo Fisher, A-11032) was added and allowed to incubate at 4°C overnight.                

All antibodies were diluted with IBS solution. After overnight incubation, samples were washed with IBS and                

anti-ZO-1 Alexa Fluor 488 mouse monoclonal antibody (1:200, Thermo Fisher, 339188) was added and              

allowed to incubate for 1 hour at room temperature. Additionally, nuclei were stained with Hoechst 33342 dye                 

(1:1000, Thermo Fisher, H3570) for 15 minutes at room temperature. After staining cells were washed with                

D-PBS (Dulbecco's phosphate-buffered saline, Life Technologies, 14190250) and mounted onto slides. All            

images were captured using a Zeiss AxioImager M2 microscope or Zeiss Axio Scan Z1 slide scanner. Z-stacks                 

were acquired over 50 µm along the z-direction with 1.5 µm steps and the maximum intensity projection was                  

used for all analysis.  

 VEGF ELISA Quantification 

Vascular endothelial growth factor (VEGF) was measured from the supernatants collected weekly from             

each well. At least 5 well replicates were chosen for each treatment at each time and 3 technical replicates per                    

well were measured. ELISAs were performed using a single-plex Luminex® multiplex ELISA following             

manufacturer’s protocols (R&D Systems). 
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Electrophysiological Measurements 

Electrical resistance measurements used for prediction of the iPSC-RPE monolayers was measured            

using an EVOM2 and EndOhm chamber (World Precision Instruments, EVOM2 and ENDOHM-12            

respectively). Each line was measured for its resistance across 12 wells per treatment, per week. Intracellular                

transepithelial potential and resistance measurements in response to 1mM potassium (Sigma Aldrich,            

P5405-1KG) and 100 µM ATP (Sigma Aldrich, A9187-500MG) in Fig 3d, and Fig S3c were done identically to that                   

of previous reports (33). Briefly, RPE monolayer cultures derived from iPSC lines were mounted on a modified                 

¨Ussing chamber as described previously (45, 46). Calomel electrodes in series with Ringer’s solutions and               

agar bridges were used to measure the transepithelial potential (TEP). The signals from intracellular              

microelectrodes were referenced to the basal bath to measure the basolateral membrane potential (Vb) and the                

apical membrane potential (Va) was calculated by the equation: Va = Vb - TEP. The total transepithelial                 

resistance (Rt), and the ratio of the apical to basolateral membrane resistance (RA/RB) were obtained by                

passing 2–4 mA current pulses across the tissue and measuring the resultant changes in TEP, Va, and Vb. 

Gene Expression of iPSC-RPE 

Total RNA was isolated using NucleoSpin RNA (Machery-Nagel, 740955) per the manufacturer’s            

protocol. RNA was quantified using an ND-1000 spectrophotometer (Nanodrop Technologies) and the            

manufacturers protocol. cDNA synthesis was performed using the Script cDNA Synthesis Kit (Bio-Rad,             

1708891) and the manufacturer provided protocols. Custom made gene arrays containing primers for genes:              

MITF, PAX6, BEST1, CLDN19, PMEL, TYR, OCA2, RPE65, RLBP1, and housekeeping genes RPL13A and              

B2M were purchased from Bio-rad. Sybr green based QPCR was run on a ViiA 7 Real-Time PCR System                  

(Thermo Fisher Scientific) using an EXPRESS One-Step SYBR GreenER Kit, with premixed ROX (Thermo              

Fisher, 1179001K) according to the manufacturer’s protocol. Each sample was run in triplicate technical              

replicates across at least two independent wells (2x HPI4, 3x Aphidicolin, and 5x for control). An HPI4 well had                   

to be excluded due to extremely low RNA extraction from the well and an insufficient quantity of cDNA being                   

13 
 



 
  
 

amplified to measure. The average of the CT of the housekeeping genes for each well were used to determine                   

the -ΔCT values plotted. Data was analyzed using R software . 

Electron Microscopy of iPSC-RPE 

Mature iPSC-RPE monolayers were fixed with 10% (mass/volume) glutaraldehyde (Electron          

Microscopy Sciences, 16120) overnight. Samples were then washed with D-PBS three times and immersed in               

25% (mass/volume) ethanol for 10 minutes. The sample was then removed and placed in successive solutions                

of 50%, 75%, 90%, 95%, and 100% ethanol for 10 minutes each. After 100% ethanol emersion, the samples                  

were removed and placed into a critical point dryer (Leica EM CPD300).) and processed as per the                 

manufacturer’s protocol for red blood cells. After CPD processing, samples were gold sputter coated with 10                

nm of gold and imaged using a Zeiss EVO 10 scanning electron microscope at a voltage of 10kV and                   

amperage of 10 μA.  

Drug Treatment and Imaging 

Following differentiation, iPSC-RPE from donors Healthy-1 and Healthy-2 were placed on a 12-well 0.4              

µm polycarbonate transwell plate (Corning, 3401) at a seeding density of 500,000 cells/ml in 0.5 ml. Only 6 of                   

the 12 wells were used to minimize the time spent outside of the incubator while imaging. QBAM imaging and                   

drug treatments started 2 or 1 weeks after seeding for Healthy-1 and Healthy-2 iPSC-RPE, respectively. For                

each culture plate, two of the six wells were treated with either 3.0 µmol/L Aphidicolin (Sigma Aldrich,                 

A0781-10MG), 30.0 µM HPI4 (Hedgehog Pathway Inhibitor 4, Sigma Aldrich, H4541-25MG), or no additives to               

the RPEMM culture medium. RPEMM was changed three times a week and imaged on the same day every                  

week immediately after medium change. To prevent the culture plate lid from fogging during imaging, culture                

medium in wells were replaced with room temperature RPEMM (with drugs if needed) immediately before               

imaging since room temperature medium minimized condensation. RPEMM without drug was added to a well               

without any cells in it to capture the bright reference image for QBAM imaging. For each well, a 4x3 grid of                     

overlapping images were captured (10-15% image overlap) for image stitching using a Zeiss AxioImager M2               
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microscope with a 10x objective. For Healthy-2 and Healthy-1, a total of 6 plates were prepared, with 6 wells                   

occupied in each plate, yielding 36 total wells imaged and analyzed. The iPSC-RPE from AMD samples were                 

previously reported by Sharma et al (Sharm et al, 2018), and the iPSC-RPE from OCA donors were cultured                  

as described above, but were only imaged after they had matured and were fixed with PFA. In total five well                    

replicates of OCA8, six replicates from OCA9, four replicates of OCA26, eight replicates of OCA71, and four                 

replicates of OCA103 were imaged. For AMD data 1 replicate of AMD1 Clone A, 5 replicates of AMD1 Clone                   

B, 1 Replicate of AMD2 Clone A, 5 replicates of AMD2 Clone B, 1 replicate of AMD2 Clone C, 1 replicate of                      

AMD3 Clone A, 5 replicates of AMD3 Clone B, and 1 replicate of AMD3 Clone C were imaged.  

For iPSC-RPE imaged from donor Healthy-2, three color filters were used to capture images, but               

Healthy-1 were imaged using a different set of filters. The filters used to image Healthy-1 permitted a larger                  

bandwidth of light to pass through them, and had the advantage of shorter exposure times and consequently                 

less time spent imaging cells outside of the incubator. Healthy-1 was imaged first with the broadband filters to                  

ensure that iPSC-RPE maturation was not negatively affected by imaging. Once it was established that               

Healthy-1 iPSC-RPE maturation was not negatively affected by QBAM imaging, filters with a narrow bandwidth               

of light were used for imaging of Healthy-2 cells. All above images were acquired using a Zeiss AxioImager M2                   

microscope.  

Deep Neural Network Prediction of Assays 

Network Architecture and Training 

A deep convolutional neural network (DNN-F) was designed to predict transepithelial resistance (TER)             

and VEGF-Ratio. The basic structure of the network was inspired by GoogLeNet (47), consisting of a series of                  

preliminary convolutional layers followed by inception layers deeper in the network. An overview of the network                

structure is provided in Fig S2. The network takes a 1024x1024x3 image as input and produces two values as                   

output: the TER and VEGF-Ratio values. The network was trained to predict TER values first, then a                 
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VEGF-Ratio prediction layer was added to the end of the network. The three-channel image used as an input                  

was composed of three QBAM images captured at different wavelengths (488nm, 561nm, and 633nm). The               

network had approximately 11 million parameters. 

Prior to training, cell measurements were scaled and weighted to improve the prediction capability of               

the DNN-F. TER measurements were divided by 1000 and VEGF-Ratio measurements were divided by 10 to                

roughly scale the values to a range of 0 to 1 for training. When training began, all images were given an equal                      

weight but later in training weights were given to each image based on the TER value associated with the                   

image. The weights were created by binning TER values into bins with a range of 100 Ohms, except the                   

smallest bin contained TER values ranging from 0-135 Ohms. Weights were then assigned by dividing the total                 

number of TER measurements by the number of measurements in each bin. As training continued, the weights                 

were tapered until all weights had a value of 1. 

For training, mean squared error (MSE) regression was the objective function. Standard stochastic             

gradient descent was used with a tapered learning rate starting at 0.001 and tapering to a learning rate of                   

0.00005. No image pre-processing was performed prior to feeding them into the network, except for random                

cropping of images. Each image was 1040x1388 pixels, and images in the training data were randomly                

cropped immediately before feeding into the network while test data were cropped at the same location every                 

time. Test and train data were created by assigning one culture plate as test data and the rest of the plates                     

were used as training data (2 replicates of each treatment per plate; aphidicolin, HPI4, controls). The best                 

network was determined by finding the network with the lowest MSE in the test set. 

Fluorescent Image Segmentation 

A deep convolutional neural network was designed to segment RPE fluorescently labeled for a tight               

junction protein (ZO-1), which highlights the cell borders and enables accurate cell segmentation. The purpose               

of this was to have a highly accurate segmentation method to generate ground truth cell border labels for                  
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QBAM, since cell borders in QBAM images had less contrast than fluorescent images of RPE and made                 

manual segmentation of cell borders more difficult. The approach was to 1) train a DNN (DNN-Z) to segment                  

cell borders in ZO-1 fluorescence images using corresponding images where the cell borders had been drawn                

in by expert technicians, 2) collect QBAM images and fluorescent images of RPE that had been fluorescently                 

stained for ZO-1, 3) use the DNN-Z to segment cell borders using ZO-1 fluorescence images and 4) use the                   

ZO-1 segmentations to train a new DNN to segment cells in QBAM images (DNN-S). 

Human and Mouse Data 

Images of retinal pigment epithelial (RPE) cells labeled for a cell tight junction protein zonula               

occluden-1 (ZO-1) were collected from a variety of human donors and under a variety of conditions. Human                 

RPE were derived from induced pluripotent stem cells (iPSC-RPE), and iPSC-RPE were obtained from human               

donors that were healthy or had one of two different disease phenotypes: oculocutaneous albinism (OCA), or                

age-related macular degeneration (AMD). Images of iPSC-RPE came from 10 different human donors in total.               

All iPSC-RPE were imaged after they had matured for at least 6 weeks, and were fixed with paraformaldehyde,                  

labeled for ZO-1 and mounted to a microscope slide. Images were captured on three different microscopes at                 

magnifications ranging from 10x to 40x. The human data was further supplemented with images of ZO-1                

labeled whole adult mouse retina labeled for cell borders kindly provided by John Nickerson’s laboratory (22). 

Reference Segmentation Images and Post-Processing 

Among many segmentation methods, we chose the FogBank algorithm (48) to segment each             

fluorescently labeled image. The FogBank algorithm uses thresholding derived from intensity distributions in             

combination with geodesic distance maps of edges to establish RPE cell regions. The FogBank segmentation               

results were reviewed and corrected by human subjects to obtain ground truth segmentation data. After the                

ground truth data was created, images were split in 256x256 tiles, resulting in 4,064 images that were 256x256                  

pixels in size. 
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Deep Convolutional Neural Network Architecture and Training for RPE Segmentation 

A supervised, DNN based segmentation algorithm was designed in MATLAB (R2017a) with an             

open-source machine learning framework, MatConvNet (49). The same architecture was used to segment             

fluorescent images labeled for ZO-1 (cell tight junction stain) and to segment cells in QBAM images. The basic                  

layer structure was the inception layers used in GoogLeNet (47), and the higher order structure followed the                 

U-Net architecture (50). A course structure overview is shown in Fig S2. The network takes a 256x256 pixel                  

image as an input, and outputs a 200x200 pixel image where cell borders have positive pixel values and cell                   

bodies have negative pixel values. The network had more than 15 million parameters. 

To train the network, stochastic gradient descent was used with ADADELTA optimization (ε=10-6 and              

ρ=0.9). Batch normalization was used with 10 images in each batch. An F1 score was used to determine the                   

best network model, where correctly labeled cell borders were considered true positives. Prior to the final                

convolution used to classify pixels, a dropout layer was used with a 50% dropout rate. The objective function                  

was a modified logistic loss function: 

 og(e e )L (x, )c = B + l B +  −cx  Equation 12 
 

  
Where x is the predicted pixel class and c is the actual pixel class with c=+1 representing cell borders                   

and c=-1 representing cell bodies, and B= max{0, −cx}. 

Image Pre-Processing 

Fluorescent images were pre-processed to normalize pixel values based on region statistics, but QBAM              

images were not. The normalization process allowed us to 1) scale the images for faster training of the DNN,                   

since scaling image values decreases training time, 2) helps to remove some of the local background                

fluorescence or improves contrast in poorly stained regions, and 3) allows images of different bit depth or                 

contrast to be processed by the same network. QBAM images were not normalized prior to feeding into the                  

network since the pixel values were on an absolute scale and were generally between 0 and 1. Integral images                   
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were used to calculate the local mean and standard deviation within 127x127 pixel box centered on each pixel                  

in the image. Each pixel was normalized based on the local pixel mean and standard deviation as follows: 

 zi,j = σi,j

p  − μi,j i,j  Equation 13 

   

Where pi,j is the pixel value in row i and column j, 𝜇i,j and 𝜎i,j were the mean and standard deviation of                      

the 127x127 pixel region centered on pixel pi,j, and zi,j is the normalized pixel value. 

Assignment of Pixel Weights for DNN Training 

To improve the accuracy of the DNN, we adjusted the training weights of each pixel in an image based                   

on normalized pixel values depending on each pixel’s classification. This adjustment helped the DNN to               

correctly label cell borders in regions with poor signal. Cell border pixels were normalized as described by                 

Equation 1, except that 𝜇i,j and 𝜎i,j were the mean and standard deviation of only border pixels in the 127x127                    

pixel region surrounding pi,j. Then, all border pixels with zi,j>−1 were assigned a weight of 1, and all other                   

pixels were assigned a weight of −zi,j. This causes all bright pixels to have a weight of 1, and dim pixels were                      

assigned a weight that is inversely proportional to the pixel intensity. The weights for cell bodies were assigned                  

based on proximity to the cell border. A distance transform for every cell body was performed with respect to                   

the cell border, and then the square root of the distance was used as the pixel training weight. Cell body                    

weights were trimmed, so that all weights greater than 10 were assigned a value of 10. 

Training weights were applied to images during training using two different methods. The first method               

was the way weights were traditionally applied, where the weights were multiplied by the loss during                

backpropagation. The second method used the weights as the pixel class labels, c, in the logistic regression                 

function (Equation 1). For both the first and second method, c > 0 for cell borders and c < 0 for cell bodies. For                        

the first method c = ±1 and for the second method c was equal to the pixel weight. We found that the second                       

method was better for a couple reasons. First, it yielded a higher F1 score in the test data set. Second, we did                      
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not observe that the F1 scores for the test and train data sets diverged while training the DNN (which would                    

indicate overtraining). 

Segmentation of QBAM Images 

Determination of Cell Borders in QBAM Images for DNN Training 

A DNN was developed to segment QBAM images (DNN-S). A subset of the samples were imaged                

using QBAM imaging in addition to fluorescent imaging of ZO-1, specifically the patients that had AMD.                

Fluorescent images were captured along with transmitted light images of iPSC-RPE. Then, QBAM imaging              

was used to capture images of the same region. QBAM images were registered to fluorescent images of                 

iPSC-RPE by finding 256x256 pixel regions that had had at least 97% correlation between the transmitted light                 

images captured during fluorescent imaging and QBAM imaging. Correlation was assessed using generalized             

normalized cross correlation using the Fast Fourier Transform. The fluorescent images were segmented using              

the DNN, and the DNN segmentation was used as the cell border label for the QBAM images.  

DNN Ensemble Segmentation of QBAM Images 

Unlike the DNN used to segment fluorescent images of RPE that obtained an F1 score greater than                 

80%, the DNN to segment QBAM images achieved an F1 score of ≈60%. Part of this appeared to be due to                     

ZO-1 border fluorescence overlapping poorly with the borders observed in the QBAM images in some regions                

of the RPE monolayer. To improve the segmentation accuracy of the DNN-S, an ensemble approach was used                 

where seven different networks were trained and a consensus of all networks was used to determine RPE                 

borders in QBAM images to achieve an F1 score of 66%. 

No preprocessing was performed on QBAM images before they were processed with the DNN-S. The               

structure of the DNN-S was the same as that used to segment the fluorescent images, except the input image                   
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had three channels instead of one. The three channels were three QBAM images captured of the same field of                   

view, but each QBAM image was captured at a different wavelength (488nm, 561nm, and 633nm). 

Segmentation preprocessing for feature extraction 

File selection for Healthy-2 and AMD 

From a directory structure with all red, green and blue bright field images, calibration and raw images,                 

blue-channel derived absorbance images, and ZO-1 fluorescently labelled images. For the Healthy-2 dataset             

(81,646 Files in 1,564 folders), we selected 2,580 absorbance files of size 1388 pixels x 1040 pixels for                  

segmentation. For the AMD dataset, we chose 20 absorbance images of size 2,700 pixels x 3,000 pixels.  

Invert colors and skeletonize segmentation results 

To remove artifacts and close small gaps a binary morphological operation of closing is applied to                

segmented images containing cell boundaries. Further on, the segmentations were skeletonized such that the              

cell boundaries become one pixel thick. Next, the images were inverted so that the foreground corresponds to                 

the interior of cells and the background to the cell border. Finally, the binary inverted images were labelled                  

such as that each cell region was labelled with a unique id. 

Removal of Peripheral Cells in Images 

To compute accurate cell-level features from absorbance images over the reference segmentation            

masks, each mask was pre-processed to remove the segments that were touching the image border. This                

pre-processing step eliminates feature values that would correspond to partial cells. The same pre-processing              

routine was applied to the computed segmentation images when they were evaluated for accuracy of               

segmentation. 

Image partitioning 
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For the AMD dataset, the stitched FOVs into large images pose a scalability challenge on RAM during                 

DNN-based model training. The size of FOVs varies across experimental collections. Thus, we pre-processed              

collected images by stitching them into a large mosaic image and then partitioning the mosaic image into 512 x                   

512 image tiles with 0% overlap.  

Image feature extraction  

Albino iPSC-RPE feature extraction 

From a directory structure with all red, green and blue bright field images, calibration and raw images,                 

blue-channel derived absorbance images, and ZO-1 fluorescently labelled images with 1,978 Files in 439              

folders, we selected 381 blue-channel derived absorbance files for image-level feature extraction. These files              

correspond to 3 x 3 fields of views (FOVs) with 10% overlap. Due to the fact that some absorbance values                    

were less than zero (calibration artifacts), we created a binary mask per image to eliminate those negative                 

values from feature extraction. A feature vector was computed per absorbance image (FOV) over each               

corresponding mask using the web image processing pipeline (WIPP) (19). The feature vector contains 14               

intensity-based and 5 texture-based image features that were originally implemented in MATLAB (R2017a).             

The intensity-based features correspond to central moments and entropy characteristics. The texture-based            

features were derived from gray-level co-occurrence matrix (GLCM) and include contrast, homogeneity,            

correlation, energy and entropy. The scatter plots of features were generating using a script in R and the ggplot                   

package and selected plots were included in Fig 4 of the main manuscript. 

AMD and Healthy iPSC-RPE Feature Extraction 

In order to extract as many cell-level features as possible, we leveraged multiple widely used image                

libraries for feature extraction that have been integrated into WIPP (Table S1) (19). While the feature values for                  

the same feature definitions might vary (51), they provide insights on the amount of variation introduced not                 

only by image acquisition but also by image processing. We computed intensity, shape and textural features                
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using feature extractors in WIPP(19), and specifically, the MATLAB (2017a) and CellProfiler (51) extractors              

applied to each cell region. Table S1 summarizes these features. Features corresponding to cell regions               

situated on the borders of the images and to very large connected regions were discarded. 

Machine Learning Models of Assay Prediction 

Machine learning based regression models were built on cell level features extracted from RPE cells so                

that the trained models could be used to predict TER and VEGF-Ratio measurements. All the models were                 

tested and trained on identical data sets for comparability. For the prediction of TER for the Healthy donor lines                   

treated with Aphidicolin or HPI4, data was divided into Test and Train data by assigning five culture plates as                   

training data and a sixth as test data (2 replicates of each treatment per plate). A similar procedure was done                    

for VEGF-Ratio predictions except that a subset of wells from plate 5 were chosen to be excluded from the                   

training set and used as the test set (one well from each treatment). This was done because ELISAs were not                    

performed on all well supernatants and thus only a subset of the wells were available for this analysis. The                   

selection of these plates/wells for training/testing was done blind prior to data acquisition or analysis so as to                  

remove any bias in sample selection. 

For the AMD cell lines TML models were trained from scratch on different combinations of iPSC-RPE                

monolayers. A total of 18 unique training image subsets were formed, where each image subset contained test                 

data which had images of one clone from each donor, Table S4 shows all combinations in detail), which were                   

not included in the training data. Average performance across all 18 subsets was used to identify important                 

features regardless of machine learning method used or clone combination used for testing.  

Preprocessing of features 

RPE cell features were extracted per cell. The features include intensity, shape, and textural              

characteristics. Once extracted the mean, standard deviation, skewness, and kurtosis of each feature for each               

set of cells within each image partition (described in the “Image Partitioning” Section above) was calculated. It                 
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was found that subsets of features were highly correlated and had varying amplitude ranges. In order to                 

remove highly correlated features and normalize their dynamic range, we performed pre-processing of             

features. The pre-processing was applied on all features and consists of (1) z-normalization and (2) the                

Correlation based Feature Selection (CFS) method (52-53) which removed all features with a higher than               

99.5% correlation. This was done for all data sets within this manuscript independently. Thus, the highly                

correlated features within the combined data set of the AMD-iPSC-RPE and Healthy-2 lines used in Fig 6 were                  

analyzed for co-correlation separately from the data set used for AMD-iPSC-RPE sample identity (Fig 7), which                

was analyzed for co-correlation separately from the Healthy-2 only (Fig 5) data set. This led to different total                  

counts of features used in each of these models. Normalization and removal of highly correlated variables was                 

also performed for the data shown in Fig 4 independently of that shown in all other figures for the                   

training/testing data. Additionally, for Fig 4 z-score regularization and feature correlation were performed on              

individual cell metrics, not on the mean, standard deviation, skewness, and kurtosis of cells within regions of                 

interest. This was done differently than all other figures in the manuscript because we were interested in                 

assessing DNN-S's ability to accurately segment individual cell features and thus the most granular              

representation of that data was desired. Thus, the number of metrics for the analysis performed in Fig 4 were                   

much lower than the count for all other models (44 vs ~315).  

Among a plethora of ML models for classification and prediction, we considered a subset of ML models                 

that predict a continuous variable, such as TER or VEGF-Ratio measurement. This subset of ML models                

includes: Multi-Layer Perceptron (MLP), Linear Support Vector Machine (L-SVM), Random Forest (RF), Partial             

Least Squares Regression (PLSR), and Ridge Regression (RR). Identical models were chosen for donor              

classification tasks (except for ridge regression which has no classification format). Thus, for classification              

ridge regression was replaced with a Naïve Bayes (NB) classifier. For all models feature weights were scaled                 

based on their absolute magnitude from 0 to 1 and then averages were taken across all methods to determine                   

which features had the highest relative weight to predictions. Features with high averages indicate that these                
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important features were consistently identified (i.e., ML model independent) and thus relatively important             

features for prediction. All models were trained using 10-30 k-fold cross validation and then tested on the                 

“left-out” data that was not within the training or validation sets within the k-fold cross validations.  

Multilayer Perceptron (MLP) 

The MLP model approximates a nonlinear relationship between independent and dependent variables.            

In a multi-layer perceptron model, cell-level features were considered as independent variables and             

TER/VEGF values were viewed as dependent variables. We used a MLP model with four-layers (two hidden                

layers), and 70 neurons used in the first hidden layer and 40 neurons used in the second hidden layer of the                     

model. The number of hidden layers and neurons in each hidden layer were chosen empirically such that a                  

model does not overfit the input data nor was too simple for robustly fitting the input data. To identify the                    

features that were important for TER/VEGF prediction, we used Garson’s algorithm(53) to compute the              

connection weights. The results for MLP modeling are shown in Fig 5 and Fig S6. 

Linear Support Vector Machine (L-SVM) 

Support vector machines construct hyperplanes in a high-dimensional space to maximize separation            

between data. In the case of linear support vector machines (L-SVMs) the plane is linearly correlated with each                  

dimension/feature in the high dimensional space so that the weights of the L-SVM can be directly translated                 

into weights/importance for features. The SVM function has terms to both optimize the penalization of the                

hyperplane for the “nearness” of the fit to data (cost) as well as the distance at which a penalization occurs                    

(epsilon). Thus, while training models the cost and epsilon were iterated over a range of 0.001 to 1.2 and 0.001                    

to 4096, respectively. All model optimization was performed in R using the Liblinear package. Results for                

L-SVM can be seen in Fig 5 and Fig S6. 

Random Forest (RF) 
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Random Forests use “forests” or ensembles of decision trees to predict a factor. A decision tree can be                  

thought of as a flow diagram for decision making. Decision trees are constructed from class-labeled training                

sequences where each node denotes a test on an attribute and each branch represents the outcome of a test,                   

and each terminal node classifies or regresses. Random forests combine multiple deep decision trees, trained               

on different parts of the same training set, with the goal of reducing the variance in the decision tree output. As                     

such the number of trees and the depth to which each tree is branched can be optimized. Here 125 trees were                     

assessed across 5 to 1500 branches to determine optimal model performance. All model optimization was               

performed in R using the Caret package. Relative importance of variables was calculated as shown in . Results                  

for RF can be seen in Fig 5 and Fig S6. 

Partial least squared regression (PLSR) 

PLSR creates a linear regression model by projecting the predicted variables (TER and VEGF-Ratio)              

and the observable variables (cell image features) to a lower dimensional space. PLSR models find the                

multidimensional direction in the “X” space (predicted variable) that explains the maximum multidimensional             

variance direction in the Y space (observable variables). In this way high dimensional data can be used to                  

predict real world outcomes. The only variable to optimize for PLSR is the number of dimensional components                 

needed to predict the desired outcome. For the models optimized in this report components were varied from 1                  

to 50 to determine which had the highest predictive power. Model optimization was done using the Caret and                  

PLS packages in R. Variable importance was defined as the sum of the absolute values of each feature                  

coefficient within each dimensional component multiplied by the percent of the total variance each component               

explained of the raw data. Fig 5 and Fig S6 

Ridge regression (RR)  

RR is a specialized form of ordinary least squares regression, where the predictive model is optimized                

to minimize the sum of squared residuals between the predicted and actual results, that includes a gamma                 

function for removal of colinear, redundant, or confounding variables via optimizing using L2 regularization. As               
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with ordinary least squares regression variable importance can be determined from the absolute value of the                

weight of the feature coefficients. Models were optimized to reduce variable numbers to fewer than 25 total                 

features. Model optimization was done using the Caret and foba packages in R. 

DNN Models to Classify Donor Identity 

A DNN was created that takes two QBAM images of iPSC-RPE and determines if the iPSC-RPE come                 

from the same donor. The input was two 1024x1024x3 pixel images. The basic layer structure consisted of                 

low-rank expansions as described by (54). The low-rank expansion layer consisted of a 1x3 convolutional layer                

followed by a 3x1 convolutional layer. The first layer had 8 neurons, and each subsequent layer doubled the                  

number of neurons relative to the previous layer. Each convolutional operation was followed by a leaky ReLU                 

layer with a 0.1 leak value. Each low-rank expansion layer was batch normalized and then a 3x3 maximum                  

pooling layer with a stride of 2. With the exception of the first layer, a residual layer was added prior to each                      

maximum pooling operation, where the residual layer consisted of a 1x1 convolutional operation to scale the                

input layer to the same size as the output layer. The final layer was a 3x3 average pooling layer followed by a                      

fully connected or dense convolutional layer (size = 64x64x256). Stochastic gradient descent with ADADELTA              

optimization was used using the same settings as used to train the DNN-S. The best network was determined                  

based on an F1 score. Due to the simplicity and small size of this network, we were able to train networks on                      

the same 18 training/testing data sets described in the following section. 

Machine Learning Models to Classify Donor Identity and Outliers 

Machine learning based classification models were built on cell level features extracted from RPE cells               

so that the trained models could be used to predict clonal outliers or donor identity. All models were assessed                   

for their ability to classify donor identity correctly except for ridge regression model. In place of ridge                 
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regression, a naïve Bayes model was run. For the prediction of clonal outliers all data was placed into the PCA                    

and clustering of the iPSC-RPE lines using a hierarchical clustering method.  

For the AMD cell lines TML models were trained from scratch on different combinations of iPSC-RPE                

monolayers. A total of 18 unique training image subsets were formed, where each image subset contained test                 

data which had images of one clone from each donor, Table S4 shows all combinations in detail, which were                   

not included in the training data. The approach was to use images of clones from donors to try to predict the                     

“parent” donor line of a clone that the network had never seen before.  

Principle Component Analysis (PCA) 

Identification of developmental outliers was done using PCA and hierarchical clustering. PCA uses an              

orthogonal transformation to find the hyperplanes of maximum variance best describing the variables by              

converting a set of correlated variables into a set of dimensionally reduced values of linearly uncorrelated                

variables called principal components. In large dimensional space (e.g. large number of features) PCA is               

useful to dimensionally reduce the data to determine if, in aggregate, cell image features can classify different                 

donors/clones from each other. Images were grouped at the clone and day level and the mean, standard                 

deviation, skewness and kurtosis of each feature was calculated for each clone/day combination. These              

aggregate features were the placed into the PCA in Fig 7a. Principle component 1 and 2 made up more than                    

75% of the total variance of the data and thus were considered a good indicator of overall sample variability.                   

Importance of features was defined as the sum of the absolute values of each feature coefficient within each                  

dimensional component multiplied by the percent of the total variance each component explained of the raw                

data. PCA was run using base R. 

Hierarchical clustering 

Hierarchical clustering was done on the output of a PCA in which the mean, standard deviation,                

skewness, and kurtosis of individual features had been calculated for each clone. For hierarchical clustering               
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the Euclidean distance between all clones was calculated across all principle components and the complete               

linkage distance was used for clustering. A split height was chosen at 3 branches to represent the three donors                   

used in the study (indicated as red boxes in Fig 7b). Clustering was done use the base R functions. 

Naïve Bayes 

Naive Bayesian models describes the probability of a cell type being from a donor, based on the prior                  

probability of cells being from that donor with a given set of features. Naive Bayesian models assume strong                  

(naive) independence between the features, i.e. A Naive Bayesian classifier considers each of the cell image                

features to contribute independently to the probability that a cell is from a given donor regardless of any                  

possible correlations between each feature. Models were optimized for the amount of Laplacian correction              

needed from 0.0 to 0.1 and whether a normal or kernel density for the features was needed. Feature                  

importance was obtained from the absolute values of the feature coefficients in the best fit model. Model                 

optimization was done using the Caret and klaR packages in R. 
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Figure S1: Related to Figure 1. A high-level overview of the bright field absorbance imaging protocol. 
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Figure S2: Related to Figure 1. A coarse overview of the DNN architectures used in this manuscript. (a) A                   

GoogLeNet inception layer (IL) was used in both types of DNNs. (b) To predict TER and VEGF-Ratio, a                  

regression DNN (DNN-F) was created where the Output ReLU layer predicted either TER or VEGF. AvgPool4                

indicates a 4x4 average pooling, and MaxPool3/2 indicates a window size of 3 and stride of 2. (c) The DNN to                     

segment RPE (DNN-S) was composed of a series of downsizing layers followed by upscaling (convolutional               

transpose) layers. At each level, downscaling and upscaling layers of the same size are concatenated               

together. Note: Inception layers on the left side of network did not have a MaxPool component in the inception                   

layer. ReLU was applied after every convolutional operation except the final 7x7 convolution in (c), and the                 

outputs after convolutional operations were padded with 0 to make the outputs the same size as the inputs. 
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Figure S3: Related to Figure 3. (a) iRPE monolayers from Healthy-1 donor at week 2 of maturation (top row)                   

and week 8 of maturation (bottom row) that were treated with a maturation inhibitor (HPI4), a maturation                 

promoter (Aphidicolin), or neither (control). (b) Mean image absorbance for each well treated over 8-weeks of                

culture from the Healthy-1 line. (c) Transepithelial resistance (TER) of iRPE monolayers from Healthy-2 donor               

at week 8 of maturation that were treated with a maturation inhibitor (HPI4), a maturation promoter                

(Aphidicolin), and neither (control). Each data point in (b) and (c) represents a measurement from one well. (d)                  

Fixed iRPE from Healthy-2 (Control treatment) stained for Ezrin (Red), ZO-1 (Green), and nuclei (Blue) at                

week 8 of culture. (e) Fixed iRPE from Healthy-2 (Control treatment) stained for GT335 (Red), ZO-1 (Green),                 

and nuclei (Blue) at week 8 of culture. (f) Gene expression measured by PCR of Healthy-2 cells at week 8.                    

Gene expression was measured for eight genes. (g) SEM images of control samples of Healthy-1 iRPE after 8                  

weeks of culture and imaging showing the development of apical processes. (h) TEM of Healthy-2 RPE                

showing apical processes as indicated by white arrows. Scale bar for (a, d, and e) is 100 µm, (g) is 10 µm and                       

(h) is 1µm.  
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Fig 

Figure S4: Related to Fig 3. (a) Healthy-2 VEGF-Ratio in response to Aphidicolin or HPI4 as well as for control                    

cells. The shaded regions represent a 95% confidence interval. (b) The ratio of VEGF on the basal/apical sides                  

of the RPE monolayer plotted against mean QBAM image absorbance. The blue dashed line is linear                

regression (R2=0.64). (c) A plot of measured VEGF basal/apical ratio versus the DNN-F predicted value. The                

blue dashed line represents a perfect prediction from the DNN-F (R2=0.89) and has a root mean squared error                  

(RMSE) of 1.1. For biomanufacturing a threshold may be set at a VEGF-ratio of 3.0 (<3.0 reject, ≥3.0 accept)                   

and indicated by the red-shaded areas in (b) and (c). The DNN-F had 100% accuracy, 1.0 sensitivity, and 1.0                   

35 
 



 
  
 

specificity in predicting which wells should be accepted/rejected. Each data point in the plots represents one                

well in a multi-well plate. 
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Figure S5: Related to Fig 5. Comparative histograms of 44 cell image features of RPE segmented by hand                  

(blue) or by DNN-S (Pink). Areas where histograms agree shown as a dark maroon. Each data point in the                   

histograms represents a single cell in one well.  
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Figure S6: Related to Fig 5. Modeling performance of DNN-F and other TML approaches for model TER and                  

VEGF-Ratio data. (a) Summary statistics for TER predictions for DNN-F and all TML algorithms tested. (b) A                 

plot of measured VEGF-Ratio versus the RF predicted value. The black dashed line represents a perfect                

prediction from the RF. For biomanufacturing a threshold may be set as a ratio of release of 3.0 (<3.0 reject,                    

≥3.0 accept, indicated by red shading. (c) Summary statistics for VEGF-Ratio predictions for DNN-F and all                

TML algorithms tested. DNN-F – deep learning network from Fig 2; PLSR – Principle least-squares regression;                

L-SVM – Linear support vector machine; RR – Ridge regression; RF – Random Forest. 
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Figure S7: (a-d) are related to TER and VEGF-Ratio predictions for AMD clones presented in Fig 6 and (e-f)                   

are related to PCA predictions outlier AMD clones presented in Fig 7a,b). TER and VEGF-Ratio predictions of                 

AMD cell line performance. (a) Mean absorbance as assessed by QBAM imaging versus VEGF-Ratio for 8                

clones across the last five days of cell maturation, blue dotted line represents the linear best fit for these cells.                    

(b) DNN-F prediction of iRPE TER function across three clones. The black dashed line represents a perfect                 

prediction. (c) Random Forest prediction of iRPE VEGF-Ratio function across three clones that the algorithm               

had not seen previously. The black dashed line represents a perfect prediction. The light blue ellipse                

represents the 95% CI of VEGF-Ratio measurements and predictions. (d) DNN-F prediction of iRPE              

VEGF-Ratio function across three clones that the algorithm had not seen previously. The black dashed line                

represents a perfect prediction. Red regions in b-d represent the range of values that are classified as out of                   

specification (<400 Ω·cm2 for b and a VEGF-Ratio of <3 for c and d). (e) The feature importance when AMD                    

clones were analyzed with PCA. Each row is a visual feature and each column is a principle component. All the                    

top five principle components are shown because they make up >90% of the variance of the data, as indicated                   

by (f). Component importance has been weighted by the percent variance that the principle component               

accounted for and components have been sorted by the mean value across all principle components. To see                 

individual features please refer to the online data. (b) Shows variance accounted for by each PC when                 

aggregated by clone. 
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Supplemental Tables 

Table S1: Related to Fig 1. List of cell feature class types extracted per cell region and the software the feature                     

was derived from. Although the table shows 40 cell features, many features have subsets such as angle or                  

number of moments, yielding a total of 315 cell features that were measured.  
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Table S2: Related to Fig 4. Quantification of the % error and distribution from manual measures of 44                  

morphological features and from DNN-S segmentations. % Error indicates the absolute difference in counts at               
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each value in a histogram. KSS, KMMD, and X2 values are three different ways to assess differences in                  

distributions. KSS - two-sample Kolmogorov-Smirnov statistic used in non-parametric distributions. KMMD -            

Kernel Maximum Mean Discrepancy has no assumptions in initial distribution. X2 is a chi-squared test for                

normally distributed features. 
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Table S3: Table S3: Related to Fig 5. Subset of the entire list of features for modeling Healthy-2 data with their                     

mean, 95% confidence interval (CI), and Standard Error. The full list can be seen in the online data.  
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Table S4: Related to Fig 6. List of the 18 different tested clone subsets modeled using RF and the RMSE of                     

TER and VEGF-Ratio for each clone subset. 18 independent models were trained and validated, one for each                 

clone combination listed below. 
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Table S5: Related to Fig 7c-f. Accuracy of TML algorithms in predicting iRPE donor identity.  
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Table S6: Donor information for cell lines used in this manuscript. 

Cell Line and Donor information Original Publication Additional Identifying Information 

Healthy-1 (Age 48, Female) This paper Internal Ref: BEST3V 

Healthy-2 (Age 59, Male) This paper Internal Ref: LORDY9 

OCA8 (Age 15, Male) This paper  

OCA9 (Age 13, Female) This paper  

OCA26 (Age 14, Female) This paper  

OCA71 (Age 13, Male) This paper  

OCA103 (Age 25, Male) This paper  

AMD1, Clone A (Age 85, Male) Sharma et al., 2018 Defined in Sharma et al as D2B 

AMD1, Clone B (Age 85, Male) Sharma et al., 2018 Defined in Sharma et al as D2C 

AMD2, Clone A (Age 89, Male) Sharma et al., 2018 Defined in Sharma et al as D3A 

AMD2, Clone B (Age 89, Male) Sharma et al., 2018 Defined in Sharma et al as D3B 

AMD2, Clone C (Age 89, Male) Sharma et al., 2018 Defined in Sharma et al as D3C 

AMD3, Clone A (Age 87, Female) Sharma et al., 2018 Defined in Sharma et al as D4A 

AMD3, Clone B (Age 87, Female) Sharma et al., 2018 Defined in Sharma et al as D4B 

AMD3, Clone C (Age 87, Female) Sharma et al., 2018 Defined in Sharma et al as D4C 
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