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Supplementary Text  

Text S1. Analysis of circuit stability 

 
 

In the linear regression circuit as shown above, the input currents are generated by input voltages 

(𝒗𝒊𝒏 = [𝑉𝑖𝑛1; 𝑉𝑖𝑛2; … ; 𝑉𝑖𝑛,𝑁]) and resistors with conductance 𝐺0, which is also the unit for the 

conductance matrix 𝑮𝑿 and the conductance 𝐺𝑇𝐼 of transimpedance resistors. The output 

voltages of transimpedance amplifiers are given by 𝒗𝒓 = [𝑉𝑟1; 𝑉𝑟2; … ; 𝑉𝑟,𝑁]. 
 

According to the Kirchhoff’s voltage law and the amplifier theory, the circuit can be described 

by the following equations 

 

−𝑫𝑁[𝑮𝑿𝒗𝒐𝒖𝒕(𝑠) + 𝐺0𝒗𝒊𝒏(𝑠) + 𝐺𝑇𝐼𝒗𝒓(𝑠)]𝐿1(𝑠) = 𝒗𝒓(𝑠)                              (S1-1) 

 

𝑫𝑀𝑮𝑿
𝑻𝒗𝒓(𝑠)𝐿2(𝑠) = 𝒗𝒐𝒖𝒕(𝑠)                                                (S1-2) 

 

where 𝐿1(𝑠) and 𝐿2(𝑠) are the open loop gain of the negative feedback amplifiers and the 

positive feedback amplifiers, respectively, while 𝑠 is the complex variable in the Laplace 

transform. 𝑫𝑁 is an 𝑁 × 𝑁 diagonal matrix defined as 

𝑫𝑁 = 𝑑𝑖𝑎𝑔(
1

𝐺𝑋11+𝐺𝑋12+⋯𝐺𝑋1𝑀
+𝐺0+𝐺𝑇𝐼

,
1

𝐺𝑋21+𝐺𝑋22+⋯𝐺𝑋2𝑀
+𝐺0+𝐺𝑇𝐼

, … ,
1

𝐺𝑋𝑁1
+𝐺𝑋𝑁2

+⋯𝐺𝑋𝑁𝑀
+𝐺0+𝐺𝑇𝐼

), 

and 𝑫𝑀 is a 𝑀 × 𝑀 diagonal matrix defined as 

𝑫𝑀 = 𝑑𝑖𝑎𝑔(
1

𝐺𝑋11+𝐺𝑋21+⋯𝐺𝑋𝑁1

,
1

𝐺𝑋12+𝐺𝑋22+⋯𝐺𝑋𝑁2

, … ,
1

𝐺𝑋1𝑀
+𝐺𝑋2𝑀

+⋯𝐺𝑋𝑁𝑀

). 

 

By using the variables of the linear regression problem 𝑿𝒘 = 𝒚, Eq. (S1) can be rewritten as 

 

−𝑼𝑁[𝑿𝒘(𝑠) − 𝒚(𝑠) + 𝑡𝒛(𝑠)]𝐿1(𝑠) = 𝒛(𝑠)                                        (S2-1) 

 

𝑼𝑀𝑿𝑻𝒛(𝑠)𝐿2(𝑠) = 𝒘(𝑠)                                                    (S2-2) 
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where 𝒛 represents 𝒗𝒓, 𝑼𝑁 is defined as 

𝑼𝑁 = 𝑑𝑖𝑎𝑔(
1

𝑋11+𝑋12+⋯𝑋1𝑀+1+𝑡
,

1

𝑋21+𝑋22+⋯𝑋2𝑀+1+𝑡
, … ,

1

𝑋𝑁1+𝑋𝑁2+⋯𝑋𝑁𝑀+1+𝑡
), 𝑼𝑀 is defined as 

𝑼𝑀 = 𝑑𝑖𝑎𝑔(
1

𝑋11+𝑋21+⋯𝑋𝑁1
,

1

𝑋12+𝑋22+⋯𝑋𝑁2
, … ,

1

𝑋1𝑀+𝑋2𝑀+⋯𝑋𝑁𝑀
). 

 

The two equations in Eq. (S2) can be merged as follows 

 

−𝑿𝑼𝑀𝑿𝑻𝒛(𝑠)𝐿1(𝑠)𝐿2(𝑠) + 𝒚(𝑠)𝐿1(𝑠) − 𝑡𝒛(𝑠)𝐿1(𝑠) = 𝑼𝑁
−1𝒛(𝑠)                     (S3) 

 

We consider a single-pole model for all the operational amplifiers (OAs), namely 𝐿1(𝑠) =
𝐿01

1+
𝑠

𝜔01

 

and 𝐿2(𝑠) =
𝐿02

1+
𝑠

𝜔02

, where 𝐿01 and 𝐿02 are the DC open-loop gains, 𝜔01 and 𝜔02 are the 3-dB 

bandwidths of both sets of OAs. As a result, Eq. (S3) becomes 

 

−𝐿01𝜔01𝐿02𝜔02𝑿𝑼𝑀𝑿𝑻𝒛(𝑠) + 𝐿01𝜔01(𝜔02 + 𝑠)𝒚(𝑠) − 𝑡𝐿01𝜔01(𝜔02 + 𝑠)𝒛(𝑠) = 𝑼𝑁
−1(𝜔01𝜔02 +

𝜔01𝑠 + 𝜔02𝑠 + 𝑠2)𝒛(𝑠)                  (S4) 

 

Since the DC open-loop gain is usually much larger than 1, Eq. (S4) can be approximated by 

 

−𝐿01𝜔01𝐿02𝜔02𝑿𝑼𝑀𝑿𝑻𝒛(𝑠) + 𝐿01𝜔01(𝜔02 + 𝑠)𝒚(𝑠) − 𝑡𝐿01𝜔01𝑠𝒛(𝑠) = 𝑼𝑁
−1𝑠2𝒛(𝑠)     (S5) 

 

namely 

 

𝒛(𝑠) = 𝐿01𝜔01(𝐿01𝜔01𝐿02𝜔02𝑿𝑼𝑀𝑿𝑻 + 𝑡𝐿01𝜔01𝑰𝑠 + 𝑼𝑁
−1𝑠2)

−1
(𝜔02 + 𝑠)𝒚(𝑠)       (S6) 

 

where 𝑰 is the 𝑁 × 𝑁 identity matrix. By considering the single-pole model for 𝐿2(𝑠), Eq. (S2-2) 

becomes 

 

−𝐿02𝜔02𝑼𝑀𝑿𝑻𝒛(𝑠) = (𝜔02 + 𝑠)𝒘(𝑠)                                            (S7) 

 

By combining Eqs. (S6) and (S7), we get 

 

𝒘(𝑠) = −𝐿01𝜔01𝐿02𝜔02𝑼𝑀𝑿𝑻(𝐿01𝜔01𝐿02𝜔02𝑿𝑼𝑀𝑿𝑻 + 𝑡𝐿01𝜔01𝑰𝑠 + 𝑼𝑁
−1𝑠2)

−1
 𝒚(𝑠)  (S8) 

 

By defining 𝑝1 = 𝐿01𝜔01 and 𝑝2 = 𝐿02𝜔02, which are the gain bandwidth products of both sets 

of OAs, and 𝑠 = 𝜆𝑝1 to convert 𝑠 into a dimensionless variable 𝜆, Eq. (S8) becomes 

 

𝒘(𝑠) = −
𝑝2

𝑝1
𝑼𝑀𝑿𝑻 (

𝑝2

𝑝1
𝑿𝑼𝑀𝑿𝑻 + 𝜆𝑡𝑰 + 𝜆2𝑼𝑁

−1)
−1

𝒚(𝑠)                          (S9) 

 

from which the poles of the system are determined by  

 

𝑑𝑒𝑡 (
𝑝2

𝑝1

𝑿𝑼𝑀𝑿𝑻 + 𝜆𝑡𝑰 + 𝜆2𝑼𝑁
−1) = 0                                   (S10) 

 



which is a typical quadratic eigenvalue problem (QEP). By introducing the mass matrix 𝑴 =

𝑼𝑁
−1, the damping matrix 𝑪 = 𝑡𝑰, and the stiffness matrix 𝑲 =

𝑝2

𝑝1
𝑿𝑼𝑀𝑿𝑻, and noting that 𝑴 

and 𝑪 are diagonal and hence symmetric positive-definite, while 𝑲 is symmetric positive-

semidefinite, we can conclude that all the real parts of 𝜆 are negative or zero
45

. Specifically, the 

𝑁 + 𝑀 negative eigenvalues correspond to the 𝑁 + 𝑀 poles in the system of 𝑁 + 𝑀 OAs, that is 

all the poles lie in the left half-plane and thus the system is stable. 
 

 

Text S2. Analysis of twin matrices mismatch 

The left matrix is the nominal matrix 𝑿. Term the right matrix 𝒁, which is programmed 

according to 𝑿 but with inevitable errors, namely 𝒁 = 𝑿 + ∆𝑿. 

The analytical solution 𝒘∗ to the overdetermined linear system 𝑿𝒘 = 𝒚 satisfies 𝑿𝑻(𝒚 −
𝑿𝒘∗) = 0, while the experimental solution 𝒘𝒓𝒆𝒂𝒍 in the circuit satisfies 𝒁𝑻(𝒚 − 𝑿𝒘𝒓𝒆𝒂𝒍) = 0. 

Assume 𝒘𝒓𝒆𝒂𝒍 = 𝒘∗ + ∆𝒘, and ∆𝒚 = 𝒚 − 𝑿𝒘∗, there is 

∆𝒘 = (𝒁𝑻𝑿)−1∆𝑿𝑻∆𝒚. 

For the ideal matrix 𝑿, there is 𝑿𝑻∆𝒚 = 0. Therefore, if the ith column of ∆𝑿 is a linear 

combination of columns of 𝑿, namely ∆𝑿(: , 𝑖) = 𝛼1𝑿(: ,1) + 𝛼2𝑿(: ,2) + ⋯ 𝛼𝑚𝑿(: , 𝑚) where 

𝛼𝑗 is arbitrary real numbers, the ith element of ∆𝒘 is zero. 

For the simple linear regression, due to both matrices have the first column filled with ones 

which are represented by fixed discrete resistors, the first column of ∆𝑿 is filled with zeros, and 

hence ∆𝒘𝟎 = 0. And if ∆𝒙 = α𝟏 + 𝛽𝒙 where 𝛼 and 𝛽 are arbitrary real numbers, there is 

∆𝑤1 = 0. 

Note that the weight error ∆𝒘 is also dependent on the inverse matrix of 𝒁𝑻𝑿, which translates 

that ∆𝒘 is determined by the condition number 𝜅 of matrix 𝒁𝑻𝑿. A larger 𝜅 tends to induce a 

larger error ∆𝒘. 

 

 

Text S3. Polynomial regression 

For polynomial regression, there is a dataset {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑁} to be fitted with a 

polynomial model 𝑤0 + 𝑤1𝑥𝑖 + 𝑤2𝑥𝑖
2 + ⋯ + 𝑤𝑘𝑥𝑖

𝑘 = 𝑦𝑖, where 𝑥𝑖 is the independent variable, 

𝑦𝑖 is the dependent variable, 𝑤0, 𝑤1, 𝑤2, … and 𝑤𝑛 are modelling weights to be solved. If we 

only consider the first terms, polynomial regression can be written in the matrix form as Eq. (1), 

where  

 

𝑿 = [

1
1

𝑥1

𝑥2

𝑥1
2

𝑥2
2

⋮
1

⋮
𝑥𝑁

⋮
𝑥𝑁

2

]     (S11) 

 

𝒘 is the weight vector comprising 𝑤0, 𝑤1 and 𝑤2, 𝒚 is a vector composed of observations of the 

dependent variable. Mapping matrix 𝑿 in the crosspoint circuit, and implementing – 𝒚 with input 

currents, the polynomial regression weights can be computed in one step. One example is shown 

in fig. S8. 

 

 



Text S4. Introduction to Boston housing dataset 

Boston housing dataset contains information of 506 houses in suburbs of Boston. The 

information refers to 14 attributes including the price for each house. The 14 attributes are 

indicated as follows. 

crim: per capita crime rate by town. 

zn: proportion of residential land zoned for lots over 25,000 sq.ft. 

indus: proportion of non-retail business acres per town. 

chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). 

nox: nitrogen oxides concentration (parts per 10 million). 

rm: average number of rooms per dwelling. 

age: proportion of owner-occupied units built prior to 1940. 

dis: weighted mean of distances to five Boston employment centres. 

rad: index of accessibility to radial highways. 

tax: full-value property-tax rate per 10,000$. 

ptratio: pupil-teacher ratio by town. 

black: 1000 × (𝐵𝑘 − 0.63)2 where 𝐵𝑘 is the proportion of blacks by town. 

lstat: lower status of the population (percent). 

medv: median value of owner-occupied homes in 1000$. 

 

 

Text S5. Analysis of least squares 

The error squares of solving an overdetermined linear system 𝑿𝒘 = 𝒚 is 𝐹(𝒘) = (𝑿𝒘 −
𝒚)𝑻(𝑿𝒘 − 𝒚), whose minimum locates at 𝒘∗ = (𝑿𝑻𝑿)−1𝑿𝑻𝒚. Therefore,  

 

𝐹(𝒘∗) = (𝑿𝒘∗ − 𝒚)𝑻(𝑿𝒘∗ − 𝒚) 

                                                   = 𝒘∗𝑻𝑿𝑻𝑿𝒘∗ − 𝒘∗𝑻𝑿𝑻𝒚 − 𝒚𝑻𝑿𝒘∗ + 𝒚𝑻𝒚   (S12) 

                                                   = 𝒚𝑻(𝒚 − 𝑿𝒘∗) 

 

Due to the label matrix is composed of 1 or -1, 𝒚𝑻𝒚 is the same for different columns (i.e., 

different digits) in the label matrix, the value is always N, which is the number of training 

samples. To this end, there is  

 

𝐹(𝒘∗) ∝ −𝒚𝑻𝑿𝒘∗      (S13) 

 

which indicates that there is a linear relationship between the least squares error and 𝒘∗, as 

shown in Fig. 4B. 

 

Text S6. Computing performance benchmarking 

Here we benchmark the throughput and energy efficiency of the pseudoinverse circuit for 

training the second-layer weights 𝑾(2) for MNIST dataset in Fig. 4 of the manuscript. 

 

For the same datasets, namely 3,000 training digits and 500 test digits, and the same 1
st
-layer 

weights 𝑾(1), the matrix to be stored for pseudoinverse computation is defined by  

 

𝑿 = 𝑓(𝑻𝑾(1))      (S14) 

 



where 𝑻 is the training matrix, f is the sigmoid function. Every element in 𝑿 is randomized with 

an error within ±5%, then the 2nd-layer weights 𝑾(2) are computed by 

 

𝑾(2) = 𝑿+𝒀       (S15) 

 

where 𝒀 is the label matrix. 

 

Based on the pre-set 𝑾(1) and the computed 𝑾(2), we can evaluate the recognition rate, which is 

shown in fig. S21a. Five randomized 𝑾(2) were tried, and the recognition rate varies in the range 

from 93% to 94%, with an average value of 93.4%, slightly lower than the one (94.2%) with 

ideal solution of 𝑾(2). These results demonstrate the robustness of the neural network against 

device variation of RRAM, thus strongly supporting the feasibility of one-step machine learning 

with the circuit for classification applications. 

 

Figure S21b shows the minimal eigenvalue 𝜆𝑚𝑖𝑛 of the QEP in Eq. (S10), which was calculated 

for each trial. For all the 5 cases, 𝜆𝑚𝑖𝑛 lies in the range from 1.16×10
-4 

to 1.2×10
-4

, which is one 

order of magnitude lower than the 𝜆𝑚𝑖𝑛 for the Boston housing dataset. According to the linear 

dependence of computing time on 1/𝜆𝑚𝑖𝑛 (fig. S20b), the time for training the weights of one 

output neuron for MNIST is estimated to be 145 s. As a result, the total time to train the whole 

𝑾(2) of 10 handwritten digits is expected to be 1.45 ms. 

 

In conventional computers, the complexity of computing the linear regression weights 𝒘 =
𝑿+𝒚 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 is composed of: 

𝑂(𝑀2𝑁) to multiply 𝑿𝑻 by 𝑿, considering 𝑿 is of size 𝑀 × 𝑁; 

𝑂(𝑀𝑁) to multiply 𝑿𝑻 by 𝒚; 

𝑂(𝑀3) to compute the LU (or Cholesky) factorization of 𝑿𝑻𝑿 and use that to compute the 

product (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚. 

Therefore, the total number of floating-point operations is 𝑀2𝑁 + 𝑀𝑁 + 𝑀3, while the 

complexity is dominated by 𝑂(𝑀2𝑁), as 𝑁 is generally much larger than 𝑀. 

In the case of training one column of 𝑾(2), the total number of operations is 𝑀2𝑁 + 𝑀𝑁 +
𝑀3 = 7852 × 3000 + 785 × 3000 + 7853 = 2.335 × 109. As a result, the equivalent 

throughput of the pseudoinverse circuit is 16.1 tera-operations per second (TOPS). 

 

During the computation of the entire 𝑾(2), the input was scaled down to ±50 mV, to protect the 

crosspoint devices from unwanted disturb. As a result, the largest output is below ±1 V, and most 

outputs are around few tens of mV. To evaluate the energy efficiency of the circuit, we 

calculated the power consumption for computing 𝑾(2). The energy consumption by the circuit is 

composed of 3 parts, namely: 

1, the energy consumption by the left crosspoint resistive array, that is 

𝑃1 = ∑ 𝑉𝐷𝐷|𝑉𝑗| ∑ 𝐺𝑋𝑖𝑗

𝑁
𝑖=1

𝑀
𝑗=1 , where 𝑀 = 785, 𝑁 = 3000 in this case, 𝑉𝐷𝐷 is the supply voltage 

of OAs that is assumed as 1 V. The other variables are referred to Supplementary text 1. 

2, the energy consumption by the right crosspoint resistive array, that is 

𝑃2 = ∑ 𝑉𝐷𝐷|𝑉𝑟,𝑖| (𝐺0 + ∑ 𝐺𝑋𝑖𝑗

𝑀
𝑖=1 )𝑁

𝑖=1 . 

3, the energy consumption by the input resistors, that is 𝑃3 = ∑ 𝑉𝑖𝑛,𝑖
2𝐺0

𝑁
𝑖=1 . 



The overall power consumption of computing the weights connected to the 10 output neurons is 

calculated to be 3.556 W, or 355.6 mW per operation for computing the weights connected to 1 

output neuron, with the conductance unit of 10 S assumed in the manuscript. As a result, the 

energy efficiency of the circuit is calculated to be 45.3 TOPS/W. As an approximate comparison, 

the energy efficiency of Google’s TPU is 2.3 TOPS/W (Ref. 49), thus the crosspoint circuit is 

19.7 times more energy-efficient than TPU. We also compare the crosspoint circuit with a low-

precision (4-bit) ASIC system, whose optimized energy efficiency is 7.02 TOPS/W (Ref. 50), 

indicating a 6.5 times better performance for the crosspoint circuit. 

 

 

 

 
 

Fig. S1. Current-voltage characteristics of the Ti/HfO2/C RRAM device. Representative 8 

conductance levels were programmed by controlling the compliance current during the set 

transition. 

  



 
 

Fig. S2. Cross-point resistive memory circuit on a printed circuit board. Positions of various 

circuit components, including fixed discrete resistors, RRAM devices and amplifiers, input 

currents and supply voltages for operational amplifiers (OAs) are indicated. In the second 

column of left/right matrix, multiple RRAM devices on a same chip may be used. Each OA 

module contains 2 OAs. 

 

 

 

 
Fig. S3. Device programming. The resistive memory devices in the right crosspoint array were 

programmed according to the conductance values in the left array. The relative error of 

programming is shown as the right y-axis.  
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Fig. S4. Convergence analysis of the linear regression experiment. (A) SPICE transient 

simulation of training the linear regression model in Fig. 1B. (B) Eigenvalues in the complex 

plane of the QEP for the linear regression case. The minimal eigenvalue (or real part of 

eigenvalue) 𝜆𝑚𝑖𝑛 (absolute value) is 0.0151. Note that all eigenvalues are located in the half 

plane with Re() < 0, which satisfies the requirement for stability of the circuit. 

 

 

 
 

Fig. S5. Extended circuit for one-step prediction. The circuit is based on the pseudoinverse 

circuit for linear regression, with the new datum 𝑥∗ stored in a RRAM device in an extra row, 

while the prediction 𝑦∗ represented by the read current. 
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Fig. S6. More linear regression results. (A) Linear regression with i = [0.3; 0.5; 0.5; 0.4; 0.4; 

0.6]I0 for the same matrix in Fig. 1. A new datum x
*
 = 4.91 was used to test the prediction, whose 

experimental result is 0.632, with a relative error of 2% compared to the analytical prediction. (B) 

Linear regression with i = [0.3; 0.3; 0.2; 0.1; 0.1; 0]I0. The experimental prediction to the new 

datum is -0.082, with a relative error of -47% compared to the analytical prediction, due to the 

small amplitude of the prediction. 

 

 

 

Fig. S7. Linear regression with two independent variables. Values of the 2 independent 

variables (x1 and x2) for 6 data points are recorded, respectively, in the second and the third 

column of matrix 𝑿, which is mapped in the twin crosspoint arrays. The first column of 𝑿 is 

fixed with discrete resistors. The values of the dependent variable y are represented by i = [0.3; 

0.4; 0.4; 0.6; 0.6; 0.8]I0. Both experimental (red) and analytical (blue) regression planes are 

shown. 
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Fig. S8. Polynomial regression result. A dataset of 5 points is used for polynomial regression 

demonstration. In the matrix 𝑿, the first column is a column of ones, the second column records 

the 𝑥 values of 5 points, and the third column is responsible for the quadratic term in 𝑥2 the 

polynomial regression model. Matrix 𝑿 was mapped in the twin crosspoint arrays in circuit 

simulation, and the known vector 𝒚 was mapped by an input current vector i =  [0.2; 0.3; 0.75; 1; 

1.7]I0, where I0 is 10 A, as the conductance transformation unit is 10 S due to the large values 

of the quadratic term. In the plot, the linear regression result is also shown as a reference, 

indicating a better regression result with polynomial regression. 

 

 

 
 

Fig. S9. Logistic regression results. (A) Circuit schematic of logistic regression in Fig. 2. The 

first column in both arrays were fixed with discrete resistors, the second and the third columns 

were implemented with RRAM devices and discrete resistors, respectively. (B) Experimental 

weights of logistic regression, plotted in comparison with the analytical solution. The right y-axis 

shows the relative errors of the experimental results. 
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Fig. S10. Convergence analysis of the logistic regression experiment. (A) SPICE transient 

simulation of training the logistic regression model in Fig. 2. (B) Eigenvalues in the complex 

plane of the QEP for the logistic regression case. The minimal eigenvalue 𝜆𝑚𝑖𝑛 is equal to 0.0294. 

 

 

 
 

Fig. S11. Solution of linear/logistic regression with negative independent variable values. (A) 

Illustration of the linear regression with negative independent-variable values. (B) Same as (A), 

but for the logistic regression. All data are moved to the positive half-plane by a rigid shift, and 

then stored in the crosspoint arrays for computation. The regression weights can be 

straightforwardly recovered from those computed by the circuit. 
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Fig. S12. Rescaling the attribute matrix X and price vector y. Each column in matrix 𝑿 was 

rescaled with a specific factor to make the overall matrix uniform. Matrix 𝑿 was mapped in the 

twin crosspoint arrays with a conductance unit of 10S. The vector 𝒚 was scaled down by a 

factor of 1/50, and mapped by input currents with a unit of 10 A. In circuit simulation, the 

output voltages were rescaled correspondingly with the same factors to recover the real weights.  
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Fig. S13. One-step prediction circuit schematic for Boston housing dataset. The attribute 

matrix 𝑿 of the training set (333 samples) is used to compute the regression weights, which in 

the form of voltages are utilized to execute MVM in a crosspoint array with the attribute matrix 

of the test set (173 samples). The collected currents at rows of the top crosspoint array 𝒊′ dictate 

the predicted prices of the houses in test set. 

 

 

 
Fig. S14. Random first-layer weight matrix W

(1)
. The matrix is with a size of 196×784, and 

each element is generated randomly in the range of [-0.5, 0.5] following a uniform distribution. 
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Fig. S15. The hidden-layer output matrix X. The matrix is of a size of 3,000×785, as there are 

3,000 training samples, and 784 hidden neurons and 1 bias. The matrix is obtained with sigmoid 

function for each hidden neuron in each input event. 

 

 

 
 

Fig. S16. Training and inference of the two-layer neural network. (A) Training/computing 

the second-layer weights for one output neuron. The weights are computed in circuit simulation 

as output voltages, i.e., V0, V1, ..., V784. The computed weights are encoded in a crosspoint 

resistive memory array with a transformation from voltage to conductance, as indicated by the 

arrows from (A) to (B). For the 10 categories of digits, 10 operations of circuit computing and 

transformation programming are needed. (B) The 785×10 crosspoint array coding the second-
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layer weights 𝑾(2). It will be used directly for the following inference phase, together with the 

first layer in (C). (C) The first layer of the 2-layer neural network for inference. Simple MVM is 

executed with the 196×784 crosspoint array, i.e.  𝑾(1), and the input voltages (V0
’
, V1

’
, ..., V196

’
) 

representing one input digit image. The collected currents of MVM results will be activated with 

the sigmoid function in software or hardware to generate the hidden neuron outputs, which is 

also in the form of voltages. The hidden layer voltages (1, V1
’’
, ..., V784

’’
) are applied to the rows 

of the crosspoint array in (B) to complete the inference of neural network. The first row is 

applied with 1 V, which is a constant bias for every output neuron. During an inference event, 

the largest current collected among the 10 columns (I1
’’
, I2

’’
, ..., I10

’’
) decides which 

corresponding digit is recognized as. Note that both weight matrices 𝑾(1) and 𝑾(2) contain 

negative elements, while here they are represented by two single crosspoint resistive memory 

arrays for simplicity. A real-number matrix can be split into two positive matrices, which are 

then implemented with two crosspoint arrays. 

 

 

 

 
 

Fig. S17. Linear regression of Boston housing dataset with a RRAM model. (A) 

Discretization and randomization of RRAM conductance levels. 32 conductance levels are 

assumed, including 1 HRS which defines Gmin, and 31 uniformly-spaced levels till the maximum 

conductance (Gmax). For the uniformly-space levels, a conductance deviation is assumed to be 

1/6, 1/4 or 1/2 of the nominal conductance difference between two adjacent levels (G). The 

HRS conductance follows a logarithmic normal distribution, with a standard deviation of 0.3, as 

shown in the right panel. (B) The representative attribute matrix 𝑿 randomly generated with  = 

G/2. (C) Regressed house prices of the training set with the weights computed with the real 

RRAM matrix 𝑿 in (B), plotted in comparison with the prices regressed with weights computed 

with the ideal attribute matrix. With the two sets of weights, the price deviations are very close, 

P,RRAM = 4752$

P,ideal = 4732$

P,RRAM = 4758$

P,ideal = 4769$
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i.e., 4732$ vs 4752$. (D) Predicted house prices of the test set using the same weights, plotted in 

comparison with the prices predicted with weights computed with the ideal attribute matrix. The 

price deviations show an even more insignificant difference, i.e., 4769$ vs 4758$. (e) Summary 

of price deviations for attribute matrix 𝑿 implemented with different conditions, including ideal 

𝑿, discretization-only 𝑿, discretized and randomized 𝑿 with conditions in (a), respectively. For 

randomization-involved cases, 10 trials were recorded for each condition, and average values 

with error bars are shown. The results indicate that even with a device variation = G/2, the 

price deviation remains in a reasonable range of error for both regression (training set) and 

prediction (test set), though for the test set, the price deviation is more scattering. 

 

 

 

 

 
Fig. S18. Impact of wire resistance. (A) Sub-circuit module of a crosspoint resistive memory 

device. The wire resistance Rw is obtained with interconnect parameters at 65 nm technology, RM 

is the resistance of a crosspoint resistive memory. The module is duplicated for the twin of 

crosspoint arrays. (B) Price deviations for regression (training set) and prediction (test set) 

calculated with simulated weights, which is obtained in the crosspoint circuit with wire 

resistances. The RRAM model is assumed with 𝜎 = ∆𝐺/6. Due to wire resistances, P increases 

for both training set and test set, with the latter being more insignificant, indicating a sufficient 

prediction accuracy. 
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Fig. S19. Linear regression of Boston housing dataset and its representative subsets. (A) 

Linear regression of a subset of 100 training samples, together with the transient simulation 

result. (B) Same as (A), but for a subset of 150 training samples. (C) Same as (A), but for a 

subset of 200 training samples. (D) Same as (A), but for a subset of 250 training samples. (E) 

Same as (A), but for a subset of 300 training samples. (F) Same as (A), but for the entire training 

set of 333 samples. 
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Fig. S20. Scaling behavior of computing time of linear regression. (A) Computing time of 

linear regression of Boston housing dataset and its subsets. For each size, 3 different subsets are 

used. (B) Dependence of computing time on 𝜆𝑚𝑖𝑛. 

 

 

 

 
 

Fig. S21. Analysis of device variation impact and computing time. (A) Recognition rate with 

randomized 𝑿 for 5 trials. Every element in 𝑿 is randomized with an error within ±5%. (B) 

𝜆𝑚𝑖𝑛 of the 5 trials. For all the 5 cases, 𝜆𝑚𝑖𝑛 lies in the range from 1.16×10
-4 

to 1.2×10
-4

. 

According to the linear dependence of computing time on 1/𝜆𝑚𝑖𝑛 (fig. S20b), the time for 

training the weights of one output neuron for MNIST is estimated to be 145 s. 
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