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Supplementary Figures

Figure S1 Budding outcomes in the absence of wedging. Related to Fig 2.
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Budding outcomes without wedging at high and low noise as well as in the absence
of noise. The first column shows the proportion of normal initiations of tubulation, the
middle column shows failed invaginations while the last column shows evaginations. σ is
the width of the Gaussian noise, while N is the number of simulations run at the given
noise level. See the Methods section for details on the implementation of noise. In all
cases dt = 0.1. The couplings were kept at (λ1, λ2, λ3) = (0.4, 0.5, 0.1) and the annulus
within which wedging occurs is given by the radii r0 = 5 and r1 = 10. Since wedging is
absent, α = 0.

Figure S2 Lack of proliferation. Related to Fig 4.

The fate of the neural sheet in our simulations in the absence of proliferation. Here
the couplings are (λ1, λ2, λ3) = (0.6, 0.4, 0), the degree of wedging is |α| = 0.5. See the
section Modeling neurulation/wrapping for details. Total number of time steps was
1.4× 105 at dt = 0.1. The simulation was run without noise.

Figure S3 T1 transition induced by wedging. Related to Fig 1.

The T1 transition was induced by starting with a tube which was stabilized with
anisotropic wedging of strength |α| = 0.3 and then increasing the extent of wedging to
|α| = 0.5, causing the structure to tighten and elongate by intercalation. The couplings
are (λ1, λ2, λ3) = (0.55, 0.45, 0) and the width of the Gaussian noise is 0.1 with time
step size dt = 0.2.

Figure S4 The initial configuration of the cell sheet for neurulation.
Related to Fig 2.
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The initial configurations of the cell sheet for neurulation. Wedging is turned on in a
band of width d (gray) with PCP running orthogonal to this band.

Figure S5 The initial configuration of the cell sheet for budding. Related
to Fig 2.
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The initial configurations of the cell sheet for budding. Wedging is turned on in an
annulus (gray) where PCP curls around tangentially.

Figure S6 Tube splitting observed with excessive proliferation rate.
Related to Fig 4. The proliferation rate corresponds to a cell cycle length of 1.5h for
cells at the neuroepithelium/ectoderm boundary. The remaining parameters are as in
the main neurulation simulation, as described in Fig 2

Figure S7 Influence of the parameter β. Related to Fig 2.

Budding simulations run with β = 2.5 (left) and β = 10 (right). This affects the
equilibrium distance so that cells are closer together resp. further apart (and thus come
across as larger resp. smaller) but budding progresses in a qualitatively similar manner.
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The remaining simulations in this paper were all run with β = 5 ensuring an equilibrium
distance of deq = 2.

Figure S8 Apical constriction in budding. Related to Fig 2.
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(A-C) Time evolution of budding simulation when only a disk of apically constricting
cells (light gray) are assigned, and no basally contracting cells. The couplings are
(λ1, λ2, λ3) = (0.5, 0.4, 0.1), the degree of wedging is |α| = 0.3. The radius of the disk of
apically constricting cells is given by r0 = 10. Total number of time steps was 6.8× 104

at dt = 0.1. Snapshots correspond to times 175, 600 and 6800.
(D-F) Time evolution of budding simulation when a disk of apically constricting

cells (light gray) as well as a ring of basally constricting cells (dark gray) are assigned.
The couplings are (λ1, λ2, λ3) = (0.5, 0.4, 0.1), the degree of wedging is |α| = 0.3. The
outer radius of the ring for which basal constriction occurs is given r1 = 10 while the
radius of the disk of apically constricting cells is given by r0 = 5. Total number of time
steps was 2.2× 104 at dt = 0.1. Snapshots correspond to times 25, 400 and 2200.
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Figure S9 The degree of wedging affects the circumference of the tube.
Related to Fig 1.
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Transparent Methods

Model

Following Nissen et al. (2018), cells are treated as point particles interacting with
neighboring cells through a pair-potential Vij . The potential has a rotationally
symmetric repulsive term and a polarity-dependent attractive term. In terms of rij (the
distance between two cells i and j), the dimensionless potential can be formulated as

Vij = erij − [λ1 Sij(A) + λ2 Sij(AP ) + λ3 Sij(P )] e−rij/β . (S1)

The parameter β has the fixed value β = 5, since this ensures that the equilibrium
distance is always 2, corresponding to 2 cell radii. In Figure S7 we have shown that one
can obtain qualitatively similar results at other values of β. The parameters λi are
coupling constants which define the strength of polar interactions in the model. Sij(A)
gives the form of the interaction between AB polarity and position, whereas Sij(AP )
and Sij(P ) give the coupling of PCP with AB and position, respectively, as described in
Nissen et al. (2018). These couplings are formulated in terms of AB vectors pi, PCP
vectors qi and a unit vector r̂ij from cell i to j. The coupling
Sij(AP ) = (pi × qi) · (pj × qj) dynamically maintains the orthogonality of the PCP
unit vectors qi and qj to their corresponding AB polarity vectors while lateral
organization is favored by Sij(P ) = (r̂ij × qi) · (r̂ij × qj). In the absence of any cell
shape effects, the coupling between AB and position is given by
Sij(A) = (r̂ij × pi) · (r̂ij × pj), which favors a flat cell sheet. Wedging of cells is
introduced into our model by a single deformation parameter α, which describes an
attractive interaction between the AB polarity unit vectors pi and pj :

Sij(A) = (r̂ij × p̃i) · (r̂ij × p̃j), (S2)
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where p̃i is given by

p̃i = pi (for no wedging),

p̃i =
pi − αr̂ij
|pi − αr̂ij |

(for isotropic wedging),

p̃i =
pi − α 〈q̂〉ij
|pi − α 〈q̂〉ij |

(for anisotropic wedging). (S3)

Here, 〈q̂〉ij denotes the mean of PCP vectors qi and qj belonging to the two interacting
cells. The above substitution, pi → p̃i, is only performed in Sij(A), so as to only affect
the coupling between AB polarity and position.

Setting α = 0 favors a flat sheet (see Fig 1A–B) whereas a non-zero α favors bending
of AB polarity vectors towards (or away from) one another and induces curvature in a
sheet of cells (Fig 1C–D).

The time development is simulated by overdamped (relaxational) dynamics along
the gradient of the above potential, Eq (S1):

∂ri
∂t

= −∂Vi
∂ri

+ η,

∂pi
∂t

= −∂Vi
∂pi

+ η,

∂qi
∂t

= −∂Vi
∂qi

+ η, (S4)

where the potential energy function for the i’th cell is Vi =
∑
j Vij . The sum runs over

those cells j which are within direct line of sight of the i’th cell as described in Nissen
et al. (2018). η is a noise term corresponding to Gaussian white noise with vanishing
mean. This noise term provides a degree of randomness to cell position as well as the
orientation of polarities. Cell division (when present) is modeled as a Poisson process
with daughter cells being placed randomly around the mother cell at a distance of one
cell radius.

The model was implemented in Python using PyTorch for automatic differentiation
(Paszke et al. 2017). Numerical integration of the equations of motion is implemented
through the Euler method, usually with dt = 0.1. We have checked that the model
converges to similar results (tested for budding) with dt = 10−4. The source code for
the simulations is available on GitHub (Nielsen 2019).

Parameter estimation and robustness

We have tested the robustness of our approach on a number of model cases and find
that, for example, budding can be reproduced with a broad range of wedging
parameters, α ∈ [0.1, 0.6] and for diverse PCP coupling strengths λ3 ∈ [0.8, 0.14]. For
these intervals, the budding is qualitatively similar to that illustrated in Fig 2A. Our
typical values of wedging used in simulations, α ∈ [0.3, 0.5] are comparable with the
wedging strains reported in Sanchez-Corrales et al. (2018), e.g. 0.03pp/µm,
corresponding to α = 0.4 (assuming a cell diameter of 13µm) (Brown & Bron 1987).

We further explore our model by re-instating dimensions in the formulation of the
potential and the equation of motion and estimating dimensionful quantities. With
dimensions reinstated, the pair-potential takes the form

Vij = V0 [exp(−r/`)− S exp(−r/(β`))] . (S5)
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The overdamped equation of motion (without noise) becomes

0 = γvi +
∂Vij
∂ri

, (S6)

where vi = ∂ri/∂t. We now introduce dimensionless (tilded) parameters

Vij = V0Ṽij , ri = `r̃i, vi = v0ṽi =
`

t0
ṽi. (S7)

and insert the dimensionless parameters in our equation of motion

ṽi = − V0
`γv0

∂Ṽij
∂r̃i

. (S8)

Inserting the dimensionless equation of motion, this reduces to V0 = `γv0. In Eskandari
& Salcudean (2008), a typical value for the dynamical viscosity µ was reported to be on
the order of 250Pa s. This can be related to the coefficient γ by Stokes’ Law of viscous
drag, γ = 6πµ`. We now compare our model with epithelial cell extrusion and use the
typical cell speed reported in Yamada et al. (2017), v0 ≈ 1mm h−1 and use the typical
cell size reported in Brown & Bron (1987), 2` = 13µm. With these numbers, our model
predicts a typical extrusion energy on the order of

12V0 ≈ 12× 6πµ`2v0 ≈ 2× 10−13J. (S9)

The factor of 12 = 2× 6 is due to the hexagonal structure of the cell sheet. Note that
our estimate of the extrusion energy is consistent with the finding in Yamada et al.
(2017) for epithelial cell extrusion. Here, an actomyosin ring is measured to exhibit a
contraction force of the order of 1kPa, which results in an extrusion energy of the order
1kPa× `3 ≈ 3× 10−13J.

With these identifications of parameters, it is possible to extract dimensionful
quantities from our simulations. This is what allows for e.g. the computation of cell
cycle lengths in Fig 4.

We anticipate that the values of the couplings λi can be estimated from the extent
and speed of CE (e.g in our model these would be determined by the values of λ3
relative to λ1).

Modeling neurulation/wrapping

The starting point for our simulation of neurulation is a planar sheet of cells where a
line with a width of six cell radii is given non-zero wedging strength |α| = α0 > 0 and
all other cells have α = 0. The line is centered at x = 0 and PCP is initialized
orthogonally to this line, along the x direction (q|t=0 = x̂). See Figure S4.

Cell proliferation is simulated as a Poisson process by choosing a rate Γ for each cell
to divide in each time unit. Only cells at the neuroepithelium-ectoderm boundary
(defined as cells with |α| > 0 who are neighbours of cells with α = 0) proliferate (with
rate Γ = Γ0 > 0) while the rest have Γ = 0. Daughter cells inherit all properties of their
mother cell and are initiated randomly in a distance of one cell radius from their mother
cell.

It should be noted that the initial width of the strip is not particularly important,
since wedging will ensure the correct tube width given sufficient proliferation.

All cells in the simulation have the same coupling constants, typically
λ = (0.6, 0.4, 0). Typical values for Γ0 and α0 are 2.8× 10−4 and 0.5. respectively.
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Modeling gastrulation

In our gastrulation simulation, the assignment of PCP and cell wedging is characterized
by two radii, describing an annulus (see Figure S5):

r0 = 7, (S10)

r1 = 3r0 = 21. (S11)

PCP is assigned within the disk Ω1 given by

Ω1 =
{

(x, y, z)
∣∣∣√x2 + y2 < r1

}
. (S12)

The PCP coupling strength λ is taken to be

λ =

{
(0.5, 0.5− λ3, λ3) inside Ω1,

(1, 0, 0) everywhere else.
(S13)

where a typical value for λ3 is between 0.08 and 0.12.
The PCP vector field q is initially assigned so that it spirals around the axis of tube

formation (the z-axis):

q|t=0 = ẑ × r, (S14)

In the gastrulation simulations, the PCP vector field is fixed on a per-cell basis.
Nonzero apical constriction parameter α is assigned in an annulus Ω2, which shares

its outer radius with the disk Ω1:

Ω2 =
{

(x, y, z)
∣∣∣r0 <√x2 + y2 < r1

}
. (S15)

The magnitude of α for the cells in Ω2 is taken as 0.4:

|α| =

{
0.4 inside Ω2,

0 everywhere else.
(S16)

The regions Ω1 and Ω2 are fixed in space and not on a particle basis. The number of
particles in this simulation is N = 4000.

Modeling budding from plane

The budding simulation is, apart from global topology, very similar to the gastrulation
simulation.

The relevant length parameters are r0 and r1 with r0 < r1. Typically we take

r0 = 5, (S17)

r1 = 2r0 or r1 = 3r0. (S18)

Two regions are correspondingly defined – the disk Ω1 and the annulus Ω2:

Ω1 :=
{

(x, y, z)
∣∣∣√x2 + y2 < r1

}
, (S19)

Ω2 :=
{

(x, y, z)
∣∣∣r0 <√x2 + y2 < r1

}
. (S20)

The PCP coupling strength λ is taken to be

λ =

{
(0.5, 0.5− λ3, λ3) inside Ω1,

(1, 0, 0) everywhere else.
(S21)
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where a typical value for λ3 is between 0.08 and 0.12.
The PCP vector field q is initially assigned so that it spirals around the center of

invagination (the origin of coordinates):

q|t=0 = ẑ × r, (S22)

In the gastrulation simulations, the PCP vector field is fixed on a per-cell basis.
Nonzero apical constriction parameter α is assigned in the annulus Ω2 with

magnitude 0.5:

|α| =

{
0.5 inside Ω2,

0 everywhere else.
(S23)

The total number of particles in the simulation is 1384.
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