## **Supplementary Information**

# Stabilizing lithium metal anode by octaphenyl polyoxyethylene complexation

Dai et al.



Supplementary Figure 1. Digital photo of *in situ* optical microscopy.



**Supplementary Figure 2**. Morphology and element characterizations of metal Li anode. SEM images of Li anode with OP-10 additives (**a**, **c**) or with PEGDME additives (**b**, **d**) after 3 cycles (**a**, **b**: side view; **c**, **d**: top view); Elements content of Li surface using various additives measured by EDX method after 3 cycles (**e**, **f**) (Scale bars: **a**–**d** 100 μm).



**Supplementary Figure 3.** Coulombic efficiency in different electrolyte systems. The voltage profiles of the 1st (**a**), 15th (**b**), 30th (**c**), and 40th (**d**) cycles in different electrolyte systems with a cycling capacity of 0.5 mAh cm<sup>-2</sup> at a current density of 0.5 mA cm<sup>-2</sup>.



**Supplementary Figure 4.** Morphology characterizations of metal Li anode. SEM images of Li anode plated without OP-10 additives ( $\mathbf{a}, \mathbf{b}, \mathbf{c}$ ) or with OP-10 additives ( $\mathbf{d}, \mathbf{e}, \mathbf{f}$ ) after 50 cycles at a current density of 4 mA cm<sup>-2</sup> with a fixed capacity of 1 mAh cm<sup>-2</sup> ( $\mathbf{a}, \mathbf{d}$ : top view;  $\mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ : side view. Scale bars:  $\mathbf{a}$  50 µm,  $\mathbf{b}$  20 µm,  $\mathbf{c}$  10 µm,  $\mathbf{d}$  50 µm,  $\mathbf{e}$  20 µm,  $\mathbf{f}$  10 µm).



Supplementary Figure 5. Electrochemical impedance spectroscopy (EIS) results for blank and modified electrolytes before and after cycling at a current density of 2 mA cm<sup>-2</sup> and a fixed capacity of 1 mA cm<sup>-2</sup>. Inset figures corresponding to the equivalent circuits of the electrochemical impedance spectroscopy.



**Supplementary Figure 6.** <sup>7</sup>Li NMR spectra of LiPF<sub>6</sub> with different additives.



**Supplementary Figure 7.** Differential capacitance curves conducted at 298 K with or without OP-10 or PEGDME additives.



**Supplementary Figure 8.** Electrochemical performance with different kinds of OP additives. Cycling performance of Li|Li symmetric cells containing additives of OP-10 (red) versus OP-4 (**a**) and OP-50 (**b**) (blue).



Supplementary Figure 9. Viscosities of OP-10 electrolyte additive with different concentrations.



**Supplementary Figure 10**. Measurements of contact angles. Contact angles of the electrolyte with 5% PEGDME (a) and 5% OP-10 (b) additives on lithium anode.



**Supplementary Figure 11.** Electrochemical performance of Li|Li symmetric cells. Cycling performance of Li|Li cells using 1% (**a**), 2% (**b**), 8% (**c**) and 10% (**d**) OP-10 additive.



**Supplementary Figure 12.** Zeta potential of lithium without or with OP-10 additives at different concentration.



**Supplementary Figure 13.** Measurements of contact angles. Contact angles of electrolytes with 1% (a), 2% (b), 8% (c) and 10% (d) OP-10 additive on lithium anode.



Supplementary Figure 14. Charge-discharge profiles of the as-assembled  $Li|LiFePO_4$  batteries with untreated electrolyte corresponding to Fig. 6a.



**Supplementary Figure 15.** Electrochemical performances of Li|Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> batteries with untreated electrolyte (blue) or with OP-10 additives (red). Charge-discharge profiles of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> batteries with untreated electrolyte (**a**) or with OP-10 additives (**b**) at 5 C; (**c**) Long-term cycling stability of Li|Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> batteries with untreated electrolyte or with OP-10 additives at a current density of 5 C. (1 C = 175 mA g<sup>-1</sup>).



Supplementary Figure 16. Linear sweep voltammetry (LSV) curves of Li|Cu cells assembled with or without OP-10/PEGDME at a scan rate of 10 mV s<sup>-1</sup>.



**Supplementary Figure 17.** EIS measurements of Li anode in Li|LiFePO<sub>4</sub> battery. Nyquist plots before cycling (a) and after 500 cycles (b) using electrolyte with or without additives. Inset figures are the equivalent circuits of the electrode impedance spectra.



**Supplementary Figure 18.** Electrochemical performance of Li|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> batteries in different electrolyte systems. Cycling performance of Li|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> full cells with or without OP-10/PEGDME additives at a current density of 1 C (1 C = 280 mAh g<sup>-1</sup>) (**a**); Charge-discharge profiles of Li|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> full cell in different electrolyte systems (**b**-c).

|                                      |                                              | repons                                    |                       |                 |       |
|--------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------|-----------------|-------|
| Electrolyte additives                | Current<br>density (mA<br>cm <sup>-2</sup> ) | Areal capacity<br>(mAh cm <sup>-2</sup> ) | Overpotential<br>(mV) | Cycle<br>number | Ref.  |
| 1.0 M (Pyr1(12) FSI                  | 0.5                                          | 2.0                                       | 30                    | $\sim \! 110$   | 1     |
| 0.05 M LiPF <sub>6</sub> + dual-salt | 1.0                                          | 0.5                                       | $\sim 200$            | 210             | 2     |
| 8 wt% AlCl <sub>3</sub>              | 0.5                                          | 1.0                                       | 50                    | $\sim$ 235      | 3     |
| 8% polydimethylsiloxane              | 0.5                                          | 1.5                                       | 100                   | 300             | 4     |
| 20 mM Boric acid                     | 0.25                                         | 0.5                                       | <80                   | 215             | 5     |
| 0.15 M LiDFOB                        | 1                                            | 1                                         | $\sim \! 100$         | 300             | 6     |
| 60 mM InF <sub>3</sub>               | 1                                            | 1                                         | 100                   | 200             | 7     |
| 1.2 mM CTAC                          | 1                                            | 0.5                                       | $\sim 69$             | 300             | 8     |
| 5% Lithium Nitrate                   | 0.5                                          | 0.5                                       | 52                    | 150             | 9     |
|                                      | 1                                            | 0.5                                       | $\sim 100$            | 400             | This  |
| 5% OP-10                             | 2                                            | 1                                         | $\sim$ 130.2          | 200             | 11115 |
|                                      | 4                                            | 1                                         | ~188.5                | 160             | Work  |

Supplementary Table 1. The comparisons of the bare Li foil between our work and previous reports

| Fitting results |                        |       |          |  |
|-----------------|------------------------|-------|----------|--|
|                 |                        | Blank | 5% OP-10 |  |
| Before cycle    | R <sub>ct</sub> (ohm)  | 140.5 | 156.2    |  |
| 100th cycle     | R <sub>SEI</sub> (ohm) | 345.4 | 32.36    |  |
|                 | R <sub>ct</sub> (ohm)  | 143.6 | 28.88    |  |

### **Supplementary Table 2**. The corresponding fitting results of the Supplementary Figure 5

| whiled of To additives |       |       |       |       |  |
|------------------------|-------|-------|-------|-------|--|
| Sample                 | C (%) | O (%) | F (%) | P (%) |  |
| Blank                  | 12    | 49    | 20    | 19    |  |
| 5% OP-10               | 8     | 33    | 34    | 25    |  |

**Supplementary Table 3**. Elements content of Li surface measured by EDX method with or without OP-10 additives

|              |                        | Fitting results |           |          |
|--------------|------------------------|-----------------|-----------|----------|
|              |                        | Blank           | 5% PEGDME | 5% OP-10 |
| Before cycle | R <sub>ct</sub> (ohm)  | 154.2           | 466.6     | 210.1    |
| 500th cycle  | R <sub>SEI</sub> (ohm) | 302.3           | 76.27     | 68.5     |
|              | R <sub>ct</sub> (ohm)  | 23.96           | 138.7     | 76.32    |

### Supplementary Table 4. The corresponding fitting results of the Supplementary Figure 17

#### **Supplementary References**

- 1 Yoo, D., Kim, K. & Choi, J. The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes. *Adv. Energy Mater.* **8**, 1702744 (2018).
- 2 Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. *Nat. Energy* **2**, 17012 (2017).
- 3 Ye, H.et al. Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. *Nano Energy* **36**, 411–417 (2017).
- 4 Meng, J., Chu, F., Hu, J. & Li, C. Liquid polydimethylsiloxane grafting to enable dendrite-free li plating for highly reversible li-metal batteries. *Adv. Funct. Mater.* **29**, 1902220 (2019).
- 5 Huang, Z.et al. Protecting the Li-metal anode in a Li-O<sub>2</sub> battery by using boric acid as an SEI-forming additive. *Adv. Mater.* **30**, 1803270 (2018).
- 6 Yu, L.et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. *ACS Energy Lett.* **3**, 2059–2067 (2018).
- 7 Pang, Q., Liang, X., Kochetkov, I., Hartmann, P. & Nazar, L. Stabilizing lithium plating by a biphasic surface layer formed in situ. *Angew. Chem. Int. Ed.* **57**, 9795–9798 (2018).
- 8 Dai, H., Xi, K., Liu, X., Lai, C. & Zhang, S. Q. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. *J. Am. Chem. Soc.* 140, 17515–17521 (2018).
- 9 Tan, S.-J. et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries. *Angew. Chem. Int. Ed.* 58, 7802–7807 (2019).