Supplemental material

Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice

Susanne Keipert^{1,2,3#}, Dominik Lutter^{1,2}, Bjoern O. Schroeder⁴, Daniel Brandt^{1,2}, Marcus Ståhlman⁴, Thomas Schwarzmayr⁵, Elisabeth Graf⁵, Helmut Fuchs⁶, Martin Hrabe de Angelis^{2,6, 7}, Matthias H. Tschöp^{1,2,8}, Jan Rozman^{2,6}, Martin Jastroch^{1,2,3#}

Supplemental Figure 1

Figure S1 (related to figure 2): WT, FGF21 KO, UCP1 KO and UCP1/FGF21 dKO mice were weaned and raised at 30°C. At the age of 10-12 wks, animals were transferred from 30°C to 23°C, and the diet was changed to high fat diet (HFD) for 12 weeks. Body weights (x-axis) were plotted against tissue weights of (a) (e)pididymal, (b) (i)nguinal WAT and (c) BAT. FGF21 gene expression in (d) BAT and (e) iWAT after 12 weeks of HFD at 23°C (room temperature; RT) or 30°C. a-c: n = 10/9/9/8 WT/FGF21 KO/ UCP1 KO/ dKO; d-e: n = 7/6/7/6 – 6/6/6/6 WT/FGF21 KO/ UCP1 KO/ dKO 23°C - WT/FGF21 KO/ UCP1 KO/ dKO 30°C. Data (d-e) were analyzed by one-way ANOVA followed by Bonferroni test and presented as mean + SEM with different letters indicating significant differences (P < 0.05).

Supplemental Figure 2

Figure S2 (related to figure 3): WT, FGF21 KO, UCP1 KO and UCP1/FGF21 dKO mice were weaned and raised at 30°C. At the age of 10-12 wks, animals were transferred from 30°C to 23°C, and to high fat diet (HFD). After 9 wks HFD feeding the animals were placed into an indirect calorimetry system. (a) Mean body weight, (b) metabolic rate, (c) food intake and (d) water intake were measured. After 12 wks HFD feeding, feces and serum were collected. (e) Alpha rarefaction plot displays species richness dependent on sampling depth (max depth = 9,410 sequences per sample). (f) Principal coordinate analysis (PCoA, weighted UniFrac) displays β -diversity of the gut microbial community. The percentage of the variation explained by the plotted principal coordinates is indicated at the axis labels. Each dot represents a caecal community. Relative abundance at (g) phylum and (h) family level in caecal community of mice. Only relative abundances > 1% are displayed. (i) Plasma bile acid (BA) profile and (j) ratio of primary to secondary BAs and ratio of BAs, known as FXR agonist/FXR antagonist. a, b: n = 5/6/6/5 WT/ FGF21 KO/ UCP1 KO/ dKO; c: n = 5/5/6/5; d: n = 4/6/6/5; i: n = 6/6/6/6; j, i: n = 6/6/6/7. Data (a-d) were analyzed by one-way ANOVA followed by Bonferroni test and presented as mean + SEM with different letters indicating significant differences (P < 0.05). Data are presented as mean \pm SD (e) or mean + SEM (i-j) with significant differences shown as *P < 0.05.

Supplemental Figure 3

Figure S3 (related to figure 5): WT, FGF21 KO, UCP1 KO and UCP1/FGF21 dKO mice were weaned and raised at 30°C. At the age of 10-12 wks, animals were transferred from 30°C to 23°C, and diet was changed to high fat diet (HFD) for 3 wks. (a) Venn analysis of significantly expressed transcripts of all tissues (adjusted p-value < 0.01). (b) Model predicting regulation of browning adopted from Cheng et al. 2018, Cell Reports; and (c) model applied to regulated genes of UCP1 KO vs dKO in iWAT. Node colors correspond to the log2 FC of UCP1 KO vs dKO in iWAT. (d) Main regulators of browning were taken from S4a and S4b (Gata6, Ppargc1a, Nr4a1, Ppara). TRRUST (https://www.grnpedia.org/trrust/) database was used to create a transcriptional regulatory model using all 244 DEG in iWAT, UCP1 KO vs dKO (adjusted p-value < 0.001). Only direct interactions with the known browning factors were selected. Network visualization was performed using cytoscape. Node colors refer to log2 FC (red = upregulation, blue = downregulation). Genes in gray were added by the TRRUST database. Edge colors refer to regulationtype: red activation, green = repression, gray = unknown (n=5/5/5/5 WT/ FGF21 KO/ UCP1 KO/ dKO).

Figure S4 (related to figure 5): WT, FGF21 KO, UCP1 KO and UCP1/FGF21 dKO mice were weaned and raised at 30°C. At the age of 10-12 wks, animals were transferred from 30°C to 23°C and high fat diet (HFD). (a) Representative picture of the morphology in iWAT and BAT after 12 weeks of HFD feeding. (b) GO enrichment analysis of significantly regulated genes in iWAT, BAT, liver and muscle of WT vs FGF21 KO; WT vs UCP1 KO and WT vs dKO after 3 wks HFD. The top 12 regulated pathways are shown. Dot plots display expression of single genes related to the enriched pathways. Dot colors refer to log2 FoldChange, while dot size refers to -log10 significance of regulation (n=5/5/5/5 WT/FGF21 KO/UCP1 KO/ dKO).

Supplemental Table1 List of urine metabolites (AbsoluteIDQ p180 Kit - Biocrates Life Science AG)

AbsoluteIDQ p180 Kit (Biocrates Life Science AG); all data normalized to Creatinine ([µmol/mmol Creatinine])

		wт		FGF21	ко	dKO		UCP1	ко			wт		FGF2	1 КО	dKO		UCP1	ко
		Mean	SE	Mean	SE	Mean	SE	Mean	SE			Mean	SE	Mean	SE	Mean	SE	Mean	SE
Aminoacids	Gly	134,1	5,9	146,7	4,1	138,9	5,5	124,2	6,3	Phosphatidylcholines	PC ae C38:6	34,65	2,19	37,47	5,46	35,24	1,54	38,75	4,38
Aminoacids	Gln	81,6	4,8	87,7	17,1	79,6	4,2	100,3	13,4	Phosphatidylcholines	PC ae C38:5	6,35	0,44	7,56	1,28	5,20	0,28	6,53	1,17
Aminoacids	Ala	44,2	1,3	37,94	1,663	46,2	1,7	58,8	2,775	Phosphatidylcholines	PC aa C38:0	3,30	0,22	3,64	0,51	3,66	0,25	4,02	0,48
Aminoacids	Thr	44,0	2,5	29,2	1,4	41,3	2,4	64,7	4,2	Phosphatidylcholines	PC ae C36:4	2,83	0,19	3,52	0,62	2,51	0,17	3,55	0,76
Aminoacids	Met	29,4	2,5	23,0	6,2	24,6	2,9	37,04	4,435	Phosphatidylcholines	PC aa C40:5	2,20	0,20	2,25	0,46	1,18	0,10	1,38	0,20
Aminoacids	leu	22,0	2,5	22,7	2,2	24,9	1,5	25,1	1,9	Phosphatidylcholines	PC ae C40:8	1,97	0,17	2,02	0,29	1,65	0,15	2,15	0,29
Aminoacids	Ser	18.7	0.8	17.7	1.8	18.2	0.8	20,0	2,0	Phosphatidylcholines	PC ae C36:5	1.55	0.09	2,00	0.41	1.60	0.11	2,19	0.47
Aminoacids	Tyr	17,4	0,8	19,3	4,6	15,8	0,8	27,8	5,2	Phosphatidylcholines	PC ae C34:1	1,20	0,12	1,15	0,24	0,95	0,10	0,94	0,14
Aminoacids	Lys	16,9	0,9	15,6	1,3	17,0	1,0	18,5	2,0	Phosphatidylcholines	PC aa C38:5	0,906	0,066	1,076	0,239	0,735	0,058	0,930	0,160
Aminoacids	Pro	15,0	1,0	13,8	2,3	14,6	0,6	21,9	2,9	Phosphatidylcholines	PC aa C38:1	0,822	0,042	0,989	0,123	0,977	0,063	1,112	0,165
Aminoacids	Asn	14,9	0,5	13,9	1,0	15,5	0,4	15,2	1,3	Phosphatidylcholines	PC ae C34:2	0,775	0,061	0,835	0,165	0,674	0,065	0,703	0,101
Aminoacids	His	11,6	0,5	11,2	1,7	12,9	0,5	15,1	1,6	Phosphatidylcholines	PC ae C38:4	0,768	0,053	0,967	0,196	0,734	0,038	0,995	0,206
Aminoacids	Val	11,4	0,6	11,4	0,9	12,2	0,7	13,9	1,2	Phosphatidylcholines	PC aa C36:6	0,548	0,033	0,627	0,103	0,587	0,040	0,623	0,083
Aminoacids	Phe	9.4	0,5	10.3	15	10.0	0,0	13.7	1.4	Phosphatidylcholines	PC aa C38:3	0,340	0,033	0,720	0,108	0,444	0,023	0,051	0,173
Aminoacids	lle	8,0	0,4	8,7	0,7	9,0	0,6	11,5	0,7	Phosphatidylcholines	PC ae C32:1	0,385	0,040	0,432	0,094	0,304	0,044	0,318	0,054
Aminoacids	Orn	5,3	0,2	5,0	0,5	5,3	0,4	6,2	0,5	Phosphatidylcholines	PC ae C36:3	0,383	0,029	0,399	0,076	0,337	0,021	0,361	0,052
Aminoacids	Asp	4,4	0,2	4,1	0,3	4,1	0,2	5,0	0,5	Phosphatidylcholines	PC aa C38:6	0,308	0,020	0,354	0,059	0,313	0,023	0,351	0,053
Aminoacids	Trp	2,2	0,1	2,4	0,3	2,4	0,2	3,1	0,3	Phosphatidylcholines	PC ae C30:0	0,265	0,024	0,302	0,069	0,205	0,025	0,245	0,043
Aminoacids	Cit	2,0	0,1	2,1	0,3	2,0	0,1	2,4	0,2	Phosphatidylcholines	PC ae C40:5	0,251	0,022	0,274	0,046	0,194	0,010	0,249	0,047
Biogenic Amins	Creatinine	1000,0	0,0	1000,0	0,0	1000,0	0,0	1000,0	0,0	Phosphatidylcholines	PC aa C40:6	0,250	0,017	0,266	0,050	0,185	0,011	0,232	0,026
Biogenic Amins	Putrescine Met-SO	44,4 29.4	3,2	37,9	8,1	37,2	2,6	33.6	4,2 3 /	Phosphatidylcholines	PC aa C38:4	0,238	0,016	0,321	0,072	0,177	0,011	0,251	0,056
Biogenic Amins	alpha-AAA	22.9	4.7	3.9	0.9	9,9	2,4	26.2	8.8	Phosphatidylcholines	PC aa C36:3	0,223	0.014	0.288	0.079	0.153	0.011	0,244	0.059
Biogenic Amins	ADMA	12,8	0,5	11,4	1,2	13,5	0,4	16,3	0,8	Phosphatidylcholines	PC aa C42:4	0,171	0,013	0,197	0,040	0,125	0,010	0,172	0,029
Biogenic Amins	Carnosine	6,7	0,6	5,8	1,3	4,9	0,6	6,4	0,8	Phosphatidylcholines	PC ae C36:2	0,149	0,013	0,152	0,024	0,139	0,010	0,149	0,020
Biogenic Amins	t4-OH-Pro	5,0	0,4	4,3	0,4	4,4	0,6	5,4	0,8	Phosphatidylcholines	PC aa C36:5	0,125	0,007	0,156	0,031	0,115	0,006	0,146	0,030
Biogenic Amins	Spermidine	3,6	0,2	2,7	0,1	3,1	0,4	2,3	0,1	Phosphatidylcholines	PC aa C34:1	0,108	0,007	0,135	0,027	0,101	0,009	0,119	0,019
Biogenic Amins	Sarcosine	3,2	0,3	3,6	0,7	4,0	0,4	5,8	1,0	Phosphatidylcholines	PC ae C34:0	0,103	0,010	0,096	0,020	0,078	0,006	0,089	0,014
Biogenic Amins	Donamine	0,5	0,0	0,8	0,1	1 17	0,0	1 24	0,0	Phosphatidylcholines	PC aa C30.4	0,098	0,000	0,133	0,029	0,037	0,005	0,130	0,031
Biogenic Amins	Histamine	0,61	0.03	0,60	0.09	0.63	0.04	0.8038	0.0463	Phosphatidylcholines	PC ae C34:3	0.094	0.006	0,105	0.023	0.095	0.009	0.126	0.026
Biogenic Amins	Ac-Orn	0,3	0,0	0,2	0,0	0,3	0,0	0,4	0,0	Phosphatidylcholines	PC ae C38:0	0,077	0,005	0,087	0,012	0,085	0,006	0,096	0,012
Biogenic Amins	Spermine	0,2	0,0	0,2	0,0	0,2	0,0	0,3	0,0	Phosphatidylcholines	PC aa C42:5	0,076	0,009	0,073	0,012	0,031	0,002	0,042	0,006
Biogenic Amins	PEA	0,22	0,01	0,23	0,05	0,20	0,01	0,37	0,07	Phosphatidylcholines	PC aa C40:3	0,072	0,005	0,103	0,029	0,054	0,006	0,090	0,022
Biogenic Amins	DOPA	0,06	0,01	0,09	0,01	0,08	0,01	0,11	0,02	Phosphatidylcholines	PC aa C42:6	0,072	0,006	0,070	0,016	0,036	0,003	0,055	0,006
Biogenic Amins	Kynurenine	0,04	0,00	7 995	0,00	0,05	0,00	0,06	0,00	Phosphatidylcholines	PC aa C36:2	0,069	0,004	0,083	0,015	0,066	0,007	0,081	0,012
Acylcarnitines	C2 (AcviCar)	3 370	0.23	2 879	0.33	3 565	2,35	4 196	0.41	Phosphatidylcholines	PC ae C38·3	0,007	0,000	0.059	0,012	0,000	0,003	0.055	0,009
Acylcarnitines	C3-DC (C4-OH)	0,245	0,02	0,173	0,02	0,286	0,03	0,350	0,038	Phosphatidylcholines	PC aa C34:2	0,052	0,003	0,059	0,011	0,061	0,009	0,062	0,008
Acylcarnitines	C6 (C4:1-DC)	0,231	0,010	0,203	0,017	0,229	0,013	0,302	0,018	Phosphatidylcholines	PC ae C40:4	0,049	0,004	0,057	0,010	0,048	0,004	0,061	0,009
Acylcarnitines	C5-M-DC	0,201	0,008	0,251	0,032	0,240	0,010	0,377	0,044	Phosphatidylcholines	PC ae C32:2	0,047	0,003	0,061	0,011	0,050	0,005	0,064	0,013
Acylcarnitines	C4	0,179	0,009	0,132	0,007	0,166	0,010	0,206	0,020	Phosphatidylcholines	PC aa C34:4	0,033	0,002	0,042	0,008	0,032	0,002	0,046	0,011
Acylcarnitines	C5-OH (C3-DC-M)	0,160	0,009	0,126	0,004	0,188	0,015	0,233	0,018	Phosphatidylcholines	PC aa C32:1	0,032	0,003	0,035	0,007	0,027	0,003	0,030	0,005
Acylcarnitines	CS-DC (C6-OH)	0,151	0,007	0,118	0,005	0,174	0,008	0,243	0,022	Phosphatidylcholines	PC aa C40:2 PC aa C30:1	0,032	0,002	0,045	0,012	0,033	0,002	0,046	0,010
Acylcarnitines	C8	0.087	0.004	0.081	0.009	0.094	0.003	0,101	0.006	Phosphatidylcholines	PC ae C38:2	0.012	0.001	0.013	0.002	0.013	0.001	0.016	0.003
Acylcarnitines	C7-DC	0,081	0,010	0,076	0,012	0,158	0,013	0,145	0,011	Phosphatidylcholines	PC ae C38:1	0,012	0,001	0,014	0,002	0,013	0,001	0,016	0,002
Acylcarnitines	C10	0,068	0,003	0,071	0,007	0,090	0,003	0,110	0,006	Phosphatidylcholines	PC aa C34:3	0,010	0,001	0,014	0,003	0,011	0,001	0,013	0,002
Acylcarnitines	C3	0,064	0,005	0,046	0,003	0,070	0,006	0,086	0,008	Phosphatidylcholines	PC aa C42:0	0,010	0,001	0,008	0,001	0,010	0,001	0,015	0,002
Acylcarnitines	C12	0,035	0,003	0,036	0,006	0,050	0,002	0,066	0,005	Phosphatidylcholines	PC ae C40:3	0,010	0,001	0,014	0,003	0,009	0,001	0,014	0,003
Acylcarnitines	C4:1	0,031	0,002	0,031	0,004	0,035	0,001	0,051	0,005	Phosphatidylcholines	PC aa C32:2	0,009	0,001	0,011	0,002	0,009	0,001	0,010	0,001
Acylcarnitines	C5-0H	0,031	0,003	0,017	0,002	0,032	0,003	0,078	0,008	Phosphatidylcholines	PC ae C40:1	0,008	0,001	0,009	0,002	0,008	0,000	0,010	0,001
Acylcarnitines	C6:1	0,029	0,002	0,029	0,004	0,033	0,002	0,047	0,004	Phosphatidylcholines	PC aa C28:1	0,007	0,000	0,009	0,001	0,007	0,000	0,010	0,001
Acylcarnitines	C3:1	0,016	0,001	0,018	0,002	0,022	0,001	0,026	0,003	Phosphatidylcholines	PC ae C42:3	0,006	0,000	0,008	0,002	0,006	0,001	0,009	0,001
Acylcarnitines	C14:2-OH	0,008	0,001	0,009	0,002	0,015	0,003	0,019	0,005	Phosphatidylcholines	PC ae C40:2	0,004	0,000	0,006	0,001	0,004	0,000	0,006	0,001
Acylcarnitines	C14:2	0,008	0,001	0,009	0,002	0,011	0,001	0,012	0,001	Phosphatidylcholines	PC aa C42:1	0,003	0,000	0,003	0,001	0,004	0,000	0,004	0,001
Acylcarnitines	C14:1	0,007	0,000	0,008	0,001	0,009	0,001	0,012	0,001	Phosphatidylcholines	PC aa C32:3	0,003	0,000	0,003	0,001	0,003	0,000	0,003	0,000
Acylcarnitines	C16	0,007	0,001	0,008	0,001	0,010	0,000	0,011	0,001	Sphingomycling	PC aa C30:2	0,001	0,001	0,002	0,001	0,002	0,000	0,002	0,001
Lysophosnhatidy	lysoPC a C18:0	0.335	0,001	0,005	0,001	0,009	0.036	0.445	0,002	Sphingomyelins	SM C24:0	0,374	0,024	0,472	0,030	0,400	0,041	0,440	0.045
Lysophosphatidy	lysoPC a C16:0	0,248	0,015	0,262	0,036	0,439	0,036	0,322	0,044	Sphingomyelins	SM C16:1	0,118	0,007	0,142	0,016	0,123	0,007	0,125	0,012
Lysophosphatidy	lysoPC a C28:0	0,077	0,008	0,090	0,023	0,058	0,009	0,089	0,018	Sphingomyelins	SM C24:1	0,032	0,006	0,041	0,004	0,061	0,006	0,078	0,011
Lysophosphatidy	lysoPC a C18:2	0,057	0,004	0,061	0,006	0,100	0,008	0,078	0,010	Sphingomyelins	SM (OH) C22:1	0,018	0,002	0,026	0,004	0,017	0,002	0,023	0,003
Lysophosphatidy	lysoPC a C18:1	0,037	0,002	0,044	0,003	0,060	0,004	0,053	0,004	Sphingomyelins	SM C18:0	0,009	0,000	0,012	0,002	0,009	0,001	0,011	0,002
Lysophosphatidy	lysoPC a C20:4	0,033	0,002	0,042	0,002	0,035	0,002	0,052	0,010	Sphingomyelins	SM C18:1	0,003	0,000	0,003	0,000	0,002	0,000	0,004	0,001
Lysophosphatidy	IVEOPC a C17:0	0,024	0,002	0,021	0,001	0,027	0,002	0,027	0,002	Sphingomyelins	SIM (OH) C16:1	0,003	0,001	0,005	0,002	0,004	0,001	0,004	0,001
Lysophosphatidy	lysoPC a C26:1	0,009	0,001	0,011	0,001	0,011	0,002	0,012	0,001	springomyenns	5WI (UH) C24:1	0,002	0,000	0,003	0,001	0,003	0,000	0,008	0,007
,	,	-,007	2,001	-,007	-,001	2,007	2,000	-,005	-,001	-									

out of range: Taurine

under detection level: SDMA, c4-OH-Pro, Nitro-Tyr, C10:1, C5, C12:1, C12-DC, C5:1, C10:2, C14, C16:1, C16:2, C14:1-OH, C18:1, C18:2, C16:1-OH, C18:0-OH, C18:1-OH, IysoPC a C14:0 PC aa C26:0, IysoPC a C24:0, PC aa C30:0, IysoPC a C16:1, IysoPC a C20:3, IysoPC a C26:0, PC ae C42:5, PC ae C42:0, PC ae C36:0, PC ae C30:2, PC aa C40:1, PC ae C30:2, PC aa C40:1, PC ae C40:1, PC ae C40:1, PC ae C40:1, PC ae C44:4, PC ae C42:2, PC aa C40:1, PC ae C44:4, PC ae C42:2, PC ae C44:5, PC ae C44:3, PC ae C44:3, PC ae C44:4, PC ae C42:2, SM C20:2, SM C20:2

Supplemental Table 2

Table of calculated net energy balance in each genotype.

Statistical significance was assumed at p < 0.05. Statistical differences between the four different genotypes are indicated by letters (n= $5/6/6/5^*$, n= 11/6/12/9# WT/ FGF21 KO/ UCP1 KO/ dKO).

	WT	FGF21 KO	UCP1 KO	dKO				
raw data								
Body mass (g)*	34.4 ± 2.3a	33.4 ± 1.3a	26.7 ± 0.4b	35.2 ± 0.8a				
Energy intake (kJ/d)*	57.6 ± 1.5ab	57.6 ± 4.1ab	48.1 ± 2.0a	63.3 ± 4.2b				
Metabolic rate (kJ/d)*	48.9 ± 0.6ab	47.6 ± 1.2ab	44.7 ± 1.4a	50.1 ± 1.0b				
Feces energy (kJ/d)#	2.2 ± 0.03 2.9 ± 0.3		2.6 ± 0.2	2.6 ± 0.1				
Urine energy (kJ/d)#	1.7 ± 0.2	1.6 ± 0.2	2.0 ± 0.2	2.3 ± 0.2				
calculated energy balance								
Energy intake - energy outflow (kJ/d)	+ 4.8	+ 5.5	-1.2	+ 8.3				
Calculated accumulated energy over 8 weeks (kJ)	268,8	308,0	-67,2	464,8				
Calculated fat accumulation over 8 weeks (g)	6,9	7,9	-1,7	11,9				
% energy partitioning (energy intake set 100%)								
Metabolic rate (%)	84,9	82,6	92,9	79,1				
Feces energy (%)	3,8	5,0	5,4	4,1				
Urine energy (%)	3,0	2,8	4,2	3,6				
Released energy (%)	91,7	90,5	102,5	86,9				

Supplemental Table 3 Related to Methods "Gene expression analysis"; Mouse qRT-PCR Primer Sequences

Gene	5'3' primer (for)	3'5' primer (rev)				
Fgf21	GCTGCTGGAGGACGGTTACA	CACAGGTCCCCAGGATGTTG				
Hprt	CAGTCCCAGCGTCGTGATTA	AGCAAGTCTTTCAGTCCTGTC				

Supplemental methods:

Histology

Interscapular brown adipose tissue and inguinal white adipose tissue specimens were fixed in 4% paraformaldehyde (Roth chemicals) for 24hrs, embedded in low melting paraffin (Paraplast Plus®, Sigma Aldrich) for histological examination. Four µm-thick sections were cut using a rotary microtome (HSM55, Microm). Slides were mounted on superfrost glass slides (Menzel glass) dehydrated in increasing ethanol series and stained with hematoxylin and eosin (H&E) (Merck). Bright field images were obtained with the Keyence Microscope BZ-9000.