Supplementary Information

Direct C-H Difluoromethylation of Heterocycles via Organic Photoredox Catalysis

Zhang *et al*.

Supplementary Methods

General information

Commercial reagents were used as received, unless otherwise stated. ¹H and ¹³C NMR were recorded on a Bruker-DPX 400 spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). ¹⁹F NMR were recorded on a Varian NMR 400 spectrometer. Mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. Substrates **1** was synthesized according to the literature method.⁵ sodium difluoromethane sulfonate (CF₂HSO₂Na) was purchased from *J&K* without further purification.

Experimental procedure

General procedure for synthesis of quinoxalin-2(1H)-ones

To a 10 mL Schlenk tube equipped with a magnetic stir bar, added quinoxalin-2(1*H*)-ones **1** (0.2 mmol), CF₂HSO₂Na **2** (0.4 mmol) and rose bengal (0.004 mmol, 2 mol%) in DMSO (1.0 mL). Then the mixture was stirred and irradiated by the two 3W green LEDs at room temperature for 12 h. The residue was added water (10 mL) and extracted with ethyl acetate (5 mL \times 3). The combined organic phase was dried over Na₂SO₄. The resulting crude residue was purified *via* column chromatography on silica gel to afford the desired products.

General procedure for synthesis of heteroarenes

To a 10 mL Schlenk tube equipped with a magnetic stir bar, added heteroarenes **4** (0.1 mmol), CF₂HSO₂Na **2** (0.4 mmol) and rose bengal (0.002-0.005 mmol, 2-5 mol%) in DMSO (1.0 mL). Then the mixture was stirred and irradiated by the two 3W green LEDs at room temperature for 24 h. The residue was added water (10 mL) and extracted with ethyl acetate (5 mL \times 3). The combined organic phase was dried over Na₂SO₄. The resulting crude residue was purified *via* column chromatography on silica gel to afford desired products.

Supplementary Figure 1. Reaction set-up

Analytical data of compounds quinoxalin-2(1H)-ones

3a: yellow solid, 30.3 mg, 72% yield; R_f =0.6 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.93 (m, 1H), 7.68-7.64 (m, 1H), 7.42-7.34 (m, 2H), 6.93 (t, *J*=53.6 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.2, 148.51 (t, *J* = 22.6 Hz), 134.0, 132.7, 131.8, 131.3, 124.4, 114.0, 110.1 (t, *J* = 241.6 Hz), 29.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -125.1 (d, *J* = 58.8 Hz, 2F); HRMS (ESI) calcd for C₁₀H₉F₂N₂O [M+H⁺]: 211.0677, found: 211.0678.

3b: yellow solid, 30.5 mg, 68% yield; R_f =0.6 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (t, *J* = 8.0 Hz, 1H), 7.28-7.25 (m, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.92 (t, *J* = 53.8 Hz, 1H), 3.72 (s, 3H), 2.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 146.6 (t, *J* = 22.8 Hz), 140.7, 132.4 (t, *J* = 187.7 Hz), 125.6, 113.1, 111.7, 110.7, 108.3, 29.1, 17.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.6 (d, *J* = 54.1 Hz, 2F); HRMS (ESI) calcd for C₁₁H₁₀F₂N₂NaO [M+Na⁺]: 247.0653, found: 247.0658.

3c: orange solid, 27.4mg, 60% yield; R_f =0.4 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.69 (m, 1H), 7.50-7.45 (m, 1H), 7.41-7.37 (m, 1H), 6.97 (t, J = 53.6 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9 (d, J = 245.7 Hz), 152.9, 150.0 (t, J = 22.8 Hz), 132.38 (d, J = 11.2 Hz), 130.8, 120.7(d, J = 24.1 Hz), 116.7(d, J = 22.4 Hz), 115.3(d, J = 8.7 Hz), 109.9 (t, J = 242.0 Hz), 29.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.2 (s, 1F), -124.6 (d, J = 53.5 Hz, 2F); HRMS (ESI) calcd

for C₁₀H₇F₃N₂NaO [M+Na⁺]: 251.0403, found: 251.0406.

3d: yellow solid, 31.4mg, 70% yield; R_f =0.4 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 2.4 Hz, 1H), 7.63 (dd, J = 9.0, 2.4 Hz, 1H), 7.32 (d, J = 9.0 Hz, 1H), 6.92 (t, J = 53.6 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 151.4, 149.9 (t, J = 22.8 Hz), 132.7, 132.3, 131.1, 130.6, 129.8, 115.2, 109.9 (t, J = 242.5 Hz), 29.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.6 (d, J = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₀H₇ClF₂N₂NaO [M+Na⁺]: 267.0111, found: 267.0107.

3e: yellow solid, 47.4mg, 82% yield; R_f =0.2 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 2.2 Hz, 1H), 7.77 (dd, J = 8.9, 2.2 Hz, 1H), 7.28-7.26 (m, 1H), 6.93 (t, J = 53.6 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 149.8 (t, J = 22.8 Hz), 135.4, 133.7, 133.2, 132.6, 117.0, 115.4, 112.3, 109.9 (t, J = 243.0 Hz), 29.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.6 -124.55 (d, J = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₀H₇BrF₂N₂NaO [M+Na⁺]: 310.9602, found: 310.9605.

3f: white solid, 39.9mg, 83% yield; R_f =0.5 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.30 (d, J = 1.6 Hz, 2H), 6.98 (t, J = 53.8 Hz, 1H), 3.89 (s, 3H), 3.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 153.0, 149.0 (t, J = 22.1 Hz), 132.7, 128.4, 122.5, 114.9, 112.1, 109.9 (t, J = 242.4 Hz), 55.9, 29.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.4 (d, J = 55.5Hz, 2F); HRMS (ESI) calcd for C₁₁H₁₀F₂N₂NaO₂ [M+Na⁺]: 263.0603, found: 263.0606.

3g: yellow solid, 34.7mg, 60% yield; R_f =0.4 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.5 Hz, 1H), 7.54-7.51 (m, 2H), 6.91 (t, *J* = 53.6 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.9, 148.8 (t, *J* = 23.0 Hz), 134.9, 132.6, 130.7, 127.8, 127.3, 117.1, 109.9 (t, *J* = 241.9 Hz), 29.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.4 (d, *J* = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₀H₇BrF₂N₂NaO [M+Na⁺]: 310.9602, found: 310.9606.

3h: yellow solid, 20.4mg, 40% yield; R_f =0.5 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.16 (m, 3H), 6.95 (t, *J* = 53.3 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 152.2 (t, *J* = 22.9 Hz), 149.3, 134.9, 134.5, 132.7, 118.7, 109.9, 109.5 (t, *J* = 244.0 Hz), 29.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -125.0 (d, *J* = 53.5 Hz, 2F); HRMS (ESI) calcd for C₁₀H₇F₂N₃NaO₃ [M+Na⁺]: 278.0348, found: 278.0350.

3i: yellow solid, 41.9mg, 75% yield; R_f =0.6 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.00 (s, 1H), 7.09 (t, *J* = 53.0 Hz, 1H), 3.63 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 152.3, 149.8 (t, *J* = 21.6 Hz), 134.9, 134.0, 130.9, 130.4, 126.1, 117.0, 110.1 (t, *J* = 239.9 Hz), 29.3; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -119.9 (d, *J* = 52.9Hz, 2F); HRMS (ESI) calcd for C₁₀H₆Cl₂F₂N₂NaO [M+Na⁺]: 300.9717, found: 300.9720.

3j: yellow solid, 21.9mg, 42% yield; R_f =0.3 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.97 (dd, J = 28.4, 8.3 Hz, 2H), 7.66-7.62 (m, 2H), 7.54 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 53.7 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 149.2 (t, J = 22.3 Hz), 134.8, 131.5, 131.5, 131.0, 129.8, 129.2, 128.9, 127.3, 125.9, 110.5, 110.1 (t, J = 242.8 Hz), 28.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.3 (d, J = 53.9 Hz, 2F); HRMS (ESI) calcd for C₁₄H₁₀F₂N₂NaO [M+Na⁺]: 283.0653, found: 283.0653.

3k: white solid,16.1mg, 34% yield; R_f =0.6 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 8.1, 1.5 Hz, 1H), 7.67-7.63 (m, 1H), 7.44-7.40 (m, 1H), 7.36 (dd, J = 8.5, 1.1 Hz, 1H), 6.98 (t, J = 53.7 Hz, 1H), 5.98-5.89 (m, 1H), 5.31 (d, J = 8.7 Hz, 1H), 5.21 (d, J = 17.2 Hz, 1H), 4.95-4.92 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 148.7 (t, J = 22.3 Hz), 133.3, 132.6, 132.1, 131.5, 130.0, 124.4, 118.8, 114.5, 110.0 (t, J = 241.6 Hz), 44.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.2 (d, J = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₂H₁₀F₂N₂NaO [M+Na⁺]: 259.0653, found: 259.0658.

31: yellow solid, 26.7mg, 56% yield; R_f =0.5 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 8.0, 1.5 Hz, 1H), 7.69-7.65 (m, 1H), 7.43-7.36 (m, 2H), 6.97 (t, J = 53.7 Hz, 1H), 4.26-4.22 (m, 2H), 1.86-1.77 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 148.6 (t, J = 22.4 Hz), 133.3, 132.5,

132.2, 131.7, 124.1, 114.0, 110.0 (t, J = 22.4 Hz) 43.8, 20.7, 11.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -129.0 (d, J = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₂H₁₂F₂N₂NaO [M+Na⁺]: 261.0810, found: 261.0815.

3m: yellow solid, 29.8mg, 52% yield; R_f =0.6 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.9 Hz, 1H), 7.40-7.25 (m, 7H), 7.03 (t, *J* = 53.7 Hz, 1H), 5.52 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 148.8 (t, *J* = 22.7 Hz), 134.5, 133.4, 132.6, 132.2, 131.6, 129.1, 128.0, 126.9, 124.5, 114.7, 110.0 (t, *J* = 241.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -124.1 (d, *J* = 53.6 Hz, 2F); HRMS (ESI) calcd for C₁₆H₁₂F₂N₂NaO [M+Na⁺]: 309.0810, found: 309.0815.

3n: yellow solid, 38.9mg, 73% yield; R_f =0.6 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 1H), 7.69-7.65 (m, 1H), 7.43-7.36 (m, 2H), 6.97 (t, J = 53.7 Hz, 1H), 4.28-4.24 (m, 2H), 1.81-1.73 (m, 2H), 1.49-1.35 (m, 4H), 0.93 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 148.5 (d, J = 22.5 Hz), 133.3, 132.5, 132.2, 131.7, 124.2, 113.9, 110.0 (t, J = 241.5 Hz), 42.4, 29.0, 26.9, 22.3, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -124.3 (d, J = 53.7 Hz, 2F); HRMS (ESI) calcd for C₁₄H₁₆F₂N₂NaO [M+Na⁺]: 289.1123, found: 289.1126.

30: white solid, 34.1 mg, 87% yield; $R_f=0.4$ (50% EtOAc/petroleum ether); ¹H NMR

(400 MHz, DMSO- d_6) δ 12.90 (s, 1H), 7.93-7.85 (m, 1H), 7.71-7.64 (m, 1H), 7.44-7.34 (m, 2H), 7.08 (td, J = 53.1, 16.2 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 153.7, 150.2 (t, J = 22.2 Hz), 133.3, 132.8, 131.2, 130.0, 124.4, 116.3, 110.8 (t, J = 238.4 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -124.3 (d, J = 53.5 Hz, 2F); HRMS (ESI) calcd for C₉H₅F₂N₂O [M-H⁺]: 195.0370, found: 195.0373.

Analytical data of heteroarenes

Ph N CF₂H Ph N OH

5a: yellow solid, 24.5mg, 82% yield; R_f =0.5 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 12.93 (s, 1H), 7.47-7.42 (m, 1H), 7.39-7.38 (m, 4H), 7.32-7.29 (m, 2H), 7.27-7.23 (m, 3H), 6.77 (t, J = 53.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 144.7 (t, J = 24.9 Hz), 139.6, 136.1, 133.7, 131.4, 130.7, 129.5, 129.5, 128.9, 128.3, 128.1, 110.9 (t, J = 240.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.3 (d, J = 53.8 Hz, 2F); HRMS (ESI) calcd for C₁₇H₁₁F₂N₂O [M-H⁺]: 297.0839, found: 297.0842.

5b: colorless oil, 12.5mg, 65% yield; R_f =0.7 (5% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.67 (t, J = 54.1 Hz, 1H), 2.69 (s, 3H), 2.63 (s, 3H); Other spectral data of **5b** were consistent with previous reported data.³

5c: white solid, 12.1mg, 62% yield; $R_f=0.8$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.06 (m, 2H), 7.85-7.75 (m, 2H), 6.83 (t, J = 54.3 Hz, 1H), 2.93 (s, 3H); Other spectral data of **5c** were consistent with previous reported data.¹

5d: white solid, 17.6mg, 90% yield; R_f =0.5 (50% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.9 (s, 1H), 7.89 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.66 (td, *J* = 7.7, 1.4 Hz, 1H), 7.41-7.36 (m, 2H), 7.06 (t, *J* = 53.3 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 153.2, 149.7 (t, *J* = 21.4 Hz), 132.8, 132.3, 130.7, 129.4, 123.9, 115.7, 110.3 (t, *J* = 239.3 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -119.5 (d, *J* = 53.1 Hz, 2F); HRMS (ESI) calcd for C₉H₅F₂N₂O [M-H⁺]: 195.0370, found: 195.0370.

5e: white solid, 9.2mg, 61% yield; $R_f=0.7$ (35% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 6.87 (s, 1H), 6.71 (t, J = 55.3 Hz, 1H), 6.48-6.45 (m, 1H), 2.47 (s, 3H); Other spectral data of **5e** were consistent with previous reported data.¹

5f: white solid, 12.3mg, 64% yield; R_f =0.2 (50% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, *J* = 52.7 Hz, 1H), 7.51 (s, 1H), 3.92 (s, 3H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 140.3, 133.7, 129.4 (t, *J* = 23.0 Hz), 108.7 (t, *J* = 233.9 Hz), 52.2, 33.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.4 (d, *J* = 51.8 Hz, 2F); HRMS (ESI) calcd for C₁₂H₁₂F₂N₂NaO [M+Na⁺]: 261.0810, found: 261.0815.

5g: white solid, 14.4mg, 81% yield; R_f =0.3 (35% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.96 (s, 1H), 7.46 (t, *J* = 53.1 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 145.9, 130.1, 124.0, 108.6 (t, *J* = 235.6 Hz), 14.17; ¹⁹F

NMR (376 MHz, DMSO- d_6) δ -113.2 (s, 2F); HRMS (ESI) calcd for C₅H₅F₂N₃NaO₂ [M+Na⁺]: 200.0242, found: 200.0245.

5h: colorless oil, 11.9 mg, 73% yield; R_f =0.2 (50% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.75 (s, 1H), 12.31 (s, 1H), 6.77 (t, *J* = 52.7 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.1, 149.0, 135.9 (t, *J* = 23.7 Hz), 110.7 (t, *J* = 237.9 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -117.4 (d, *J* = 52.7 Hz, 2F); HRMS (ESI) calcd for C₄H₂F₂N₃O₂ [M-H⁺]: 162.0115, found: 162.0124.

5i: colorless oil, 7.8mg, 41% yield; R_f =0.3 (3% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.88 (t, J = 55.3, Hz), 6.50 (s, 1H), 4.30-4.23 (m, 4H); Other spectral data of **5i** were consistent with previous reported data.⁴

5j: colorless oil, 8.5mg, 42% yield; $R_f = 0.4$ (25% dichloromethane/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 5.0 Hz, 1H), 8.17 (s, 1H), 7.96 (d, J = 5.0 Hz, 1H), 6.68 (t, J = 55.2 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H); Other spectral data of **5j** were consistent with previous reported data.¹

5k: white solid, 5.6mg, 34% yield; $R_f=0.5$ (80% EtOAc/petroleum ether); ¹H NMR (400 MHz, CD₃OD) δ 6.94 (t, J = 53.7 Hz, 1H); Other spectral data of **5k** were consistent with previous reported data.¹

51: white solid, 15.9mg, 38% yield; R_f =0.7 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 8.04 (d, *J* = 7.7 Hz, 1H), 7.73-7.46 (m, 2H), 7.59 (t, *J* = 53.6 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H) 2.67 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.6, 135.4, 134.7 (t, *J* = 22.9 Hz), 124.8, 123.9, 122.4, 121.3, 115.8 (t, *J* = 5.9 Hz), 113.0, 109.7 (t, *J* = 235.2 Hz), 30.9; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.1 (d, *J* = 56.3 Hz, 2F); HRMS (ESI) calcd for C₁₁H₁₀F₂NO [M+H⁺]: 210.0725, found: 210.0728.

5m: white solid, 16.3mg, 68% yield; R_f =0.3 (3% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.93 (t, *J* = 52.0 Hz, 1H), 7.41-7.30 (m, 3H), 3.98 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 137.5, 135.3 (t, *J* = 21.6 Hz), 125.2, 124.8, 122.9, 122.6, 109.9, 109.6 (t, *J* = 235.0 Hz), 108.0 (t, *J* = 6.4 Hz), 51.5, 31.8; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.8 (d, *J* = 52.9 Hz, 2F); HRMS (ESI) calcd for C₁₂H₁₁F₂NNaO₂ [M+Na⁺]: 262.0650, found: 262.0653.

5n: white solid, 11.7mg, 52% yield; R_f =0.6 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.94 (t, J = 53.2 Hz, 1H), 3.65 (s, 3H), 3.37 (s, 3H). Other spectral data of **5n** were consistent with previous reported data.²

50: white solid, 8.0mg, 42% yield; R_f =0.2 (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 6.68 (t, *J* = 55.2 Hz, 1H), 3.47 (s, 3H), 3.36 (s, 3H). Other spectral data of **5n** were consistent with previous reported data.²

5p: white solid, 10.0mg, 51% yield; R_f =0.5 (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.60 (s, 1H), 8.67 (s, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.82 (t, *J* = 55.2 Hz, 1H), 7.78 (d, *J* = 7.3 Hz, 1H), 7.65-7.61 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.5, 144.3, 139.1 (t, *J* = 5.0 Hz), 130.4 (t, *J* = 21.1 Hz), 129.6, 129.1, 126.3, 122.6 (t, *J* = 6.5 Hz), 115.7, 112.7 (t, *J* = 234.6 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -114.1 (d, *J* = 56.8 Hz, 2F); HRMS (ESI) calcd for C₁₀H₈F₂NO [M+Na⁺]: 196.0568, found: 196.0573.

5q: white solid, 17.6mg, 70% yield; R_f =0.8 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.92 (t, *J* = 51.9 Hz, 1H), 4.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 154.3, 153.3, 147.8 (t, *J* = 27.8 Hz), 129.2, 110.2 (t, *J* = 240.2 Hz), 30.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.0 (d, *J* = 51.9 Hz, 2F); HRMS (ESI) calcd for C₇H₅Cl₂F₂N₄ [M+H⁺]: 252.9854, found: 252.9856.

5r: white solid, 18.5mg, 73% yield; R_f =0.4 (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.00 (t, *J* = 51.9 Hz, 1H), 4.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 153.9, 151.2 (t, *J* = 27.7 Hz), 145.4, 123.7, 110.1 (t, *J* = 240.7 Hz); 33.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.9 (d, *J* = 51.9 Hz, 2F); HRMS (ESI) calcd for C₇H₅Cl₂F₂N₄ [M+H⁺]: 252.9854, found: 252.9857.

5s: colorless oil, 11.3mg, 54% yield; R_f =0.6 (2% EtOAc/petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.70 (t, *J* = 54.3 Hz, 1H), 5.97 (s, 2H), 4.01 (s, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.9, 144.4 (t, *J* = 25.6 Hz), 137.0, 129.5, 112.4 (t, *J* = 239.4 Hz), 55.2; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -115.6 (d, *J* = 54.6 Hz, 2F); HRMS (ESI) calcd for C₆H₇ClF₂N₃O [M+H⁺]: 210.0240, found: 210.0242.

5t: colorless oil, 17.0mg, 65% yield; R_f =0.5 (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (t, *J* = 54.8 Hz, 1H), 6.72 (s, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.89 (s, 3H), 2.57 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 155.1, 152.9, 143.7, 136.3, 118.0 (t, *J* = 22.8 Hz), 112.0 (t, *J* = 236.4 Hz), 106.5, 61.9, 60.9, 56.2, 30.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.2 (d, *J* = 54.9 Hz, 2F); HRMS (ESI) calcd for C₁₂H₁₄F₂NaO₄ [M+Na⁺]: 283.0752, found: 283.0754.

6a: white solid, 18.0mg, 74% yield; $R_f = 0.6$ (60% EtOAc/ petroleum ether); ¹H NMR (400 MHz, DMSO- d_6) δ 7.13 (t, J = 52.9 Hz, 1H), 3.43 (s, 3H), 3.37 (s, 3H), 3.24 (s, 3H); Other spectral data of **6a** were consistent with previous reported data.¹

6b: white solid, 15.1mg, 70% yield; $R_f = 0.6$ (80% EtOAc/ petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.6 (s, 1H), 7.13 (t, *J* = 52.9 Hz, 1H), 3.44 (s, 3H), 3.24 (s, 3H); Other spectral data of **6b** were consistent with previous reported data.¹

6c: white solid, 12.5mg, 38% yield; $R_f = 0.3$ (30% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.73 (t, J = 52.2 Hz, 1H), 4.13 (s, 3H), 4.02-3.98 (m, 2H), 3.53 (s, 3H), 2.49 (t, J = 6.9 Hz, 2H), 2.13 (s, 3H), 1.69-1.58 (m, 4H); Other spectral data of **6c** were consistent with previous reported data.¹

6d: grey solid, 22.5mg, 81% yield; $R_f = 0.6$ (100% EtOAc); ¹H NMR (400 MHz, CD₃CN) δ 9.30 (s, 1H), 8.15 (s, 1H), 6.38 (t, J = 54.8 Hz, 1H), 5.93 (t, J = 6.3 Hz, 1H), 4.16-4.11 (m, 1H), 3.67 (q, J = 3.3 Hz, 1H), 3.57-3.45 (m, 2H), 3.37-3.35 (m,1H), 3.19 (t, J = 4.8 Hz, 1H), 2.02-1.94 (m, 1H), 1.74-1.72 (m, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 161.5, 150.5, 141.4, 112.41 (t, J = 234.5 Hz), 108.08 (t, J = 23.2 Hz), 88.2,

86.4, 70.9, 61.6, 41.2; ¹⁹F NMR (376 MHz, CD₃CN) δ -117.2 (d, J = 161.2 Hz, 2F); HRMS (ESI) calcd for C₁₀H₁₂F₂N₂O₅ [M-H⁺]: 277.0636, found: 277.0640.

6e: yellow solid, 16.7mg, 57% yield; $R_f = 0.5$ (5% MeOH/ CH₂Cl₂); ¹H NMR (400 MHz, CD₃CN) δ 9.39 (s, 1H), 8.13 (s, 1H), 6.64 (t, *J* = 54.9 Hz, 1H), 6.08 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.22 (d, *J* = 6.8 Hz, 1H), 4.11 (s, 2H), 3.94 (d, *J* = 3.7 Hz, 1H), 3.85-3.7 (m, 4H); ¹³C NMR (101 MHz, CD₃CN) δ 160.3 (t, *J* = 3.9 Hz), 149.3, 141.4 (t, *J* = 7.7 Hz), 111.5 (t, *J* = 234.5 Hz), 106.1 (t, *J* = 23.3 Hz), 85.8, 84.7, 75.6, 75.2, 60.6; ¹⁹F NMR (376 MHz, CD₃CN) δ -112.08 (dd, *J* = 54.1, 34.3 Hz, 2F); HRMS (ESI) calcd for C₁₀H₁₃F₂N₂O₆ [M+H⁺]: 295.0736, found: 295.0731.

6f: colorless oil, 18.4mg, 62% yield; $R_f = 0.7$ (100% EtOAc); ¹H NMR (400 MHz, CD₃CN) δ 9.37 (s, 1H), 8.50 (s, 1H), 6.59 (t, J = 54.8 Hz, 1H), 5.92 (dd, J = 16.0, 1.2 Hz, 1H), 4.96 (dd, J = 52.9, 3.9 Hz, 1H), 4.31-4.20 (m, 1H), 4.02-3.93 (m, 1H), 3.97-3.93(m,1H), 3.76-3.66 (m, 2H), 3.48 (t, J = 4.7 Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 161.3 (t, J = 4.0 Hz), 150.2, 140.9 (t, J = 7.5 Hz), 112.2 (t, J = 235.6 Hz), 108.1 (t, J = 23.3 Hz), 94.5 (d, J = 185.4 Hz), 88.6 (d, J = 34.2 Hz), 83.7, 67.8 (d, J = 16.3 Hz), 59.3; ¹⁹F NMR (376 MHz, CD₃CN) δ -112.2 (dd, J = 236.0, 54.9 Hz, 2F), -199.1 (ddd, J = 52.7, 23.3, 16.1 Hz, 1F); HRMS (ESI) calcd for C₁₀H₁₀F₃N₂O₅

6g: yellow solid, 20.3 mg, 72% yield; $R_f = 0.5$ (80% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CD₃OD) δ 7.95 (s, 1H), 7.18-6.87 (m, 3H), 6.78-6.74 (m, 1H), 3.72 (s, 3H), 3.32-3.27 (m, 2H), 3.21-3.20 (m, 1H), 2,92-2.88 (m, 2H), 1.79 (s, 3H); Other spectral data of **6g** were consistent with previous reported data.⁴

6h: white solid, 8.0 mg, 43% yield; $R_f = 0.4$ (80% EtOAc/ petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.11 (s, 1H), 7.14 (t, *J* = 53.4 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.4, 154.5, 148.9, 141.3 (t, *J* = 27.9 Hz), 110.4 (t, *J* = 233.8 Hz), 102.8; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -112.6 (d, *J* = 53.2 Hz, 2F); HRMS (ESI) calcd for C₆H₄F₂N₄O [M-H⁺]: 185.0275, found: 185.0278.

6i: colorless oil, 10.0 mg, 25% yield; $R_f = 0.4$ (60% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.97 (s, 1H), 7.67-7.60 (m, 1H), 7.53 (s, 1H), 6.89-6.80 (m, 1H), 6.26 (s, 1H) 4.55 (dd, J = 120.9, 14.2 Hz, 2H), 4.20 (qd, J = 7.1, 1.1 Hz, 1H), 1.13 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (dd, J = 251.5, 12.4Hz), 161.9 (d, J = 13.0 Hz), 158.4 (dd, J = 246.4, 11.7 Hz), 153.3 (d, J = 270.1 Hz), 152.9 (d, J = 9.3 Hz), 151.1, 146.9 (td, J = 26.3, 11.7 Hz), 144.1, 130.6 (dd, J = 9.3, 5.5 Hz), 123.4 (dd, J = 12.2, 4.0 Hz), 111.8 (dd, J = 20.7, 3.3 Hz), 111.1 (t, J

= 244.3 Hz), 104.2 (t, J = 25.9Hz), 57.2 (d, J = 5.4 Hz), 37.4 (d, J = 5.0 Hz), 29.7, 16.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7 (s, 1F), -114.4(s, 1F), -123.8(dd, J = 53.5, 10.2 Hz, 2F), -140.9 (s, 1F); HRMS (ESI) calcd for C₁₇H₁₅F₅N₅O [M+H⁺]: 400.1191, found: 400.1195.

6j: colorless oil, 6.1mg, 28% yield; $R_f = 0.5$ (10% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s,1H), 7.87 (d, J = 8.7 Hz, 1H), 7.34 (t, J = 53.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 189.6 (t, J = 4.0 Hz), 157.1, 128.7 (t, J = 24.1 Hz), 127.9, 126.6, 113.6, 111.8(t, J = 4.0 Hz), 110.3, 62.0, 56.2; ¹⁹F NMR (376 MHz, CDCl₃) δ-104.3 (d, J = 54.6 Hz, 2F); HRMS (ESI) calcd for C₁₀H₁₁F₂O₃ [M+H⁺]: 217.0671, found: 217.0667.

6k: colorless oil, 9.1mg, 33% yield; 3:1 r.r.; $R_f = 0.6$ (50% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 6.68-6.58 (m, 3H), 7.96-7.76 (m, 1H), 7.67-7.56 (m, 2H), 7.36-7.28 (m, 1H), 6.57 (t, J = 55.2 Hz, 1H), 1.68 (d, J = 2.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 200.5, 154.9 (t, J = 26.0 Hz), 152.6, 150.8, 147.4, 139.4, 138.4, 133.5, 132.5, 124.1, 119.8 (t, J = 3.0 Hz), 113.1 (t, J = 242.1 Hz), 50.5, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) -121.6 (d, J = 55.3 Hz, 2F); HRMS (ESI) calcd for C₁₅H₁₅F₂N₂O [M+H⁺]: 277.1147, found: 277.1156.

61: white solid, 9.3mg, 57% yield; $R_f = 0.3$ (50% EtOAc/ petroleum ether); ¹H NMR

(400 MHz, DMSO- d_6) δ 11.42 (s, 1H), 7.79 (s, 1H), 6.67 (t, J = 54.6 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 162.1 (t, J = 3.1 Hz), 151.3, 143.1 (t, J = 7.5 Hz), 112.7 (t, J = 233.4 Hz), 106.4 (t, J = 23.1 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -115.00 (d, J = 54.7 Hz, 2F); HRMS (ESI) calcd for C₅H₃F₂N₂O₂ [M-H⁺]: 161.0163, found: 161.0173.

6m: colorless oil, 6.0mg, 31% yield; $R_f = 0.7$ (10% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 6.72 (t, J = 54.7 Hz, 1H), 2.58 (s, 3H), 2.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 165.8, 154.4, 121.1 (t, J = 22.7 Hz), 113.1 (t, J = 238.4 Hz), 21.8, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.9 (d, J = 54.1 Hz, 2F); HRMS (ESI) calcd for C₇H₉F₂N₂S [M+H⁺]: 191.0449, found: 191.0448.

8: white solid, 9mg, 54% yield; 10:1 r.r.; $R_f = 0.5$ (15% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 6.84 (t, J = 54.8 Hz, 1H), 6.77 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 130.0 (t, J = 24.5 Hz), 127.0, 124.1, 121.7, 120.7, 111.6, 110.5 (t, J = 7.1 Hz), 104.0 (t, J = 7.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9 (d, J = 53.0 Hz, 2F); HRMS (ESI) calcd for C₉H₆F₂N [M-H⁺]: 166.0468, found: 166.0474.

10: yellow solid, 15mg, 71% yield; $R_f = 0.4$ (40% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.61 (t, J = 56.0 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.47 (d, J = 3.6 Hz, 1H), 7.12-7.09 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 138.7, 128.3, 125.3, 122.2 (t, J = 25.4 Hz), 118.8, 113.2, 112.3 (t, J = 239.2 Hz), 105.6 (t, J = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -110.5 (dd, J = 54.2, 2.6Hz, 2F); HRMS (ESI) calcd for C₉H₅F₂N₂O₂ [M-H⁺]: 211.0319, found: 211.0326.

12: white solid, 7.8mg, 38% yield; $R_f = 0.7$ (30% EtOAc/ petroleum ether); ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.41 (s, 1H), 8.73 (s, 1H), 7.31 (t, *J* = 53.7 Hz, 1H), 7.01 (s, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 152.2, 152.2, 133.0 (t, *J* = 25.9 Hz), 129.6, 115.7, 110.1 (t, *J* = 234.2 Hz), 100.0 (t, *J* = 6.8 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.4 (d, J = 53.8 Hz, 2F); HRMS (ESI) calcd for C₇H₃ClF₂N₃ [M-H⁺]: 201.9984, found: 201.9993.

14: colorless oil, 16.7mg, 92% yield; $R_f = 0.7$ (2% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 6.81 (t, *J* = 53.4 Hz, 1H), 2.38 (t, *J* = 2.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ154.3, 143.0 (t, *J* = 26.7 Hz), 128.7, 126.2, 123.0, 120.3, 117.0 (t, *J* = 4.5Hz) ,111.8, 109.2 (t, *J* = 234.7 Hz), 7.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.1 (d, *J* = 53.3 Hz, 2F); HRMS (EI) calcd for C₁₀H₈F₂O (M⁺): 182.0543, found: 182.0536.

16: colorless oil, 12.3mg, 65% yield; $R_f = 0.7$ (2% EtOAc/ petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.82 (m, 1H), 7.77-7.74 (m, 1H), 7.45-7.40 (m, 2H), 7.04 (t, J = 55.6 Hz, 1H), 2.49 (t, J = 2.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 139.1, 133.0 (t, J = 7.6 Hz), 130.1 (t, J = 24.3 Hz), 125.9, 124.5, 122.8, 122.6, 111.4 (t, J = 235.7 Hz), 11.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 55.4 Hz, 2F); HRMS (EI) calcd for C₁₀H₈F₂S (M⁺): 198.0315, found: 198.0306.

A many products form and most of starting materials remain

B no desired products formation

C no reaction

D trace products formation

CO₂Et CO₂Me

Supplementary Figure 2.

Unsuccessful substrates

Supplementary Figure 3. The x-ray single crystal structure of 3a.

Supplementary Table 1. Crystal data and structure refinement for shelxl. X-ray crystallography data of 3a.		
Identification code	shelxl	
Empirical formula	$C_{10}H_8F_2N_2O$	
Formula weight	210.18	
Temperature	113(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 7.1342(14) A alpha = 90 deg.	
	b = 10.658(2) A beta = 106.21(3) deg	
	c = 12.383(3) A gamma = 90 deg.	
Volume	904.1(3) A ³	
Z, Calculated density	4, 1.544 Mg/m^3	
Absorption coefficient	0.130 mm ⁻¹	
F(000)	432	
Crystal size	0.200 x 0.180 x 0.120 mm	
Theta range for data collection	2.566 to 27.766 deg.	
Limiting indices	-9<=h<=9, -13<=k<=13, -16<=l<=16	
Reflections collected / unique	10502 / 2123 [R(int) = 0.0739]	
Completeness to theta $= 25.242$	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1 and 0.5621	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2123 / 0 / 137 23	

Goodness-of-fit on F^2	0.974
Final R indices [I>2sigma(I)]	R1 = 0.0472, wR2 = 0.1104
R indices (all data)	R1 = 0.0705, wR2 = 0.1232
Extinction coefficient	n/a
Largest diff. peak and hole	0.333 and -0.447 e.A ⁻³

Evaluation of anti-tumor activity

The in vitro anti-tumor activity of 6d against all cell lines was assessed using the CCK-8, according to the manufacturer's instructions. To test 6d, MCF-7 and HepG-2 cells were seeded into 96-well plates at a density of 5000 cells/well in 100 µL of RPMI 1640 medium containing 10% FBS, 1% penicillin, and 1% streptomycin and cultured for 24 h in 5% CO₂ at 37 °C. HCT116 cells were seeded into 96-well plates at a density of 5000 cells/well in 100 µL of McCoy's 5A medium supplemented with 10% FBS, 1% penicillin, and 1% streptomycin and cultured for 24 h in 5% CO₂ at 37 °C. Likewise, Hela cells were seeded into 96-well plates at a density of 5000 cells/well in 100 µL of MEM supplemented with 10% FBS, 1% penicillin, and 1% streptomycin and cultured for 24 h in 5% CO₂ at 37 °C. 6d was dissolved in PBS contain 10% DMSO and then diluted to the required concentration. It was then added to the cell-containing wells and further incubated at 37 $\,^{\circ}$ C under 5% CO₂ for 72 h. Subsequently, 10 µL of CCK-8 was added into each well and incubated for another 1 h. The plates were then measured at 450 nm using a SpectraMax ® M5 plate reader (Molecular Devices, San Jose, CA, USA). All experiments were carried out five times. For trifluridine, the same procedures were performed by varying the concentration of the specie in question to determine the cytotoxicity.

Eight standard reaction mixtures in 10 mL schlenk tube were equipped with a magnetic stir bar, added 1a (0.2 mmol, 1.0 equiv), CF₂HSO₂Na (0.4 mmol, 2.0 equiv) and rose bengal (0.004 mmol, 2 mol%) in DMSO (1.0 mL). Then the mixture was stirred and irradiated by two 3W green LEDs at room temperature. After 1.5 h, the green LEDs were turned off, and one schlenk tube was removed from the irradiation setup for analysis. The remaining seven schlenk tubes were stirred in the absence of light for an additional 1.5 h. Then, one schlenk tube was removed for analysis, and the green LEDs were turned back on to irradiate the remaining six reaction mixtures. After an additional 1.5 h of irradiation, the green LEDs were turned off, and one schlenk tube was removed for analysis. The remaining five schlenk tubes were stirred in the absence of light for an additional 1.5 h. Then, schlenk tube was removed for analysis, and the green LED s were turned back on to irradiate the remaining four reaction mixtures. After 1.5 h, the green LEDs were turned off, and one schlenk tube was removed for analysis. The remaining three schlenk tubes were stirred in the absence of light for an additional 1.5 h, then, a schlenk tube was removed for analysis and the green LEDs were turned back on to 8 irradiate the remaining two reaction mixtures. After 1.5 h, the green LEDs were turned off, and one schlenk tube was removed for analysis. The last schlenk tube was stirred in the absence of light for an additional 1.5 h, and then it was analyzed. The yield was determined by ¹⁹F NMR spectroscopy using benzotrifluoride as the internal standard.

Supplementary Figure 4. Light on/ off experiment

Investigation on the effect of TEMPO and Oxygen.

Reaction conditions: a mixture of **1a** (0.1 mmol), $NaSO_2CF_2H$ (0.2 mmol), rose bengal (2 mol %) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 0.2 mmol) in DMSO (1 mL) irradiated with two 3 W green LEDs for 12 hours at room temperature in air.

Reaction conditions: a mixture of **1a** (0.1 mmol), NaSO₂CF₂H (0.2 mmol), rose bengal (2 mol %) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 0.2 mmol) in DMSO (1 mL) irradiated with two 3 W green LEDs for 12 hours at room temperature in argon.

The radical trapping experiments were conducted with and CF_2HSO_2Na under the standard conditions with a trapping agent 1,1-diphenylethylene (2.0 equiv) to capture the radical intermediate expected in our system, and the products were detected by HRMS techniques. Supplementary Figure 5 showed that 1,1-diphenylethylene, the most common trapping agent, captured diarylmethane radical with 1,1-diphenylethylene-trapped compound **17** observed. HRMS (ESI): compound **17**, HRMS (ESI) calcd for $C_{15}H_{13}F_2 [M+H]^+$: 231.0980, found: 231.0985.

Supplementary Figure 5. Radical trapping experiment for 1a and CF_2HSO_2Na under standard conditions with ethene-1,1-diyldibenzene (2.0 equiv)

Supplementary Figure 6. Detection of hydrogen peroxide

Supplementary Figure 7. ¹ H NMR spectrum of detection of hydrogen peroxide

Supplementary Discussions

We did not observed the peak of hydrogen peroxide (H_2O_2) by *in situ* ¹H NMR analysis after the reaction mixture in DMSO-*d*₆ was irradiated with two 3W green LEDs for 12 hours in air at room temperature (Supplementary Figure 7, eq 1). However, the peak of water (H_2O) increased possibly due to the oxygen was finally converted to H₂O rather than H₂O₂. This is because (I) When the reaction was conducted in the H₂O₂ in the absence of rose bengal under the irradiation of two 3W green LEDs for 12h, no formation of desired product **3a** was observed by ¹H NMR analysis but the peak of hydrogen peroxide (H_2O_2) remained after the reaction (Supplementary Figure 7, eq 2). (II) When the reaction was conducted in the H₂O₂ (35 wt % aqueous solution) in the presence of rose bengal under the irradiation of two 3W green LEDs for 12h, a yield of 20% of **3a** was obtained and the peak of H₂O₂ in ¹H NMR spectrum disappeared after the reaction (Supplementary Figure 7, eq 3). Therefore, the generated H₂O₂ could participate in the catalytic cycle and ultimately convert to H₂O as the byproduct and and the result was similar to the previous report by Wu group.⁶

To a 10 mL Schlenk tube equipped with a magnetic stir bar, was added quinoxalin-2(1*H*)-ones **1a** (0.2mmol), CF₂HSO₂Na (0.4 mmol) and rose bengal (0.004 mmol, 2 mol%) in DMSO (1.0 mL) Then the mixture was stirred and irradiated by sunlight at room temperature for 12 h (Location: $39^{\circ}6'2''$ N, $117^{\circ}9'51''$ E). Afterward, the residue was added water (10 mL) and extracted with ethyl acetate (5 mL × 3). The combined organic phase was dried over Na₂SO₄. The resulting crude residue was purified *via* column chromatography on silica gel to afford **3a** in 68% yield.

Supplementary Figure 8. Sunlight-driven experiment

- 3.70

Supplementary Figure 10. ¹³C NMR Spectrum of 3a

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 11. ¹⁹F NMR Spectrum of 3a

Supplementary Figure 13. ¹³C NMR Spectrum of 3b

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 14. ¹⁹F NMR Spectrum of 3b

Supplementary Figure 16.¹³C NMR Spectrum of 3c

Supplementary Figure 17.¹⁹F NMR Spectrum of 3c

Supplementary Figure 19. ¹³C NMR Spectrum of 3d

n vala kompune un del predi prisi previo del construito del di del construito de la terre

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 20.¹⁹FNMR Spectrum of 3d

n viti ni pani ni pini ni pini ni pini ni pini na teoreta di pani di kata di pini ni pini ni pini ni pini ni pi

Supplementary Figure 22.¹³C NMR Spectrum of 3e

Supplementary Figure 23.¹⁹F NMR Spectrum of 3e

Supplementary Figure 26.¹⁹F NMR Spectrum of 3f

Supplementary Figure 28.¹³C NMR Spectrum of 3g

Supplementary Figure 29. ¹⁹F NMR Spectrum of 3g

Supplementary Figure 31. ¹³C NMR Spectrum of 3h

Supplementary Figure 32. ¹⁹F NMR Spectrum of 3h

Supplementary Figure 34. ¹³C NMR Spectrum of 3i

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 35. ¹⁹F NMR Spectrum of 3i

Supplementary Figure 37. ¹³C NMR Spectrum of 3j

Supplementary Figure 38. ¹⁹F NMR Spectrum of 3j

$\begin{array}{c} 8 & 8 & 0 & 0 \\ 8 & 0$

Supplementary Figure 40. ¹³C NMR Spectrum of 3k

Supplementary Figure 41. ¹⁹F NMR Spectrum of 3k

Supplementary Figure 43. ¹³C NMR Spectrum of 31

Supplementary Figure 44. ¹⁹F NMR Spectrum of 31

Supplementary Figure 46.¹³C NMR Spectrum of 3m

Supplementary Figure 47.¹⁹ F NMR Spectrum of 3m

Supplementary Figure 49.¹³C NMR Spectrum of 3n

Supplementary Figure 50.¹⁹ F NMR Spectrum of 3n

Supplementary Figure 52. ¹³C NMR Spectrum of 30

Supplementary Figure 53. ¹⁹F NMR Spectrum of 30

— 12.93

Supplementary Figure 55. ¹³C NMR Spectrum of 5a

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

Supplementary Figure 56. ¹⁹F NMR Spectrum of 5a

Supplementary Figure 58.¹H NMR Spectrum of 5c

Supplementary Figure 59. ¹H NMR Spectrum of 5d

 153.16 149.91 149.70 149.49 	∠ 132.81 ∠ 132.26 ∖ 130.65 ∩ 129.45 - 123.87	115.73 112.69 110.31 107.93
--	--	--------------------------------------

Supplementary Figure 60. ¹³C NMR Spectrum of 5d

Supplementary Figure 61. ¹⁹F NMR Spectrum of 5d

Supplementary Figure 62.¹H NMR Spectrum of 5e

Supplementary Figure 64.¹³C NMR Spectrum of 5f

Supplementary Figure 65. ¹⁹F NMR Spectrum of 5f

Supplementary Figure 67.¹³C NMR Spectrum of 5g

Supplementary Figure 68. ¹⁹F NMR Spectrum of 5g

Supplementary Figure 70. ¹³C NMR Spectrum of 5h

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 71. ¹⁹F NMR Spectrum of 5h

Supplementary Figure 73.¹H NMR Spectrum of 5j

Supplementary Figure 73. ¹H NMR Spectrum of 5k

Supplementary Figure 75.¹³C NMR Spectrum of 51

Supplementary Figure 76. ¹⁹F NMR Spectrum of 51

Supplementary Figure 78.¹³C NMR Spectrum of 5m

60 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 79. ¹⁹F NMR Spectrum of 5m

Supplementary Figure 81. ¹H NMR Spectrum of 50

Supplementary Figure 83. ¹³C NMR Spectrum of 5p

Supplementary Figure 84. ¹⁹F NMR Spectrum of 5p

Supplementary Figure 86. ¹³C NMR Spectrum of 5q

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

Supplementary Figure 87. ¹⁹F NMR Spectrum of 5q

Supplementary Figure 89. ¹³ C NMR Spectrum of 5r

- -115.86 - -116.00

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 90. ¹⁹F NMR Spectrum of 5r

Supplementary Figure 92. ¹³C NMR Spectrum of 5s

Supplementary Figure 93. ¹⁹F NMR Spectrum of 5s

Supplementary Figure 95. ¹³C NMR Spectrum of **5t**

Supplementary Figure 96. ¹⁹F NMR Spectrum of 5t

Supplementary Figure 98. ¹H NMR Spectrum of 6b

Supplementary Figure 99. ¹H NMR Spectrum of 6c

Supplementary Figure 101. ¹³C NMR Spectrum of 6d

Supplementary Figure 102. ¹⁹F NMR Spectrum of 6d

Supplementary Figure 103. ¹³ C NMR Spectrum of 6e

Supplementary Figure 104.¹⁹ F NMR Spectrum of 6e

Supplementary Figure 106. ¹³C NMR Spectrum of 6f

Supplementary Figure 107. ¹⁹F NMR Spectrum of 6f

Supplementary Figure 108. ¹H NMR Spectrum of 6g

Supplementary Figure 110. ¹³C NMR Spectrum of 6h

Supplementary Figure 111. ¹⁹F NMR Spectrum of 6h

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Supplementary Figure 113. ¹³C NMR Spectrum of 6i

Supplementary Figure 114. ¹³F NMR Spectrum of 6i

Supplementary Figure 116. ¹³C NMR Spectrum of 6j

Supplementary Figure 117. ¹⁹F NMR Spectrum of 6j

Supplementary Figure 119. ¹³C NMR Spectrum of 6k

Supplementary Figure 120.¹⁹F NMR Spectrum of 6k

Supplementary Figure 122. ¹³C NMR Spectrum of 6l

Supplementary Figure 123.¹⁹F NMR Spectrum of 61

Supplementary Figure 125. ¹³C NMR Spectrum of 6m

Supplementary Figure 126. ¹⁹F NMR Spectrum of 6m

- 8.40 7.68 7.66 7.42 7.42 7.42 7.23 7.23 7.23 7.23 7.23 7.23 7.23 6.53 6.73 6.73 6.73 6.73 6.73

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1(ppm)

Supplementary Figure 128. ¹³C NMR Spectrum of 8

7.97 7.95 7.75 7.61 7.57 7.56 7.55 7.55 7.54 7.48 7.48 7.48 7.48 7.48 7.47 7.11 7.11 7.11 7.11 7.11 7.11 7.10

Supplementary Figure 130. ¹H NMR Spectrum of 10

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

Supplementary Figure 131. ¹³C NMR Spectrum of 10

Supplementary Figure 132. ¹⁹F NMR Spectrum of 10

Supplementary Figure 134. ¹³C NMR Spectrum of 12

Supplementary Figure 135. ¹⁹F NMR Spectrum of 12

2.38 2.38 2.37

Supplementary Figure 137. ¹³C NMR Spectrum of 14

Supplementary Figure 138. ¹⁹F NMR Spectrum of 14

2.51
2.50
2.50
2.50

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)

Supplementary Figure 140. ¹³C NMR Spectrum of 16

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

Supplementary Figure 140. ¹⁹F NMR Spectrum of **16 Supplementary References**

1. Fujiwara, Y., Dixon, J. A., Rodriguez, R. A., Baxter, R. D., Dixon, D. D., Collins, M. R., Blackmond, D. G. & Baran, P. S. A New Reagent for Direct Difluoromethylation. *J. Am. Chem. Soc.* **134**, 1494-1497 (2012)

2. Sakamoto, R., Kashiwagi, H. & Maruoka, K. The Direct C–H Difluoromethylation of Heteroarenes Based on the Photolysis of Hypervalent Iodine(III) Reagents That Contain Difluoroacetoxy Ligands. *Org. Lett.* **19**, 5126-5129 (2017)

3. Tung, T. T., Christensen, S. B. & Nielsen, J. Difluoroacetic Acid as a New Reagent for Direct C-H Difluoromethylation of Heteroaromatic Compounds. *Chem.- Eur. J.* 23, 18125-18128 (2017)

4. Zhu, S., Liu, Y., Li, H., Xu, X. & Qing, F. Direct and Regioselective C-H Oxidative Difluoromethylation of Heteroarenes. *J. Am. Chem. Soc.* **140**, 11613-11617 (2018)

5. Zhang, W., Pan, Y.-L., Yang, C., Chen, L., Li, X. & Cheng, J.-P. Metal-Free Direct C–H Cyanoalkylation of Quinoxalin-2(1*H*)-Ones by Organic Photoredox Catalysis. *J. Org. Chem.* **84**, 7786-7795 (2019)

6. Liu, W. Q., Lei, T., Song, Z.-Q., Yang, X.-L., Wu, C. J., Jiang, X., Chen, B., Tung, C.-H. & Wu, L.-Z. Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. *Org. Lett.* **19**, 3251–3254 (2017)