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Supplementary Information Text 17 

Exploratory analysis on the spatial structure of the GEV shape parameter 18 

Here we demonstrate, based on quantitative analysis, that it is appropriate to model the 19 

GEV shape parameter as being spatially constant. We begin by showing the shape 20 

parameter values at each tide gauge station as estimated by individual GEV fits (SI 21 

Appendix, Fig. S5A). While the map suggests some small regions of coherence, the 22 

spatial structure is much weaker than in the case of the location and scale parameters 23 

and there are significant differences, even in sign, between nearby stations. As a means 24 

of establishing whether the differences in the shape parameter across tide gauges reflect 25 

true differences or sampling error, we have conducted the following analysis. First, we 26 

simulate data from a GEV with the location and scale parameters set to the actual 27 

observed values (estimated using individual GEV fits) at each tide gauge site but with a 28 

constant shape parameter for all sites. The sample size of the simulated data at each site 29 

is the same as that in the tide gauge record. Then we estimate the value of the shape 30 

parameter from the simulated data at each site using the single-site GEV model and 31 

compare those with the values derived (also using individual GEV fits) from the 32 

observed data. Histograms of the two sets of shape parameters are very similar (SI 33 

Appendix, Fig. S5B), suggesting that the differences in the shape parameter are likely 34 

due to sampling error (i.e., small sample sizes). Indeed, a two-sample Kolmogorov-35 

Smirnov test (1) indicates that the real and simulated shape parameters are very likely to 36 

have the same underlying distribution. These results give us confidence in our decision 37 

to treat the shape parameter as spatially constant. 38 

Parameter layer of the Bayesian hierarchical model 39 

Here we adopt a full Bayesian approach, and hence all model parameters are estimated 40 

from the observations. Note that, in order to facilitate sampling in our model, some 41 

parameters are rescaled so that they are approximately on a unit scale. The following 42 

priors are ascribed to the (rescaled, where appropriate) model parameters: 43 

− For the shape parameter 𝜉𝜉 we assume a uniform distribution: 𝜉𝜉~U(−0.3,0.3). 44 

The lower and upper bounds are selected based on the results of individual GEV 45 

fits to the observed annual maxima. 46 

− The parameter 𝛼𝛼 is bounded to be in the range (0,1), and thus we let 𝛼𝛼~U(0,1). 47 



− The length scale of the kernel functions, 𝜏𝜏, is assigned a half-normal 48 

distribution: 𝜏𝜏~half-N(0,0.5). A standard deviation of 0.5 corresponds to half 49 

the synoptic scale (~1000/2 km), which is a measure of the spatial extent of 50 

extratropical cyclones. 51 

− For the standard deviations of the Gaussian processes we assume a half-normal 52 

distribution: 𝛾𝛾𝜇𝜇, 𝛾𝛾𝜇𝜇0 , 𝛾𝛾𝜇𝜇00 , 𝛾𝛾𝜎𝜎 ~indhalf-N(0,1). A half-normal distribution is one of 53 

the recommended priors for scale parameters in hierarchical models (2, 54 

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations) as it 55 

enables us to constrain the value of a parameter from above while allowing it to 56 

be arbitrarily close to zero.  57 

− In assigning priors to the length scale parameters of the Gaussian processes, we 58 

should note that there is no information in the observed data to characterize 59 

scales above the maximum distance between stations. The priors should encode 60 

this information, and hence we impose a half-normal distribution: 61 

𝜌𝜌𝜇𝜇, 𝜌𝜌𝜇𝜇0 , 𝜌𝜌𝜇𝜇00 , 𝜌𝜌𝜎𝜎 ~indhalf-N(0,0.7). A standard deviation of 0.7 corresponds to 62 

about one third of the maximum distance between stations. 63 

− For the regression coefficients, 𝜷𝜷𝜇𝜇 and 𝜷𝜷𝜎𝜎, we assume a normal distribution: 64 

𝜷𝜷𝜇𝜇, 𝜷𝜷𝜎𝜎 ~indN(0,1.5). 65 

The prior distributions are shown in SI Appendix, Fig. S2.To assess the sensitivity of 66 

our results to prior choices, we have compared estimates for the cases where the scale 67 

parameters of the Gaussian processes are assigned the following priors: half-N(0,1), 68 

half-N(0,2), half-N(0,10). The results are shown in the SI Appendix, Table S1. We 69 

note that the estimates of the various scale parameters (𝛾𝛾𝜇𝜇, 𝛾𝛾𝜇𝜇0 , 𝛾𝛾𝜇𝜇00 , 𝛾𝛾𝜎𝜎) are fairly 70 

consistent across all three cases. Furthermore, differences in the estimates of the GEV 71 

location and scale parameters among the three cases are negligible. Our estimates are 72 

also fairly insensitive to the choice of priors for all the other parameters. However, as 73 

mentioned above, the assignment of priors to the length scales of the Gaussian 74 

processes needs careful consideration, especially for 𝜌𝜌𝜇𝜇0 and 𝜌𝜌𝜇𝜇00. In particular, the 75 

likelihood for these two parameters can become non-identified if the scale of the half-76 

normal prior is set to a large value. 77 

  78 



Validation with simulated data in a perfect model setting 79 

Here we estimate the skill of the model in a perfect model setting. We first simulate a 80 

spatiotemporal process under a max-stable model and sample it at exactly the same 81 

times and locations as the tide gauge record (see Materials and Methods for a 82 

description of the tide gauge data set and SI Appendix, Fig. S1 for site locations and 83 

availability through time). Then, we fit our hierarchical model to the synthetic tide 84 

gauge data and inspect whether the model is able to adequately characterize the 85 

simulated process, at both gauged and ungauged locations. Estimates from the 86 

hierarchical model are compared to estimates derived using a single-site GEV model, as 87 

a way of establishing a baseline against which to measure the skill of our model. In this 88 

experiment, the GEV location and scale parameters (𝜇𝜇 and 𝜎𝜎) are spatially variable, 89 

whereas the shape parameter 𝜉𝜉 is kept constant. Note that, since here 𝜇𝜇 is assumed 90 

constant in time, 𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 = 0 and thus 𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡=0 for all 𝑡𝑡 (see model formulation). The 91 

single-site model used here involves fitting a GEV separately at each site using 92 

maximum likelihood estimation, which is the most commonly used method. The results 93 

presented next are based on a single realization of a max-stable process, but comparable 94 

results are found for other realizations. 95 

We first note that the hierarchical model captures the true value of all model parameters 96 

(SI Appendix, Fig. S6), including the length scales (𝜌𝜌𝜇𝜇, 𝜌𝜌𝜇𝜇0) and standard deviations 97 

(𝛾𝛾𝜇𝜇, 𝛾𝛾𝜇𝜇0) of the Gaussian processes, which are in general weakly identified and difficult 98 

to estimate (3). We note that the value of the parameters used in the simulations has 99 

been chosen to be similar to that found in the real tide gauge data, and so, assuming the 100 

adequacy of the model, we can expect an equivalent performance when analyzing the 101 

actual observations.  102 

Next, we evaluate the skill of the hierarchical model in estimating the marginal GEV 103 

parameters 𝜇𝜇 and 𝜎𝜎, at gauged locations. Model skill is assessed in terms of fractional 104 

differences (FDs) (see Materials and Methods). The standard errors associated with the 105 

estimated values are also shown. Estimates of 𝜇𝜇 based on the hierarchical model are 106 

very close to the true value at all gauged locations, as indicated by a median FD of 0.03 107 

(SI Appendix, Fig. S7A). The single-site model also gives a very good match to the true 108 

values with a median FD of 0.03 (SI Appendix, Fig. S7B). While both models exhibit 109 

very small FDs, the hierarchical model yields much more precise estimates, as indicated 110 



by their smaller standard errors (median of 2.4 cm vs 3.4 cm) (SI Appendix, Fig. S7C 111 

and D). 112 

Differences in performance between the two models become even more apparent when 113 

looking at the scale parameter 𝜎𝜎 (SI Appendix, Fig. S8), for which the hierarchical 114 

model exhibits smaller FDs (median of 0.08 vs 0.11) and standard errors that are almost 115 

half those of the single-site model (median of 1.5 cm vs 2.6 cm). Note also that, while 116 

the FDs and standard errors for the hierarchical model are fairly uniform across stations, 117 

those for the single-site model show a much larger spread. In particular, there are 118 

several stations where FDs for the single-site model are larger than 0.4 and standard 119 

errors are more than three times larger than those from the hierarchical model. 120 

Furthermore, there are two stations where the single-site model is unable to provide an 121 

estimate due to convergence failure, highlighting the difficulty of this model to 122 

constrain the GEV parameters at sites with few data. 123 

The hierarchical model has also a good predictive skill in capturing both 𝜇𝜇 and 𝜎𝜎 at 124 

ungauged sites (SI Appendix, Fig. S9), with median FDs of 0.09 and 0.10 and median 125 

standard errors of 14.9 cm and 2.3 cm, respectively. As expected, FDs and standard 126 

errors tend to be larger at locations distant from any tide gauge station, but even at such 127 

locations the differences between the true and estimated values tend to be much smaller 128 

than the value of the parameter, providing confidence in the skill of the model at 129 

ungauged sites. In particular, FDs < 0.5 are found at more than 92% of all interpolation 130 

sites, for both 𝜇𝜇 and 𝜎𝜎. Note also that FDs and standard errors for 𝜎𝜎 at ungauged 131 

locations are slightly smaller than those for the single-site model at gauged sites. 132 

To estimate the skill of the model in interpolating the annual maxima we use the 133 

Spearman’s rank correlation between the true and predicted extreme values, and the 134 

fraction of true extreme values that fall within the 1-sigma credible interval (see 135 

Materials and Methods). The mean Spearman’s rank correlation over all prediction sites 136 

is 0.70 (SI Appendix, Fig. S10A), indicating a good predictive skill. Furthermore, 137 

correlations > 0.5 are found at 96% of the locations, showing that model skill is largely 138 

independent of location. We find that the 1-sigma credible interval encompasses the true 139 

extreme value, on average, 73% of the times (SI Appendix, Fig. S10B).  140 

 141 



Validation with reanalysis data from a dynamical surge model 142 

The results of the experiment with real tide gauge data represent our most accurate 143 

assessment of the predictive skill and accuracy of the hierarchical model in the real 144 

world. However, such assessment is only possible at gauged locations. A surge 145 

reanalysis, though being only an approximate representation of the real world, gives us 146 

an opportunity to assess the model at additional locations and allows for a further 147 

assessment of the adequacy of the model. Here, we sample the annual maxima from the 148 

reanalysis at the same times and locations as the tide gauge record, then fit our 149 

hierarchical model to the sampled data and make predictions of the GEV parameters 150 

and the annual maxima at ungauged locations where the reanalysis provides data. The 151 

predictions of 𝜇𝜇 and 𝜎𝜎 are compared with estimates based on individual GEV fits to the 152 

full (i.e., no missing values) reanalysis data, whereas the predicted annual maxima are 153 

compared with the actual annual maxima from the reanalysis. 154 

The 𝜇𝜇 and 𝜎𝜎 parameters are well captured at most locations (SI Appendix, Fig. S11A 155 

and B), with median FDs of 0.07 and 0.20, respectively. The FDs show significant 156 

uniformity across most sites, but in the case of 𝜎𝜎 we note increased FD values (~0.7) 157 

along the southern coast of England. Additional analysis suggests that these larger 158 

values are due to a sharp gradient in the variance of the reanalysis annual maxima 159 

across the English Channel (SI Appendix, Fig. S12A), which the hierarchical model is 160 

unable to capture. The fact that the actual tide gauge observations do not show such a 161 

pronounced gradient (SI Appendix, Fig. S12B) suggests that the gradient might be a 162 

model artefact. Regardless, FDs for 𝜇𝜇 and 𝜎𝜎 are <0.5 at 98% and 87% of the locations, 163 

respectively, which again confirms the high accuracy of the model. For the prediction of 164 

the annual maxima, we find a very high mean Spearman’s rank correlation of 0.89 and a 165 

fraction of annual maxima contained by the 1-sigma credible interval of 0.81 (average 166 

value) (SI Appendix, Fig. S11C and D). This correlation is significantly higher than the 167 

one found in the validation with real data (0.62). The reason is that residual dependence 168 

in the reanalysis is much stronger than in the observations, as indicated by the smaller 169 

value of the parameter 𝛼𝛼 in the reanalysis (0.25 vs 0.54). 170 

Extraction of annual maxima from the tide gauge records 171 

Our analysis of extremes is based on surge annual maxima, which are extracted from 172 

each tide gauge record as follows. First, it is important to recognize that tide gauge 173 



records often contain datum shifts that, if went unnoticed, could result in anomalous 174 

extreme values. To identify and correct jumps in the sea-level records, we use a 175 

parametric global method (4) that aims to detect abrupt changes in the mean of a signal. 176 

This algorithm is applied to the low-pass filtered (cutoff 36 hours) records subject to the 177 

condition that there should be a minimum of 15 days between changepoints. This 178 

condition is necessary to avoid falsely identifying changes associated with surges as 179 

datum shifts. The identified jumps are then adjusted in the original records by correcting 180 

the mean difference at changepoints. 181 

At this point, we note that waves are typically filtered out from tide gauge records, 182 

either mechanically or by time averaging of the sea-level records. Wave setup effects 183 

are not explicitly removed, however such effects are generally not captured by tide 184 

gauges due to their location inside harbors where water is relatively deep (compared to 185 

shallow sloping beaches on which wave setup is most important). This means that the 186 

part of sea level that remains after removal of the tide and the mean sea level is 187 

primarily the storm surge. As a means of removing the mean sea level, the annual 188 

medians along with a seasonal cycle are subtracted from the shift-adjusted tide gauge 189 

records. Note that this eliminates any influence from sea-level rise and other long-term 190 

sea-level variations on the annual maxima. The tidal component is then estimated, on a 191 

year-by-year basis, through harmonic analysis using the program t-tide (5) and removed 192 

from the time series to obtain the surges. In doing this, we note that sometimes tide-193 

surge interaction and timing errors can cause inaccuracies in the tidal predictions, 194 

leading to artificially large surges. This issue is addressed by first computing the 195 

instantaneous phase difference between the observed and predicted signals at the 196 

frequency of the main tidal constituent using the Hilbert transform, and then shifting (in 197 

time space) the tidal prediction by the amount necessary to remove the phase difference. 198 

The shifting is applied cycle by cycle and only if the phase difference in the cycle is 199 

larger than 30 minutes. We should note that only a small number of extreme events in 200 

the final set correspond to cycles where a phase-shift correction has been applied. The 201 

hourly residual time series after removal of the mean sea level and the tides are then 202 

visually inspected to identify and remove outliers. Finally, we extract the annual 203 

maxima from the residual time series, where we should note that years are defined as 204 

starting on 1 April and only years with at least 6000 valid hourly values are considered. 205 

The final set of extremes consists of 2500 annual maxima from a total of 79 tide gauge 206 

records spanning the period 1960-2013 (the location of the tide gauges is shown in SI 207 



Appendix, Fig. S1A). Note that the number of tide gauge sites with available data 208 

decreases rapidly as we go backwards in time (SI Appendix, Fig. S1B). 209 

MCMC diagnostics for the Bayesian hierarchical model 210 

Here we validate the fit of the hierarchical model to the real annual maxima data 211 

through a number of MCMC diagnostics. This part of the validation aims to assess 212 

whether the sampler has converged and provides good mixing. We begin by looking at 213 

convergence diagnostics. While, in practice, there is no definitive way to prove 214 

convergence, there are a number of diagnostics that allow us to check certain necessary 215 

(albeit not sufficient) conditions for convergence. One of such conditions is that, in 216 

equilibrium, samples from different Markov chains should all have the same 217 

distribution, regardless of the initial values of the chains. The potential scale reduction 218 

statistic (6), 𝑅𝑅�, tests for this by comparing the sample variances both within individual 219 

chains and across multiple randomly initialized chains. At convergence 𝑅𝑅� should be 220 

close to 1 for all parameters in the model, whereas 𝑅𝑅� > 1.1 is indicative of non-221 

convergence. We find that 𝑅𝑅� is below 1.1 for all parameters in our model, suggesting 222 

that all four Markov chains have converged to the equilibrium distribution and are 223 

providing a good approximation to the posterior distribution.  224 

In addition to the issue of convergence, another difficulty posed by MCMC methods is 225 

that they tend to produce highly correlated samples. The higher the autocorrelation the 226 

larger the MCMC standard error, and thus the further the posterior mean will be from 227 

the true value of the parameters. As a measure of autocorrelation, we use an estimate of 228 

the effective sample size, neff, for each parameter (7). In general, a neff per iteration < 229 

0.001 is indicative of poorly mixing chains and suggestive of possible biased estimates. 230 

In our hierarchical model, we find 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 > 0.3 for most parameters, with the parameter 231 

𝛼𝛼 showing the lowest 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 among all parameters with a value of 0.02. These results 232 

indicate low autocorrelation and good mixing. 233 

Finally, there are several additional diagnostics specific to Hamiltonian Monte Carlo, 234 

such as divergent transitions and maximum tree depth, which can help diagnose 235 

problems with the sampler. In particular, the presence of divergences and/or tree-depth 236 

saturation indicates that the sampler is not able to fully explore the posterior distribution 237 

and the estimates are likely to be biased. Our analysis of these diagnostics shows that 238 

there were no divergences in our fit and none of the iterations saturated the maximum 239 

tree depth.  240 



All diagnostics reported above indicate that the hierarchical model provides an adequate 241 

fit to the observed annual maxima and that our sampler is accurately characterizing the 242 

posterior distribution. 243 

  244 



      245 

Figure S1. Availability of the tide gauge data. (A) Location of the tide gauge stations 246 
used in the analysis of extremes (red circles), along with the interpolation grid points 247 
(black dots) and the spatial knots used to construct the spatial residual process (blue 248 
crosses). (B) The number of tide gauge sites providing data over time (1960-2013). 249 
  250 



 251 
Figure S2. The posterior distribution for model parameters in the probabilistic 252 
reanalysis of storm surge extremes. Histograms of 4000 draws from the posterior 253 
distribution for 𝛼𝛼, 𝜏𝜏, 𝜉𝜉, 𝜌𝜌𝜎𝜎, 𝜌𝜌𝜇𝜇0, 𝛾𝛾𝜎𝜎, 𝛾𝛾𝜇𝜇0, 𝛽𝛽𝜎𝜎,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ and 𝛽𝛽𝜇𝜇,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ (the subscript width 254 
denotes regression coefficient associated with the shelf width) as estimated by the 255 
Bayesian hierarchical model based on the real tide gauge data. The prior distributions 256 
are also shown (gray, right y-axis). 257 
  258 



 259 
Figure S3. Bayesian estimates of the GEV parameters from real tide gauge data at 260 

gauged locations. Estimates from the hierarchical model at gauged locations for the 261 

GEV time-mean location (A) and scale (B) parameters, along with their standard errors 262 

(C and D). 263 

  264 



 265 

Figure S4. Bayesian estimates of GEV parameters at ungauged locations. Gridded 266 

estimates of the GEV time-mean location (A) and scale (B) parameters from the 267 

hierarchical model, along with their standard errors (C and D). 268 
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 272 

 273 

Figure S5. The spatial structure of the GEV shape parameter. (A) Estimates of the 274 
shape parameter at each tide gauge location based on a single-site GEV model 275 
(estimates at two locations have been omitted due to lack of convergence of the 276 
maximum likelihood estimator) applied to the observed annual maxima. (B) histogram 277 
of the shape parameter estimates shown in panel A, along with the histogram of the 278 
shape parameter values derived from simulated data based on a GEV with constant 279 
shape parameter. 280 

 281 
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 285 

Figure S6. The posterior distribution for model parameters in the validation with 286 
simulated data in a perfect model setting. Histograms of 4000 draws from the 287 
posterior distribution for 𝛼𝛼, 𝜏𝜏, 𝜉𝜉, 𝜌𝜌𝜎𝜎, 𝜌𝜌𝜇𝜇0, 𝛾𝛾𝜎𝜎, 𝛾𝛾𝜇𝜇0, 𝛽𝛽𝜎𝜎,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ and 𝛽𝛽𝜇𝜇,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ (the subscript 288 
width denotes regression coefficient associated with the shelf width) as estimated by the 289 
Bayesian hierarchical model based on simulated data generated under a max-stable 290 
model. The vertical black line denotes the true value of the parameters. The prior 291 
distributions are also shown (gray, right y-axis). 292 
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 294 
Figure S7. Validation of the GEV location parameter with simulated data in a 295 
perfect model setting at gauged locations. Fractional differences (FDs) between the 296 
true value of the GEV location parameter 𝜇𝜇 at gauged locations and model estimates 297 
from a spatiotemporal hierarchical model (A) and from a single-site GEV model (B), 298 
along with the standard errors associated with such estimates (C and D). 299 
  300 



 301 
Figure S8. Validation of the GEV scale parameter with simulated data in a perfect 302 
model setting at gauged locations. Fractional differences (FDs) between the true value 303 
of the GEV scale parameter 𝜎𝜎 at gauged locations and model estimates from a 304 
spatiotemporal hierarchical model (A) and from a single-site GEV model (B), along 305 
with the standard errors associated with such estimates (C and D). 306 
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 308 
Figure S9. Validation of the GEV location and scale parameters with simulated 309 
data in a perfect model setting at ungauged locations. Fractional differences (FDs) 310 
between the true and estimated values of the GEV location (A) and scale (B) parameters 311 
at interpolation locations, along with the standard errors associated with the estimates 312 
(C and D). 313 
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 315 
Figure S10. Validation of the predicted annual maxima with simulated data in a 316 
perfect model setting. Spearman’s rank correlation between the true and predicted 317 
extreme values at ungauged locations based on the simulated data (A), and the fraction 318 
of 1-sigma credible intervals that contain the true extreme value (B). 319 
 320 
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 352 

 353 
Figure S11. Validation with reanalysis data from a dynamical surge model. 354 

Fractional differences (FDs) between the true (single-site model estimates based on 355 

the full reanalysis data) and the predicted values of the GEV location (A) and scale 356 

(B) parameters. The Spearman’s rank correlation between the true and predicted 357 

annual maxima (C), along with the fraction of 1-sigma credible intervals that contain 358 

the true extreme value (D), are also shown. 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 



 370 

Figure S12. Sharp gradient of the GEV scale parameter in the dynamical surge 371 

reanalysis. Comparison of the GEV scale parameter at every grid point in the surge 372 

reanalysis (A) with that at tide gauge stations (B). The scale parameter values have 373 

been estimated by individual GEV fits to the annual maxima.  374 



Table S1. Estimates (mean ± 1-sigma) of the scale parameters of the Gaussian 375 

processes (𝛾𝛾𝜇𝜇, 𝛾𝛾𝜇𝜇0 , 𝛾𝛾𝜇𝜇00 , 𝛾𝛾𝜎𝜎) under the following prior distributions: half-N(0,1), 376 

half-N(0,2), half-N(0,10). The mean difference (over the 79 tide gauge stations) in 377 

estimates of the GEV location (dμ) and scale (dσ) parameters respect to the case with 378 

a half-N(0,1) prior is also shown for all three cases. 379 

Prior 𝜸𝜸𝝁𝝁 𝜸𝜸𝝈𝝈 𝜸𝜸𝝁𝝁𝟎𝟎 𝜸𝜸𝝁𝝁𝟎𝟎𝟎𝟎 dμ (%)  dσ (%) 

half-N(0,1) 0.24±0.03 0.43±0.08 0.15±0.11 0.39±0.26 0.00 0.00 

half-N(0,2) 0.24±0.03 0.42±0.07 0.16±0.11 0.37±0.27 0.15 0.54 

half-N(0,10) 0.24±0.03 0.42±0.07 0.17±0.12 0.45±0.32 0.17 0.77 

 380 
381 
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