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Fig. S1: Participant identification for the eight conditions using the geodesic
distance and Pearson dissimilarity. Training and testing data were from the
same condition. Fixation period or “mini resting periods” were not trimmed
from runs of task data (as done in Fig. 3). Abbreviations: EM, emotion pro-
cessing; GB, gambling; LG, language; MT, motor; RL, relational processing;
RS, resting-state; SO, social cognition; WM, working memory.

Supplemental material

S1. Identification accuracy when runs were not trimmed

In the main body of the text, to ensure that only task-related
segments of a run were retained, “mini resting periods” in the
form of fixation periods were removed (see Section 2.1). We
repeated our analysis without trimming runs of task data us-
ing whole-cortex FCs. Identification accuracy for each condi-
tion is shown in Fig. S1. Accuracy obtained using the geodesic
distance exceeded that of Pearson dissimilarity for all condi-
tions except the gambling and relational tasks (p = 1 for gam-
bling and relational tasks, p < 10−6 for all tasks; reference
α = 0.05/8 = 0.00625 given 8 conditions; Fig. S2). The mean
improvement using geodesic distance was around 8% (as high
as 18% on resting-state data).

S2. Effect of global signal regression on identification

We repeated our analysis by including global signal regres-
sion (GSR) in the preprocessing pipeline for resting-state data
[20, 23]. The use of GSR is still debated [26] and can poten-
tially spread underlying group differences to regions that may
never have had any [31]. We limit our analysis in this section
to resting-state data; we did not include GSR in the preprocess-
ing pipeline for results in the main text. In the data employed
(see Acknowledgements), 8 subjects’ data were removed be-
cause they did not not pass quality control check [23]. Thus,
the results reported this section were based on N = 92 partic-
ipants. We performed participant identification using whole-
cortex FCs. Regardless of the inclusion of GSR in preprocess-
ing, identification accuracy improved using geodesic distance

compared to Pearson dissimilarity (Fig. S3A). However, using
GSR improved accuracy for both measures. When segments
of smaller lengths were extracted from resting-state data, accu-
racy improved using geodesic distance for all segment lengths
(Fig. S3B). When GSR was used, accuracy using geodesic dis-
tance was close to 95% with only 200 time points (compared to
70% without GSR; Fig. S3C).

S3. Effect of number of ROIs in the parcellation on identi-
fication

To study the effect of the parcellation scheme on partici-
pant identification accuracy using the two measures, we em-
ployed various parcellations with ROIs ranging from a 100 to
400. In general, mean participant identification accuracy in-
creased with increase in ROIs indicating that finer resolution or
detail in the FC revealed more uniqueness. Mean accuracy us-
ing the geodesic distance was consistently higher than the mean
accuracy using Pearson dissimilarity. For several conditions
(resting-state, language, motor), accuracy using geodesic dis-
tance on FCs obtained with 100 ROIs was greater than accuracy
obtained using Pearson dissimilarity with 400 ROIs (Fig. S5).

S4. Computing geodesic distances for matrices without full
rank

Computing the geodesic distance between two FC matrices
Q1 and Q2 (Equation 3) requires Q1 to be invertible, or equiv-
alently, all the eigenvalues of Q1 must be strictly greater than
zero. When FC matrices are based on n ROIs and n is larger
than number of frames in the run, the rank of the resulting
FC matrix is not full (i.e., < n), and some of its some eigen-
values are equal to 0. In practice, when the number of ROIs
n < (0.9 × number of frames), we applied the procedure below
to ensure full rankness.

To handle such cases, we adopted a simple approach here:
we added the identity matrix I to both Q1 and Q2, causing
the eigenvalues of the correlation matrices of interest to be in-
creased by 1. Because all eigenvalues are then greater than 0,
the matrices are invertible. In such cases, the geodesic distance,
dG(Q1+I,Q2+I), serves as a proxy for the geodesic distance be-
tween the two matrices. Note that the scenario of low-rank FC
matrices arises only for whole-cortex analysis, as for the sub-
network analyses, the number of ROIs in question was always
greater than the number of frames in the run.

For reference, the procedure above was employed in the fol-
lowing cases: whole-cortex results for all tasks; whole-cortex
resting-state results with lengths less than 400 TRs; and whole-
cortex results involving trimmed data.
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Fig. S5: Participant identification accuracy as a function of the number of ROIs. Here, training and testing data are from the same condition. Error bars indicate
standard error of the mean across the bootstrap iterations.
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Fig. S6: Whole-cortex FCs with full time course lengths: Comparison of identification accuracy based on geodesic distance and Pearson dissimilarity for each
condition. Identification was based on whole-cortex FCs. Here, full time course lengths were used (see Section 2.1). For each condition, the distributions shown in
orange represent the difference between the mean participant identification accuracy using the geodesic distance and Pearson dissimilarity across the outer bootstrap
iterations (see Section 2.7). The orange line indicates the mean of the difference distribution and the blue line indicates zero difference.
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Fig. S7: Identification accuracy and time course length: Comparison of identification accuracy based on geodesic distance and Pearson dissimilarity for various
time course lengths. Since resting-state data had the highest time course length, smaller segments of various lengths were extracted (see Section 2.7.1). Identification
was based on whole-cortex FCs. For each segment length, the distributions shown in orange represent the difference between the mean participant identification
accuracy using the geodesic distance and Pearson dissimilarity across the outer bootstrap iterations (see Section 2.7). The orange line indicates the mean of the
difference distribution and the blue line indicates zero difference.
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Fig. S8: Whole-cortex FCs with trimmed time course lengths: Comparison of identification accuracy based on geodesic distance and Pearson dissimilarity for each
condition. Identification was based on whole-cortex FCs. Data for each condition were trimmed such that they all had the same time course length (of 138; see
Section 3.5). For each condition, the distributions shown in orange represent the difference between the mean participant identification accuracy using the geodesic
distance and Pearson dissimilarity across the outer bootstrap iterations (see Section 2.7). The orange line indicates the mean of the difference distribution and the
blue line indicates zero difference.
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Fig. S9: Subnetwork FCs with trimmed time course lengths: Comparison of identification accuracy based on geodesic distance and Pearson dissimilarity for each
subnetwork. Identification was based on subnetwork FCs. Data for each condition were trimmed such that they had the same time course length (of 138; see
Section 3.5). For each subnetwork, difference scores were averaged across all conditions. The distributions shown in orange represent the difference between the
mean participant identification accuracy using the geodesic distance and Pearson dissimilarity across the outer bootstrap iterations (see Section 2.7). The orange
line indicates the mean of the difference distribution and the blue line indicates zero difference.
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Fig. S10: Subnetworks of the same size: Comparison of identification accuracy using dorsal attention and ventral attention subnetwork FCs for each
condition. The geodesic distance measure was used for identification. The two subnetworks were of identical size for the 300 ROIs parcellation (see Table 2. Data
for each condition were trimmed such that they all had the same time course length (of 138; see Section 3.5). For each condition, the distributions shown in orange
represent the difference between the mean participant identification accuracy based on the two subnetworks across the outer bootstrap iterations (see Section 2.7).
The orange line indicates the mean of the difference distribution and the blue line indicates zero difference.
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Fig. S11: Participant identification accuracy plotted against subnetwork size for each condition (Pearson dissimilarity). The size of the subnetwork (the number of
ROIs) is also indicated in the inset. The error bars represent standard error of the mean across bootstrap iterations.
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Fig. S12: Combined subnetwork FCs with trimmed time course lengths: Comparison of identification accuracy based on geodesic distance and Pearson dissimilarity
for each condition. Identification was based on combined subnetwork FCs (see Section 3.7). Data for each condition were trimmed such that they all had the same
time course length (of 138; see Section 3.5). For each condition, the distributions shown in orange represent the difference between the mean participant identification
accuracy using the geodesic distance and Pearson dissimilarity across the outer bootstrap iterations (see Section 2.7). The orange line indicates the mean of the
difference distribution and the blue line indicates zero difference.
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Fig. S13: Combined subnetwork vs frontoparietal: Comparison of identification accuracy based on combined subnetwork FCs (see Section 3.7) and
frontoparietal subnetwork FCs (part of the combined subnetwork) for each condition. The geodesic distance measure was used for identification. Data
for each condition were trimmed such that they all had the same time course length (of 138; see Section 3.5). For each condition, the distributions shown in orange
represent the difference between the mean participant identification accuracy based on combined subnetwork FCs and frontoparietal FCs across the outer
bootstrap iterations (see Section 2.7). The orange line indicates the mean of the difference distribution and the blue line indicates zero difference.
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Fig. S14: Combined subnetwork vs default mode: Comparison of identification accuracy based on combined subnetwork FCs (see Section 3.7) and default

mode subnetwork FCs (part of the combined subnetwork) for each condition. The geodesic distance measure was used for identification. Data for each condition
were trimmed such that they all had the same time course length (of 138; see Section 3.5). For each condition, the distributions shown in orange represent the
difference between the mean participant identification accuracy based on combined subnetwork FCs and default mode FCs across the outer bootstrap iterations
(see Section 2.7). The orange line indicates the mean of the difference distribution and the blue line indicates zero difference.
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Fig. S15: Combined subnetwork vs whole-cortex FCs: Comparison of identification accuracy based on combined subnetwork FCs (see Section 3.7) and whole-
cortex FCs for each condition. The geodesic distance measure was used for identification. Data for each condition were trimmed such that they all had the same time
course length (of 138; see Section 3.5). For each condition, the distributions shown in orange represent the difference between the mean participant identification
accuracy based on combined subnetwork FCs and whole-cortex FCs across the outer bootstrap iterations (see Section 2.7). The orange line indicates the mean of
the difference distribution and the blue line indicates zero difference.
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