
Supplementary material - Automated lesion segmentation

with BIANCA: impact of population-level features,

classification algorithm and locally adaptive thresholding

Comparison of BIANCA performance using linear and
non-linear registration for estimating spatial features

Currently, in BIANCA the all the intensity features are calculated in native space
and a linear transformation is required as input to extract the spatial features (spa-
tial coordinates in MNI space). However, a non-linear registration is in general
more suitable for registering single-subject images to MNI, especially in pathologi-
cal brains. Hence, we performed experiments with non-linear registration for getting
spatial coordinates in MNI space, to observe the improvement in BIANCA perfor-
mance.

Figure S1: ROC (left) and SI (right) curves for the cases with linear and non-linear registration for
extracting spatial features, with and without using PPLPM.

Figure S1 shows the ROC curves and SI curves for this experiment on images
of neurodegenerative cases (dataset 1), which would contain more cases of atrophic
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brains and therefore benefit the most from a non-linear registration. It can be
seen from the figure that performing non-linear registration, with or without using
PPLPM, gave negligible difference in the BIANCA performance. This is probably
due to the fact that the classifier in BIANCA takes other features into account
in addition to the spatial coordinates and that the voxel-level prediction is largely
influenced by the intensity features.

Since the use of non-linear registration could still be beneficial in more extreme
cases, in a future release of BIANCA users will be able to provide non-linear warp
fields as an alternative to the linear transformation matrix for getting spatial coor-
dinates.

Alternative classifiers: additional experiments

BIANCA performance using random forest (RF) classifier with larger
number of trees

Figure S2: ROC curves (left) and SI curves (right) for random forest classifier for 100 trees (blue
dashed lines) and 1000 trees (blue solid lines) against KNN classifier currently used in BIANCA
(red solid lines).

For the classifiers experiment specified in section Comparison of alternative clas-
sifiers within BIANCA to observe the effect of various classifiers, we did an initial
preliminary test on the random forest classifier, with wider range of trees (20, 30, 40,
50, 100, 1000). We then narrowed it down, since we observed the best performance
for lower number of trees. For the random forest classifier, higher number of trees
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has been shown to provide better results for various applications. Hence, we have
provided the results using higher number of trees.

In particular, we show the ROC curves and SI curves for 100 and 1000 trees
in figure S2. As it can be observed in the figure, the SI values are higher at lower
thresholds, but they decrease at higher thresholds when increasing the number of
trees.

Comparison of alternative best performing classifiers with KNN in
MWSC dataset

Figure S3: ROC curves for alternative classifiers: (a) random forest (RF), (b) neural network (NN)
and (c) adaboost classifier (AB) for VU Amsterdam, NUHS Singapore and UMC Utrecht cohorts.
Results are shown for each classifier’s best parameters (blue solid line) along with the results for
KNN classifier, currently used in BIANCA.

In NDGEN dataset, the SI values for KNN were significantly higher than RF,
SVM and AB, and non-significantly different from NN. To test the consistency of this
difference across cohorts, we applied the best performing alternative classifiers (RF,
NN and AB) with their best parameters (listed in Table 2 in the main manuscript)
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on the MWSC dataset, since it consists of data from three different cohorts: VU
Amsterdam, NUHS Singapore and UMC Utrecht. Figures S3 and S4 show the
ROC and SI curves for RF, NN and AB against KNN on the 3 MWSC cohorts.
Comparing these figures with Figure 7 of the main manuscript, the trend of ROC
and SI curves for all the classifiers across all cohorts remain similar to those of
NDGEN, although the NN classifier gives slightly lower SI values than the KNN
classifier in the Singapore and Utrecht cohorts.

Figure S4: SI curves for alternative classifiers: (a) random forest (RF), (b) neural network (NN)
and (c) adaboost classifier (AB). Results are shown for each classifier’s best parameters (blue solid
line) along with the results for KNN classifier, currently used in BIANCA.

The paired t-test results on the SI values of KNN and alternative classifiers
(shown in Figure S4) showed the following results:

• On the VU Amsterdam cohort, SI values obtained using the KNN classifier
are not significantly different from those obtained from alternative classifiers
(RF: mean SI = 0.67 ± 0.10 at a threshold of 0.9, p = 0.56; NN: mean SI =
0.65 ± 0.12 at a threshold of 0.8, p = 0.41; AB: mean SI = 0.53 ± 0.20 at a
threshold of 0.4, p = 0.10).
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• On the NUHS Singapore cohort, SI values obtained from KNN are not signif-
icantly different from those obtained from the RF classifier (mean SI = 0.65
± 0.26 at a threshold of 0.9, p = 0.15) but they are significantly higher than
SI values obtained using NN (mean SI = 0.62 ± 0.27 at a threshold of 0.8, p
= 0.009) and AB (mean SI = 0.55 ± 0.26 at a threshold of 0.4, p = 0.005).

• Similarly, on the UMC Utrecht cohort, SI values obtained from KNN are not
significantly different from those obtained from the RF classifier (mean SI =
0.60 ± 0.23 at a threshold of 0.9, p = 0.5), but are significantly higher than
SI values obtained using NN (mean SI = 0.59 ± 0.23 at a threshold of 0.7, p
= 0.01) and AB (mean SI = 0.54 ± 0.28 at a threshold of 0.4, p = 0.02).

Therefore, while SI values obtained using KNN are always significantly higher than
those of AB classifier, they are not significantly different from those of RF and NN
classifiers for most of the cohorts.

LOCATE: additional experiments

Performance of LOCATE with simple linear iterative clustering (SLIC)

Figure S5: Comparison of ROC curves (left) and SI plots (right) for global thresholding (red) with
LOCATE using Voronoi tessellation (black) and SLIC (magenta) on NDGEN dataset.

In order to test possible differences in LOCATE performance with respect to the
tessellation method, we tested LOCATE using SLIC for forming sub-regions. For
this experiment, we set the number of superpixels to 500, since this was comparable
with the number of regions formed with Voronoi tessellation. Figure S5 shows ROC
curves and SI curves for BIANCA using various global thresholds and LOCATE
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using Voronoi tessellation and SLIC on NDGEN dataset. LOCATE gives similar
true positive rates and SI values for both the tessellation methods, with negligible
difference in the performance. This shows that LOCATE is robust with respect to
the method used for forming sub-regions.

The paired t-test results show that the SI values obtained with LOCATE using
Voronoi tessellation were significantly higher than those obtained using SLIC (LO-
CATE Voronoi tessellation SI = 0.77 ± 0.10, LOCATE SLIC SI = 0.76 ± 0.11, p =
0.003).

Figure S6 illustrates examples of LOCATE outputs using SLIC and Voronoi
tessellation compared against the manual segmentation.

Figure S6: Results of LOCATE using Voronoi tessellation and SLIC for forming sub-regions. FLAIR
(a) and manual segmentation (b) shown with LOCATE results (c) and thresholds map (d) using
Voronoi tessellation (top row) and SLIC (bottom row).

Comparison of LOCATE performance in deep and periventricular
regions

We used performance metrics such as TPR, FPR, SI and cluster-wise TPR for
evaluating the performance of LOCATE. In order to determine the performance of
LOCATE in deep and periventricular regions individually and to compare them, we
evaluated the above metrics separately in deep and periventricular regions. We have
already shown the cluster-wise TPR plots in the deep and periventricular regions for
all datasets: NDGEN, OXVASC and MWSC (VU Amsterdam, NUHS Singapore,
UMC Utrecht) in Figure 11 in main manuscript. Also, in Table 3 we have reported
the main and interaction effects on cluster-wise TPR values by performing 2-way
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repeated measures ANOVA. In this section, we provide similar plots and statistical
results on the other measures: TPR, FPR and SI.

Figure S7: ROC curves (a, c) and SI curves (b, d) in periventricular (left) and deep (right) regions
for LOCATE (black) and global thresholding (red) on NDGEN and OXVASC datasets.
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Figure S7 shows the ROC curves and SI plots for NDGEN, OXVASC datasets.
Similarly, figures S8 and S9 show the ROC and SI plots for 3 cohorts of MWSC
dataset.

Figure S8: ROC curves in periventricular (left) and deep (right) regions for LOCATE (black) and
global thresholding (red) on VU Amsterdam (top row), NUHS Singapore (middle row) and UMC
Utrecht (bottom row) datasets.

We also performed 2-way repeated measures ANOVA considering region (deep
and periventricular) and method (LOCATE and Global thresholding at 0.9) as in-
dependent factors and TPR, FPR and SI as the dependent measure. We determined
the main effect of region and method, along with the effect of their interaction, on
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Figure S9: SI curves in periventricular (left) and deep (right) regions for LOCATE (black) and
global thresholding (red) on VU Amsterdam (top row), NUHS Singapore (middle row) and UMC
Utrecht (bottom row) datasets.

the individual measures. Tables S1, S2 and S3 report the descriptive statistics and
ANOVA results for comparison of TPR, FPR and SI values respectively.

For TPR values, LOCATE provides significantly higher TPR values when com-
pared with the global thresholding and TPR values are significantly higher in periven-
tricular regions when compared to deep regions. In almost all datasets, the inter-
action effect is also significant indicating that the increase in TPR using LOCATE
with respect to global threshold was significantly higher in deep regions compared to
periventricular. Even though FPR values are negligible in general, they are higher
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for LOCATE when compared to global thresholding and are higher in the periven-
tricular regions for NDGEN, NUHS Singapore and UMC Utrecht datasets. We
observed that the interaction effect is also significant in most of MWSC cohorts and
NDGEN datasets. The main effect of method is not significant on SI values except
for the NDGEN dataset. However, SI values are significantly higher in periventric-
ular regions when compared with the deep regions for all the datasets.

Overall, we observed significant main effects of both method and region on the
detection of true positive lesions. Additionally, in most of the datasets we observed
a significant interaction effect. This shows that the improvement in detection of true
positive lesions using LOCATE with respect to global thresholding is significantly
higher in deep region compared to periventricular region.

NDGEN OXVASC
VU

Amsterdam
NUHS

Singapore
UMC

Utrecht

D
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ti
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s

Deep
region

LOCATE 0.70 ± 0.14 0.68 ± 0.15 0.69 ± 0.14 0.59 ± 0.23 0.53 ± 0.28

Global 0.9 0.66 ± 0.15 0.57 ± 0.15 0.65 ± 0.15 0.52 ± 0.23 0.48 ± 0.27

Peri-
venticular
region

LOCATE 0.88 ± 0.06 0.85 ± 0.05 0.89 ± 0.08 0.89 ± 0.11 0.82 ± 0.20

Global 0.9 0.86 ± 0.07 0.76 ± 0.07 0.88 ± 0.09 0.87 ± 0.11 0.80 ± 0.21

A
N

O
V

A

Main effect of region
(deep/PV regions)

F(1,19)=43.1
p<0.001
η2p=0.694

F(1,19)=41.4
p<0.001
η2p=0.685

F(1,16)=19.3
p<0.001
η2p=0.547

F(1,19)=50.8
p<0.001
η2p=0.728

F(1,19)=46.7
p<0.001
η2p=0.711

Main effect of method
(LOCATE/Global 0.9)

F(1,19)=15.3
p=0.001
η2p=0.446

F(1,19)=61.1
p<0.001
η2p=0.763

F(1,16)=116.7
p<0.001
η2p=0.879

F(1,19)=54.1
p<0.001
η2p=0.740

F(1,19)=23.6
p<0.001
η2p=0.554

Interaction
(region * method)

F(1,19)=49.2
p<0.001
η2p=0.663

F(1,19)=49.3
p<0.001
η2p=0.721

F(1,16)=0.51
p=0.48
η2p=0.031

F(1,19)=27.8
p<0.001
η2p=0.594

F(1,19)=12.2
p=0.002
η2p=0.391

Table S1: Descriptive statistics and ANOVA results for comparison of TPR values for global
threshold of 0.9 and LOCATE in periventricular and deep regions for MWSC datasets.
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NDGEN OXVASC
VU

Amsterdam
NUHS

Singapore
UMC

Utrecht

D
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s

Deep
region

LOCATE 10.00×10−4 11.3×10−4 9.07×10−4 10.00×10−4 11.00×10−4

Global 0.9 7.00×10−4 8.40×10−4 7.00×10−4 6.00×10−4 7.00×10−4

Peri-
venticular
region

LOCATE 1.9×10−2 2.0×10−2 1.5×10−2 1.7×10−2 1.5×10−2

Global 0.9 1.5×10−2 0.9×10−2 1.5×10−2 1.4×10−2 0.13×10−2

A
N

O
V

A

Main effect of region
(deep/PV regions)

F(1,18)=42.5
p<0.001
η2p=0.703

F(1,16)=0.55
p=0.47
η2p=0.033

F(1,18)=24.3
p<0.001
η2p=0.574

F(1,16)=113.2
p<0.001
η2p=0.876

F(1,16)=34.3
p<0.001
η2p=0.682

Main effect of method
(LOCATE/Global 0.9)

F(1,18)=28.9
p=0.001
η2p=0.616

F(1,16)=1.12
p=0.3

η2p=0.065

F(1,18)=0.07
p=0.8

η2p=0.004

F(1,16)=34.6
p<0.001
η2p=0.684

F(1,16)=12.6
p=0.003
η2p=0.440

Interaction
(region * method)

F(1,18)=23.9
p<0.001
η2p=0.570

F(1,16)=0.34
p=0.57
η2p=0.021

F(1,18)=2.39
p=0.139
η2p=0.118

F(1,16)=23.2
p=0.001
η2p=0.592

F(1,16)=12.1
p=0.003
η2p=0.430

Table S2: Descriptive statistics and ANOVA results for comparison of FPR values for global
threshold of 0.9 and LOCATE in periventricular and deep regions for MWSC datasets.

NDGEN OXVASC
VU

Amsterdam
NUHS

Singapore
UMC

Utrecht

D
es
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s

Deep
region

LOCATE 0.67 ± 0.14 0.63 ± 0.20 0.65 ± 0.11 0.57 ± 0.19 0.52 ± 0.26

Global 0.9 0.68 ± 0.13 0.62 ± 0.18 0.65 ± 0.11 0.57 ± 0.20 0.50 ± 0.27

Peri-
venticular
region

LOCATE 0.80 ± 0.10 0.76 ± 0.14 0.72 ± 0.12 0.79 ± 0.14 0.70 ± 0.20

Global 0.9 0.81 ± 0.09 0.76 ± 0.12 0.72 ± 0.12 0.79 ± 0.15 0.70 ± 0.20

A
N

O
V

A

Main effect of region
(deep/PV regions)

F(1,19)=57.9
p<0.001
η2p=0.753

F(1,19)=22.4
p<0.001
η2p=0.583

F(1,16)=4.45
p=0.048
η2p=0.190

F(1,19)=28.9
p<0.001
η2p=0.604

F(1,19)=30.1
p<0.001
η2p=0.613

Main effect of method
(LOCATE/Global 0.9)

F(1,19)=5.4
p=0.031
η2p=0.222

F(1,19)=0.09
p=0.76
η2p=0.006

F(1,16)=0.82
p=0.38
η2p=0.041

F(1,19)=0.72
p=0.41
η2p=0.037

F(1,19)=0.76
p=0.4

η2p=0.039

Interaction
(region * method)

F(1,19)=0.24
p=0.63
η2p=0.013

F(1,19)=2.52
p=0.13
η2p=0.136

F(1,16)=1.14
p=0.3

η2p=0.056

F(1,19)=0.32
p=0.58
η2p=0.016

F(1,19)=2.66
p=0.12
η2p=0.123

Table S3: Descriptive statistics and ANOVA results for comparison of SI values for global
threshold of 0.9 and LOCATE in periventricular and deep regions for MWSC datasets.
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