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SUMMARY

The gastrointestinal tract is covered by a single layer
of epithelial cells that, together with the mucus
layers, protect the underlying tissue from microbial
invasion. The epithelium has one of the highest turn-
over rates in the body. Using stable isotope labeling,
high-resolution mass spectrometry, and computa-
tional analysis, we report a comprehensive dataset
of the turnover ofmore than 3,000 and the expression
of more than 5,000 intestinal epithelial cell proteins,
analyzed under conventional and germ-free condi-
tions across five different segments in mouse intes-
tine. The median protein half-life is shorter in the
small intestine than in the colon. Differences in
protein turnover rates along the intestinal tract
can be explained by distinct physiological and im-
mune-related functions between the small and large
intestine. An absence of microbiota results in an
approximately 1 day longer protein half-life in germ-
free animals.
INTRODUCTION

The gastrointestinal tract is responsible for the digestion and

absorption of nutrients. It is covered by a single layer of epithelial

cells that together with the mucus layers protect the organism

from bacterial invasion (Johansson et al., 2013; Muniz et al.,

2012). All of the epithelial cells originate from the stem cells

in the crypt bottom. The enterocytes, enteroendocrine, and

goblet cells differentiate and migrate over 3–5 days from the

crypt to the villus tip, where they eventually are sloughed off;

Paneth cells in the small intestine remain at the base of the crypt

(Barker, 2014; Clevers, 2013; van der Flier and Clevers, 2009).

The gastrointestinal tract performs region-specific tasks. The

small intestine continues digestion that started in the mouth

and stomach, with the help of pancreatic enzymes and bile

acids. Released nutrients are taken upmainly by the enterocytes

of the duodenum and jejunum, whereas the bile acids are ab-

sorbed in the ileum (Dawson and Karpen, 2015). In the colon, wa-
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ter and salts are reabsorbed and commensal bacteria ferment

complex indigestible carbohydrates from the food and mucus

(Salyers et al., 1977) to produce short-chain fatty acids (SCFAs)

that serve as an energy source for colonocytes (Bergman, 1990).

The gastrointestinal tract harbors a high number of bacteria.

The small intestine is more exposed to the intestinal bacteria,

as the mucus layer is unattached and permeable (Ermund

et al., 2013). However, fewer microbes reside in the small intes-

tine (O’Hara and Shanahan, 2006) due to the fast passage time

(0.5–5 h) and a high concentration of antimicrobial peptides

originating largely from the Paneth cells (Donaldson et al.,

2016). The colon has no Paneth cells and instead has a thicker

two-layered mucus, where the inner layer is attached to the

epithelium and normally impenetrable to bacteria (Johansson

et al., 2008). The outer mucus layer is non-attached and more

expanded, allowing it to become the habitat for the commensal

bacteria. The mucus in both the small and large intestine is

composed of a limited set of proteins, where the MUC2 mucin

is forming the structural skeleton of the water-rich mucus (Jo-

hansson et al., 2008; Rodrı́guez-Piñeiro et al., 2013).

The role and effect of the microbiota on the host has been

extensively studied using germ-free (GF) animals. This has

shown that themicrobiota has a high impact on host metabolism

by increasing energy uptake from food, modifying bile acids,

activating G-coupled-receptors, and affecting lipid metabolism

(Koh et al., 2016; Sommer and Bäckhed, 2013; Wahlström

et al., 2016). The microbiota also modulates the immune system

and affects intestinal epithelial cell proliferation, differentiation,

and apoptosis (Belkaid and Hand, 2014; Louis et al., 2014;

Peck et al., 2017). The gastrointestinal epithelium has one of

the highest renewal rates in the body (Creamer et al., 1961),

whereas the turnover time of epithelial cells in the duodenum

and ileum of GFmice is twice as long as for conventionally raised

(CR) mice (Abrams et al., 1963; Lesher et al., 1964). This is re-

flected in a faster general protein turnover in CR than in GF

animals (Muramatsu et al., 1983). Such studies are based on

radioactive pulse labeling, which is unable to provide detailed

information on the turnover rate of individual proteins.

Protein turnover rate is defined as a balance between protein

synthesis and degradation that provide information on overall

cellular responses (Larance and Lamond, 2015). Proteins with

a high turnover rate can change their abundance rapidly and,
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hence, are considered regulatory important (Claydon and Bey-

non, 2012). Identification of long-lived proteins suggests

candidates that might have a higher risk for accumulating spon-

taneous chemical damages (Toyama et al., 2013).With the use of

mass-spectrometry-based techniques, stable-isotope-labeled

amino acids have become the preferred approach, allowing

studies of individual protein turnover (Claydon et al., 2012).

Stable isotope labeling by amino acids in cell culture (SILAC)

(Ong et al., 2002) has successfully been used to study protein

turnover of cells in culture (Boisvert et al., 2012; Cohen et al.,

2013) and animals (Ruhs et al., 2012; Westman-Brinkmalm

et al., 2011). Such studies have revealed that the protein turnover

depends on organ (Claydon et al., 2012) or subcellular location

(Boisvert et al., 2012; Johnson et al., 1999). The protein turnover

has also been shown to been reduced during starvation (Price

et al., 2012) and by aging (Dai et al., 2014). However, no studies

have addressed the individual protein turnover in epithelial

cells or mucus along the gastrointestinal tract and the influence

of microbiota.

To obtain a detailed understanding of the turnover and the

abundance of individual proteins in intestinal epithelial cells

and mucus, we have fed mice with food containing stable-

isotope-labeled lysine and followed its incorporation by mass-

spectrometry-based proteomics. We analyzed different regions

of the small and large intestine of CR and GF mice. We have,

thus, generated a comprehensive database for general use

that demonstrates that the individual protein turnover rate

varies along the gastrointestinal tract and is affected by the

microbiota.

RESULTS

Protein Turnover Rates in CR and GF Mice
CR andGFmicewere kept for 1 week on the amino-acid-defined

diet containing unlabeled lysine, after which the diet was re-

placed with the 13C-lysine diet. Animals were sacrificed at 0, 1,

2, 3, 5, 7, 10, 14, and 32 days, and the incorporation of

the heavy-labeled lysine into the epithelial cells and the mucus

was analyzed by nanoscale liquid chromatography-tandem

mass spectrometry (nanoLC-MS/MS), as illustrated in Fig-

ure 1A. The incorporation of heavy label into the epithelial cell

proteins reached 85% in the CR and 82% in GF mice after

32 days (Figure 1B). The incorporation of 13C-lysine was slower

in the mucus and reached 83% in CR and 77% in GF mice after

32 days of labeling (Figure 1B).

The half-life of individual proteins was calculated when at

least three time points were present from the same location,

something that was possible for 3,041 proteins. Details for the

calculation are presented in STAR Methods, and the complete

dataset is available in Table S1. The median half-life of CR

mice proteins ranged from 3.5–4.2 days in intestinal epithelial

cells (Figures 2A–2E, red histograms) to 4.5–5.5 days in the

mucus (Figure 2F). The median protein half-life in intestinal

epithelial cells of GF mice (Figures 2A–2E, blue histograms)

was approximately 1 day longer than in CR animals (red

histograms).

For further analysis, we used turnover rate, which is the first-

order rate constant for degradation and more directly illustrates
1078 Cell Reports 30, 1077–1087, January 28, 2020
protein dynamics than half-life (Claydon and Beynon, 2012).

The median CR mice protein turnover rate was faster in the

small intestine than in the colon, a difference not noticed in GF

mice (Figure 2G). One explanation for a slower protein turnover

rate in the colon of CR mice is that the colonocytes are using

bacterium-produced light lysine (Neis et al., 2015). Lysine is an

essential amino acid that can be synthesized by microbiota

and is also a preferred amino acid substrate used by colonic

bacteria (Dai et al., 2011).We analyzed the relative levels of

heavy label in bacterial and mouse peptides present in feces

(Figure S3). The incorporation of the label was similar until the

6th day, and from the 11th day, the bacterial proteins lagged

behind (Figure S3), suggesting that the microbiota is using an

alternative light lysine source. It has been suggested that 1%–

20% of the lysine in the host is derived from the intestinal

microbiota (Metges, 2000). Modeling of microbial community

metabolism suggested that the human gut microbiota produces

less than 1 mmol/L of lysine per day (Shoaie et al., 2015). As the

diet used here contained approximately 40 mmol/L of lysine, the

bacterially produced lysine should, in theory, contribute less

than 2.5% to the lysine pool. Therefore, it can be suggested

that the CR mice colon epithelial cells are not using any notable

amounts of bacterial lysine.

Another explanation for the difference in protein turnover be-

tween CR mice small intestine and colon could be that the

labeled lysine is taken up faster in the proximal parts of the in-

testine. Absorption of amino acids is rapid in the duodenum and

jejunum, slower in the ileum, and not significant in the large in-

testine, where amino acids are rather used by microbial meta-

bolism (Barrett et al., 2010; Davila et al., 2013). We identified

two amino acid transporters capable of transporting the

cationic amino acid lysine: transporter Slc3a1, which was

mainly present in the small intestine (Figure 2H), and the so-

dium- and chloride-dependent transporter Slc6a14 (Anderson

et al., 2008; Bröer, 2008) present only in the colon (Figure 2I).

Different transporters in the small intestine and colon could

lead to differences in lysine uptake. Despite the low Slc3a1

abundance in the colon, the protein was three times higher in

GF mice proximal colon and not detectable in the CR mice

distal colon. The Slc6a4 levels were also increased in the GF

mice colon. This might suggest an increased absorption of

the labeled lysine in the colon of GF mice that could explain a

more similar turnover rate between GF mice small intestine

and colon than that observed for CR mice.

A third explanation for the observed differences between the

small intestine and colon of CR and GF mice is that protein turn-

over is affected by the epithelial cell turnover rate, which is a

combination of cell proliferation in the crypt, cell migration, and

cell shedding. Long-lived proteins with slower turnover rate

than the cell turnover are primarily removed by cell division

(Zhang et al., 2017); therefore, to estimate cell turnover, we

analyzed slow-turnover proteins dependent on replication,

namely, the histone proteins: H1 (Hist1h1b, Hist1h1c, and

Hist1h1d), H2A (Hist2h2aa1), and H4 (Hist1h4a) (Banday et al.,

2014) and mitochondrial transcription factor Tfam (Figures 2J–

2K). Tfam regulates mitochondrial DNA copy number in mam-

mals (Ekstrand et al., 2004), and as mitochondria only divides

at mitosis, the turnover of Tfam can be taken as an estimate of
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Figure 1. Experimental Setup for Protein Turnover Rate Studies in Mice Intestinal Epithelial Cells and Mucus

(A) Conventionally raised (CR) and germ-free (GF) mice were kept for 1 week on an amino-acid-defined diet (Lys [L]). Thereafter, the food was replaced by the

same diet where lysine was substituted with 13C-lysine (Lys6 [H]). Animals were sacrificed at time points 0, 1, 2, 3, 4, 5, 7, 10, 14, and 32 days after the start of the

heavy-labeled diet. Small intestine was divided into five parts and colon into two; caecum was excluded. For the proteomics analysis we used first (duodenum

[DE]), third (middle jejunum [MJE]), and fifth (ileum [IE]) part of small intestine and both proximal (PCE) and distal colon (DCE) epithelial cells. Mucus was collected

from the ileum and distal colon (IM and DCM, respectively). Mass-spectrometry-based proteomic analyses were used to follow the 13C-lysine incorporation into

the freshly synthesized proteins, as indicated by the tryptic peptide SGDFELIK from the Muc2 mucin.

(B) Heavy label incorporation into proteins in epithelial cells and mucus. Data points represent the average value of heavy label in at each time point for the

different segments and mucus.

See also Figures S1 and S2.
a cell turnover. The estimated epithelial cell turnover based on

the mean of these six proteins was 0.154–0.149 days�1, corre-

sponding to 4.5–4.7 days in CR mice small intestine, and

0.140–0.119 days�1, corresponding to 5–5.9 days in CR mice

colon (Figure 2L). In GF mice, the cell turnover was 0.125–

0.115 days�1, corresponding to 5.6–6.1 days (Figure 2L), and

there was no difference between small and large intestine.

Our estimated epithelial cell turnover rates follow the median

protein turnover rate (Figure 2L) and are in line with previous es-

timations of 3–5 days for small intestine and 5–7 days in colon

(Barker, 2014). In GF mice, epithelial cell turnover has been

shown to be longer (Park et al., 2016).

Protein Turnover Rate Correlation with Function
To determine functions associated with the proteins having the

fastest or slowest turnover rates (top 25%), enrichment analysis

was performed using the Gene Ontology (GO) terms ‘‘biological

process’’ and ‘‘molecular function’’ (Figure 3A). Proteins

belonging to the functional groups ‘‘oxidoreductase,’’ ‘‘carbohy-
drate metabolism,’’ and ‘‘lipid, fatty acid and steroid meta-

bolism’’ had typically fast turnover in the small intestine and

slow turnover in the colon (Figure 3A). For GF mice, this switch

happened in the middle jejunum (Figure 3A).

Next, we were interested in how the protein abundance

correlates with protein turnover rate. The abundance was calcu-

lated as molecules per cell for 5,012 proteins based on at least

three replicates (Table S1) and compared to protein turnover

(Figure S4). Although there was no correlation between protein

turnover rate and abundance (Figure S4), we found that proteins

with high abundance and fast turnover in small intestine were

enriched in proteins involved in metabolism, whereas in colon,

metabolic pathways had high abundance and slow turnover

(Figure S4). High-abundance proteins with slow turnover in small

intestine were involved in protein biosynthesis, which had high

abundance and fast turnover in colon (Figure S4). Low-abun-

dance proteins were mainly associated with translation, nucleic

acid binding, and signal transduction. As mass-spectrometry-

based proteomics has limitations in detecting low-abundance
Cell Reports 30, 1077–1087, January 28, 2020 1079
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Figure 2. Protein Turnover Rates in CR and

GF Mice

(A–F) Histograms of protein half-lives along the

gastrointestinal tract divided into 50 bins. The

median half-life and the number of protein half-

lives for each of the locations are stated on top of

the corresponding histogram. DE, duodenum

epithelial cells; MJE, middle jejunum epithelial

cells; IE , ileum epithelial cells; PCE, proximal colon

epithelial cells; DCE, distal colon epithelial cells;

IM, ileum mucus; DCM, distal colon mucus as

explained in Figure 1A. See also Figure S3.

(G) Boxplots represent the distribution of turnover

rates for all of the proteins, 25th and 75th percen-

tiles, and the whiskers indicate the values within 1.5

times the interquartile range [IQR]. The dotted line

represents the median of protein turnover rates.

(H and I) Protein abundances and turnover rates for

lysine transporters Slc3a1 and Slc6a14. Dots con-

nected with solid line represent the specific protein

turnover rate; error bars represent coefficient of

variance (CV). Dotted lines represent median pro-

tein turnover rate of all proteins. Bars represent

median protein abundance with standard deviation

(SD). Asterisk above turnover rate dots represents

protein turnover rate difference GF versus CR, with

p < 0.1 based on Perseus (version 1.5.0.0) Signifi-

cance A test. Asterisk above bars represents pro-

tein abundance difference GF versus CR, with p <

0.05 based on Significance A test.

(J and K) Median protein turnover rate (dotted line)

and turnover rates of proteins used for cell turnover

estimation in CR (J) and GF mice (K). Tfam - Turn-

over rate of Tfam. Hist - turnover rates of histones

(Hist1h1b, Hist1h1c, Hist1h1d, Hist2h2aa1, and

Hist1h4a).

(L) Median protein turnover rates and estimated cell

turnover rate for CR and GF mice.
proteins, less turnover rate values were available for those pro-

teins (Figure S4).

To study turnover rate dynamics along the intestine,we focused

on proteinswith turnover calculated in all of the epithelial cell loca-

tions (1,518 proteins in CR and 1,230 proteins in GF mice). This

included approximately 60%–80% of the entire rates determined;

as for the remaining proteins, turnover rates were not possible to

calculate in every segment due to low abundance. Proteins

belonging to glycolysis had a higher than median turnover along

the CRmice small intestine; tricarboxylic acid and oxidative phos-

phorylation pathways followed the glycolytic protein patterns,with

slightly slower turnover in small intestine and slower than median

turnover in colon (Figure 3B). Proteins involved in energy produc-

tion had a decreasing turnover trend toward the distal parts of

intestine. In GF mice, glycolysis and tricarboxylic acid pathway

proteins had higher turnover in duodenum and close to median

in rest of the small intestine (Figure 3B). Additional examples of

protein turnover and abundances for enzymes in those pathways

are presented in Figure S5.

It is known that long-lived proteins often are components of

large protein assemblies as histones, nuclear pore complex, or

structural proteins like filaments, lamins, and myelin proteins

(Toyama et al., 2013). We confirmed this, as histone and ribo-

somal proteins had slower than median turnover (Figure 3B).
1080 Cell Reports 30, 1077–1087, January 28, 2020
The longest living proteins in gastrointestinal epithelial cells

of all locations were structural components Transgelin (Tagln),

Filamin A (Flna), and Plastin-2 (Lcp1) that all had an exceptionally

slow turnover (<0.13 days�1, corresponding to a half-life more

than 5 days) (Figure S5).

Protein Turnover Rate Comparison between GF and CR
Mice
Protein turnover rates clustered according to their locations rather

than to colonization status (Figure 4A). Segments closer to each

other clustered together and mucus samples clustered together

with colon epithelial cell samples (Figure 4A). This shows that

the turnover rate is dependent on the protein location along the in-

testinal tract and is less affected by colonization. Although the

turnover rate in GF mice is slower, the overall differences are

much bigger, driven by the varying biological roles of each individ-

ual segment. Protein turnover rates correlate the best for GF and

CR mice in duodenal epithelial cells (Figure 4B) and distal colon

mucus samples, with correlations of 0.58 and 0.82, respectively

(Figure 4B). The ileum showed the lowest correlation between

GF and CR mice, with a correlation of 0.34 (Figure 4B).

The GF-to-CR ratio of the median turnover rate was 0.75 in

duodenum, 0.72 in middle jejunum, 0.76 in ileum, 0.84 in colon,

0.77 in ileum mucus, and 0.97 in colon mucus (Figure 4C).
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Figure 3. Functional Characterization and Dynamics of Protein Turnover Rate along the Intestine

(A) Enrichment analysis for proteins with fastest and slowest turnover rate in CR and GF mice. Black dotted line represents median of turnover rates, 50% of the

protein turnover rates fall into dark gray area, and light gray area represents 1.5 times the IQR. The arrows show the area for top 25%of proteins with the fastest or

slowest turnover rate, and the bar graphs show distribution of Panther GO ‘‘biological process’’ and ‘‘molecular function’’ terms associated with the proteins with

the fastest and slowest turnover rate for each location. See also Figure S4.

(B) Proteins with turnover rate calculated in all epithelial cell locations and belonging into energy conversion pathways or protein complexes.

See also Figure S5.
Proteins with a turnover rate significantly different in GF mice

compared to CR mice and, thus, affected by microbiota were

largely found in the biological process and molecular function

categories (all the data are presented in Table S2). Selected

terms are presented as a bar graph in Figure 4D (relatively faster

in GF mice, dark blue; relatively faster in CR mice, dark red). The

same was done for proteins with a significantly different abun-

dance (higher in CR mice, light red; higher in GF mice, light

blue). The dynamics between protein turnover and alterations

in abundance was different; for example lipid, fatty acid, and ste-

roid metabolism proteins were increased in GF mice small intes-

tine, whereas similar levels of proteins had higher turnover either

in GF or CR mice small intestine (Figure 4D). Proteins involved in

oxidoreduction had more proteins with faster turnover in CR

mice small intestine, whereas more oxidoreductases had higher

abundance in GF mice duodenum and ileum (Figure 4D). Protein

biosynthesis members had mostly higher turnover in GF mice

and higher abundance in jejunum and ileum (Figure 4D). Only a
few proteins affected by microbiota were shared between the

locations. Furthermore, microbiota-dependent differences in

protein turnover were not related to the alterations in protein

amounts. A complex relationship between protein turnover and

abundance is demonstrated by fatty-acid-binding proteins

Fabp1 and Fabp2 and apolipoproteins Apoa1 and Apoa4 (Fig-

ure 4E). Protein abundance (bars) and turnover (lines as

compared to all proteins, dotted lines) are presented on the

same graph showing that all of those lipid-binding proteins are

strongly expressed along the small intestine, responding to

microbiota with different protein turnover rate and abundance

regulation (Figure 4E).

Turnover Rate of Mucus and Other Secreted Proteins
The heavily glycosylated Muc2mucin is produced and secreted

by the goblet cells and is the major component of the protective

mucus layer together with the mucus related proteins Clca1,

Fcgbp, and Zg16 (Johansson et al., 2008). The Muc2, Clca1,
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Figure 4. Comparison of Protein Turnover Rate between GF and CR Mice

(A) Heatmap representing the similarity in global protein turnover rates clustered based on Pearson correlation.

(B) Correlation of GF versus CR protein turnover rates between each sample analyzed. Blue and red dots represent the most significantly changed protein

turnover rates (p < 0.1) in GF or CR mice, respectively. R, Pearson correlation.

(C) Distribution of protein turnover rate ratios (GF/CR) before normalizing to 1. Median values are indicated above curves.

(D) Most significantly changed protein turnover rates and abundances at each intestinal location annotated into Panther biological process (BP) and molecular

function (MF) terms. The proteins with significantly faster turnover rate (p < 0.1) are given for GF in dark blue and CR in dark red. The proteins with higher

abundance (p < 0.05) in GF or CR mice are presented in the light blue or light red boxes, respectively. Asterisk shows significantly enriched terms (p < 0.05).

Extended data can be found in Table S2.

(E) Proteins involved in lipid transport. Fabp1, liver-type fatty acid binding protein; Fabp2, intestinal fatty acid binding protein; Apoa1, Apolipoprotein A-I; Apoa4,

Apolipoprotein A-IV. Bars represent protein abundance calculated based on MS peak intensity with SD; dots with connecting lines represent specific protein

turnover rate and error bars coefficient of variance; dotted lines represent median protein turnover rate of all proteins; asterisk above dots represents protein

turnover rate difference of GF versus CR, with p < 0.1 based on Significance A test; asterisk above bars represents protein abundance difference of GF versus CR,

with p < 0.05 based on Significance A test. GF, blue; CR, red.
and Fcgbp epithelial cell protein abundances (bars on Figure 5A)

were unchanged by bacteria, but interestingly, the Gram-posi-

tive bacteria binding protein Zg16 was decreased in small
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intestine (Figure 5A). Mucus proteins in both CR and GF

mice had faster turnover (dots with connecting lines) than me-

dian (dotted lines) along the intestine (Figure 5A). The mucus



main components had an almost two times faster turnover

rate in the colon than the cell turnover rate (Figure 5B), suggest-

ing that mucus is resynthesized almost two times in the colon

during the average lifetime of epithelial cells. In GF mice, the

difference between mucus components and estimated cell

turnover was similar between small intestine and colon

(Figure 5B).

The median protein turnover rate in CR mice ileum and distal

colon mucus was slower than in the corresponding epithelial

cells (Figure 5C). In addition to the main secreted goblet cell

components, mucus contained cellular proteins from shed

cells that have longer half-life in mucus than in epithelial cells.

Predicted secreted proteins based on the presence of a signal

peptide had a median protein turnover in the mucus close to

that of the epithelial cells (Figure 5C). Additional to known

mucus proteins, apolipoproteins Apoa1 and Apoa4 had faster

turnover in mucus (Figure 5D). Apoa1 is released as a free apoli-

poprotein from the apical side of enterocytes into the lumen

in the fasting state (Danielsen et al., 2012, 1993). Also, the trans-

membrane mucin Muc13 and polymeric immunoglobulin

receptor (Pigr) had faster turnover in the mucus samples (Fig-

ure 5D). Pigr translocates immunoglobulin A (IgA) over the

epithelium and is secreted together with IgA into the mucus (Jo-

hansen and Kaetzel, 2011).

In GF mice, the difference between median protein turnover in

mucus and epithelial cells was smaller, indicating an increased

cell lifespan and a slower mucus turnover (Figure 5C). This

finding is supported by the observation that GF mice have

reduced cell shedding (Hughes et al., 2014), and the lack of bac-

terial products that stimulate mucus can be expected to cause a

slower mucus turnover (Birchenough et al., 2016). Still, the

secreted proteins have a relatively faster turnover also in GF

mice mucus than that in cells (Figure 5D).

DISCUSSION

The present results suggest a dynamic and variable protein

turnover rate along the intestine that is affected by microbiota.

Median protein turnover rate in CR mice epithelial cells was

0.195 day�1 in duodenum, 0.188 day�1 in jejunum,

0.186 day�1 in ileum, 0.163 day�1 in proximal colon, and

0.168 day�1 in distal colon. Median protein turnover rate values

for different mouse tissues have been reported: for liver

0.162 day�1, for kidney 0.156 day�1, for cardiac muscle

0.059 day�1, and for skeletal muscle 0.023 day�1 (Claydon

et al., 2012). Faster protein turnover rate in intestinal epithelial

cells is in accordance with previous suggestions that the

gastrointestinal epithelium is the organ with the highest turnover

rate in the body (Creamer et al., 1961). We further observed that

the protein turnover rate decreases in the same organ along the

proximal-to-distal direction. A similar trend was found in the

human small intestine after 13C-leucine administration (Naksha-

bendi et al., 1999). This might be due to the proximal small

intestine being the site for the first contact with the ingested

food and at a high demand for adaptation that is gradually

decreasing distally. This also explains why proteins involved in

energy metabolism, especially in glycolysis, have fast turnover

in the small intestine.
In the colon, the metabolic pathways have a slower turnover

rate. This can be explained by the observation that colonocytes

use bacterium-produced SCFAs as their primary energy source,

whereas small intestinal epithelial cells largely utilize glucose

(den Besten et al., 2013a; Donohoe et al., 2011). To evaluate

the effect of the microbiota, we analyzed protein turnover in

GF mice and found that the protein turnover was slower and

there was no decrease in the proximal-distal direction. It has

previously been suggested that the small intestinal epithelial

cells of GF mice have a slower turnover due to luminal bacterial

signals controlling the epithelial cell apoptosis (Alam et al., 1994;

Hausmann, 2010; Kim et al., 2010; Savage et al., 1981), induction

of stem cell proliferation (Buchon et al., 2009; Jones et al., 2013),

development of villus capillary networks (Reinhardt et al., 2012),

and Paneth cell differentiation (Stappenbeck et al., 2002). Here,

we also show that protein turnover rate is slower in GF mice

intestinal epithelial cells.

Fast turnover proteins in the small intestine were involved in

energy metabolism, and slow turnover proteins along the intes-

tine were proteins like histones, ribosomes, and cell structural

components. In GF mice, glycolysis and citric acid pathway

proteins had higher turnover in only the duodenum and close

to median in the rest of the small intestine; oxidative phosphory-

lation pathway enzymes had close or slower than median turn-

over along the whole intestine. Colonocytes of GF mice have

been shown to be energy deprived and require autophagy-

derived amino acids for their energy demand (Donohoe et al.,

2011). This could be a reason for slower than median turnover

of energy-generating pathways in GF mice. Interestingly, actin-

binding cytoskeletal proteins had faster turnover in CR colon,

something that could be related to microbiota-induced

apoptosis in the CR colon, as actin-binding proteins are involved

in apoptosis (Desouza et al., 2012; Gourlay and Ayscough,

2005). Ribosomal proteins and protein biosynthesis proteins

had relatively faster turnover in GF mice, which may be a cellular

compensation for slower turnover in metabolic pathways.

The bacterial influence on protein abundance and turnover

rate was dependent on the intestinal segment, as very few pro-

teins were affected in all epithelial cells samples. Microarray

analyses have previously shown that the responses to micro-

biota are site specific along the intestine (Larsson et al., 2012)

and along the crypt-tip axis (Sommer et al., 2015). One of the

most affected pathways is lipid metabolism, as GF are leaner

than CR mice and are protected against diet-induced obesity

due to the increased fatty acid metabolism (Bäckhed et al.,

2004, 2007; Camp et al., 2014; Larsson et al., 2012; Sommer

et al., 2015). Global transcriptome comparisons of GF and CR

mice intestine have demonstrated that the gene expression of

proteins involved in lipid metabolic processes and cholesterol

biosynthesis is affected by microbiota (Camp et al., 2014; Lars-

son et al., 2012; Sommer et al., 2015). An important reason

for this is likely that the bacterially produced SCFAs affect the

epithelial cell metabolism (den Besten et al., 2013b). Current

data demonstrate that microbiota affects the turnover of proteins

involved in lipid, fatty acid, and steroid metabolism along the

intestine, which do not correlate with alterations in protein

abundance. Protein levels were increased in GFmice duodenum

and ileum, and the corresponding turnover rate was faster in CR
Cell Reports 30, 1077–1087, January 28, 2020 1083
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Figure 5. Turnover Rate and Protein Abundance for Mucus Components

(A) Turnover and abundance of Muc2, Clca1, Fcgbp, and Zg16. Bars represent protein abundance calculated based on MS peak intensity with SD; dots with

connecting lines represent specific protein turnover rate and error bars coefficient of variance; dotted lines represent median protein turnover rate of all proteins;

asterisk above dot represents protein turnover rate difference GF versus CR, with p < 0.1 based on Significance A test. GF, blue; CR, red.

(B) Turnover rate of mucus main components and estimated cell turnover (median of Tfam, Hist1h1b, Hist1h1c, Hist1h1d, Hist2h2aa1, and Hist1h4a) on the

background of all of the turnover rates.

(C) Turnover of all proteins: black empty boxes represent all proteins in epithelial cells; green filled boxes represent all of mucus proteins; and empty green boxes

represent all secreted proteins in mucus (mucus proteins with a signal sequence). Boxes represent the medians and 25th and 75th percentiles, and the whiskers

indicate the values within 1.5 times the IQR. Median protein turnover rate for mucus and for secreted proteins in mucus has been compared to epithelial cells; ns,

non-significant. ***p % 0.0002; ****p % 0.0001 as determined with one-way ANOVA followed by Dunnett’s multiple comparison test.

(D) Protein turnover of mucus components in ileum and distal colon for epithelial cells (filled dots) and mucus (empty dots) in GF (blue) and CR (red) mice.
mice ileum and GF mice distal colon. Altered protein turnover

rates in response to the luminal bacteria were sometimes

accompanied with changes in protein abundance (Fabp2 in

distal colon epithelial cells (DCE), Apoa1 in middle jejunum

epithelial cells (MJE); Figure 4E). However, the change in protein

turnover rate can also be only an indication of protein regulation

(Fabp1 in ileum epithelial cells (IE), Apoa1 in proximal colon

epithelial cells (PCE); Figure 4E).

The intestinal mucus is the first defense line against bacteria.

In the small intestine, the mucus is unattached and penetrable

to bacteria (Ermund et al., 2013). In the colon, on the other

hand, the mucus is built by a two-layer system: an inner layer

attached to the epithelium, impenetrable to and devoid of bacte-
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ria, and an outer non-attached mucus layer that hosts the

commensal bacteria (Johansson et al., 2008). The turnover of

mucus main components was faster in the colon than in small in-

testine compared to the cell turnover and accompanied with

higher protein concentration. The colon relies more on a thick

mucus layer for its protection, which demands an increased

mucus synthesis capacity in the presence of bacteria, which is

reflected in the present observations.

Extracellular proteins that are immediately secreted from

the cell do not contribute to the intracellular pool of unlabeled

proteins (Hammond et al., 2016). This also means that

secreted proteins should be labeled more rapidly than the

intracellular proteins. We show here that the secreted



proteins have faster turnover in the mucus than in epithelial

cells, something that could be utilized to distinguish between

true mucus proteins and cellular contaminations due to the

cell shedding.

Protein turnover rate, as measured with heavy-isotope-

coded amino acid incorporation in vivo, has to consider dilu-

tion of the protein pool by cell division and protein degrada-

tion. Although the effect of protein degradation that results

in circulation of unlabeled amino acids from old proteins (as

well as labeled peptides from newly synthesized proteins)

has been considered by using miscleaved peptides to calcu-

late maximum relative isotope abundance (see STAR

Methods), cell division has been neglected. Comparisons be-

tween GF and CR mice protein turnover rate are further

complicated by the differences in morphology of the villi,

longer and thinner villi causes slower cell traveling time along

the crypt-villus axis in GF (Park et al., 2016; Reinhardt et al.,

2012). To evaluate differences in cell division between small

intestine and colon in CR and GC mice, we have estimated

cell turnover by using median turnover rate of five slow turn-

over histone proteins and replication-dependent Tfam. The

estimated epithelial turnover was in line with the previous

knowledge that cell turnover is slower in the colon than in

the small intestine (Barker, 2014; Messier and Leblond,

1960), and it is slower in GF mice (Abrams et al., 1963; Lesher

et al., 1964; Park et al., 2016). Despite the limitations, the pre-

sented results are in line with previous observations and

extend these by providing individual protein turnover rates

and protein amounts in epithelial cells and mucus along the

gastrointestinal tract.

Conclusions
Using labeled-lysine-containing food combined with MS

enabled us to estimate both individual protein turnover rates

and abundances in isolated epithelial cells and mucus from

different parts along the mouse intestine. We found slower turn-

over in colon than in small intestine, likely related to the slower

metabolic activity of colonocytes. There was a general slower

turnover in the GFmice, but this varied between spatial locations

and individual proteins. The fastest turnover rateswere observed

for metabolic enzymes belonging to the glycolysis and citric acid

cycle, whereas cell structural proteins had the slowest protein

turnover. The present dataset (Table S1) provides a resource

for mining proteins for turnover rate and abundance in the

epithelial cells and mucus along the intestinal tract and their al-

terations upon bacterial conventionalization.
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sen, J., Ley, R.E., and Bäckhed, F. (2012). Analysis of gut microbial regulation

of host gene expression along the length of the gut and regulation of gut micro-

bial ecology through MyD88. Gut 61, 1124–1131.

Lesher, S., Walburg, H.E., Jr., and Sacher, G.A., Jr. (1964). Generation cycle in

the duodenal crypt cells of germ-free and conventional mice. Nature 202,

884–886.

Louis, P., Hold, G.L., and Flint, H.J. (2014). The gut microbiota, bacterial me-

tabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672.

Messier, B., and Leblond, C.P. (1960). Cell proliferation and migration as re-

vealed by radioautography after injection of thymidine-H3 into male rats and

mice. Am. J. Anat. 106, 247–285.

Metges, C.C. (2000). Contribution of microbial amino acids to amino acid ho-

meostasis of the host. J. Nutr. 130, 1857S–1864S.

Milo, R. (2013). What is the total number of protein molecules per cell volume?

A call to rethink some published values. BioEssays 35, 1050–1055.

Muniz, L.R., Knosp, C., and Yeretssian, G. (2012). Intestinal antimicrobial pep-

tides during homeostasis, infection, and disease. Front. Immunol. 3, 310.

Muramatsu, T., Coates, M.E., Hewitt, D., Salter, D.N., and Garlick, P.J. (1983).

The influence of the gut microflora on protein synthesis in liver and jejunal mu-

cosa in chicks. Br. J. Nutr. 49, 453–462.

Nakshabendi, I.M., McKee, R., Downie, S., Russell, R.I., and Rennie, M.J.

(1999). Rates of small intestinal mucosal protein synthesis in human jejunum

and ileum. Am. J. Physiol. 277, E1028–E1031.

Neis, E.P.J.G., Dejong, C.H.C., and Rensen, S.S. (2015). The role of microbial

amino acid metabolism in host metabolism. Nutrients 7, 2930–2946.

O’Hara, A.M., and Shanahan, F. (2006). The gut flora as a forgotten organ.

EMBO Rep. 7, 688–693.

Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey,

A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture,

SILAC, as a simple and accurate approach to expression proteomics. Mol.

Cell. Proteomics 1, 376–386.

Park, J.-H., Kotani, T., Konno, T., Setiawan, J., Kitamura, Y., Imada, S., Usui,

Y., Hatano, N., Shinohara, M., Saito, Y., et al. (2016). Promotion of intestinal

epithelial cell turnover by commensal bacteria: role of short-chain fatty acids.

PLoS One 11, e0156334.

Peck, B.C.E., Shanahan, M.T., Singh, A.P., and Sethupathy, P. (2017). Gut mi-

crobial influences on the mammalian intestinal stem cell niche. Stem Cells Int.

2017, 5604727.

Price, J.C., Khambatta, C.F., Li, K.W., Bruss, M.D., Shankaran, M., Dalidd, M.,

Floreani, N.A., Roberts, L.S., Turner, S.M., Holmes,W.E., and Hellerstein, M.K.

(2012). The effect of long term calorie restriction on in vivo hepatic proteostatis:

a novel combination of dynamic and quantitative proteomics. Mol. Cell. Prote-

omics 11, 1801–1814.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purifica-

tion, enrichment, pre-fractionation and storage of peptides for proteomics us-

ing StageTips. Nat. Protoc. 2, 1896–1906.

Reinhardt, C., Bergentall, M., Greiner, T.U., Schaffner, F., Ostergren-Lundén,
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Hansson (gunnar.hansson@medkem.gu.se).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were approved by the local Laboratory Animal Ethics Committee, Gothenburg, Sweden. Male wild-type

C57BL/6J mice were co-housed with 4-5 mice/cage at a 12 hour light/ dark cycle, had unlimited access to water and food and

were bred in-house. Conventionally raised (CR) and germ-free (GF) 6-9 weeks old C57BL/6J male mice were kept first 1 week on

an amino acid-based diet containing 12C6-lysine (light feed, Harlan Laboratories, Inc.). Thereafter feed was replaced by same diet

but where 12C6-lysine was replaced by 13C6-lysine (heavy feed, Silantes GmbH, Munich, Germany) and animals were kept on this

diet for 0, 1, 2, 3, 5, 7, 10, 14 and 32 days. Experimental setup is presented of Figure 1A. Bodyweight of the animals and the food

consumption during the experiment is presented on Figure S1A.

METHOD DETAILS

Collection of epithelial cells and mucus
Animals were sacrificed via cervical dislocation. Small intestine was divided into five parts and colon into two. For the proteomics

analysis we used the first (duodenum), third (middle jejunum) and fifth (ileum) part of small intestine and both proximal and distal

colon tissues (Figure 1A). Mesenteric tissue was removed and the intestinal tissues were cut open and incubated in PBS containing

3 mM EDTA and 1 mM DTT at 37�C for 60 min. The solution was replaced with fresh 37�C PBS and epithelial cells were dissociated
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from the tissue by vigorous shaking for 5x20 s on a vortex. Example of a colon tissue before and after removal of epithelial cells is

presented on Figure S1B. Remaining tissue was removed and cells were pelleted by centrifugation at 1000 g for 5 min. Mucus

was collected by mounting ileum and distal colon tissues in a horizontal perfusion chamber with a circular opening of 4.9 mm2,

and the mucus was collected apically (Gustafsson et al., 2012). Pelleted cells and mucus were flash frozen in liquid nitrogen and

stored at �80�C until further processing.

Protein extraction and digestion
Epithelial cells were solubilized in lysis buffer (4% SDS, 100 mM Tris-HCl pH 8, 100 mM DTT), heated 5 min at 95�C and cleared by

centrifugation at 14 000 rpm 5 min. Thereafter samples were digested with LysC or AspN according to FASP (Filter Aided Sample

Preparation) protocol (Wi�sniewski et al., 2009b) with 30 kDa filters (PALL, Port Washington, NY). Overnight digestion was followed

with fractionation according to the pipette tip SAX protocol (Wi�sniewski et al., 2009a), and two fractions were eluted at pH of 11

and 3. Mucus samples were incubated overnight at 37�C in reduction buffer (6 M GuHCl, 0.1 M Tris/ HCl pH 8.5 (Merck), 5 mM

EDTA, 0.1 M DTT (Merck)) followed by a FASP digestion protocol using 6 M guanidinium hydrochloride (GuHCl) instead of urea

and 10kDa filters. Peptides were cleaned with StageTip C18 columns (Rappsilber et al., 2007) prior to mass-spectrometry analysis.

LC-MS/MS Analysis
Nano LC�MS/MS was performed on a Q-Exactive mass-spectrometer (Thermo Fischer Scientific) connected with an EASY-nLC

1000 system (Thermo Fischer Scientific) through a nanoelectrospray ion source. Peptides were loaded on a reverse-phase column

(150mm3 0.075 mm inner diameter, NewObjective, NewObjective, Woburn, MA) packed in-house with Reprosil-Pur C18-AQ 3 mm

particles (Dr. Maisch, Ammerbuch, Germany). Peptides were separated with a 95-minute gradient from 5 to 30% B (A: 0.1% formic

acid, B: 0.1% formic acid/80% acetonitrile) using a flow rate of 200 nl/min. In case of SAX fractionated samples two gradients

were used: for pH 11 fraction in 80 min from 5 to 20% B and in next 15 min up to 30% B; for pH 3 fractions in 95 min from 10 to

30% B. Q-Exactive was operated at 200�C capillary temperature and 2.0 kV spray voltage. Full mass spectra were acquired in

the Orbitrap mass analyzer over a mass range from m/z 350 to 1600 with resolution of 70 000 (m/z 200) after accumulation of

ions to a 1 3 106 target value based on predictive AGC from the previous full scan. Twelve most intense peaks with a charge state

R 2 were fragmented in the HCD collision cell with normalized collision energy of 30%, and tandemmass spectrum was acquired in

the Orbitrap mass analyzer with resolution of 35 000. Dynamic exclusion was set to 30 s. The maximum allowed ion accumulation

times were 120 ms for full MS scans and 100 ms for tandem mass spectrum.

MS data analysis
MS raw files were processed with MaxQuant software version 1.3.0.5 (Cox and Mann, 2008), peak lists were identified by searching

against the mouse UniProt protein database (release 2013.02) supplemented with an in-house database containing all the mouse

mucin sequences (http://www.medkem.gu.se/mucinbiology/databases/). Searches were performed using either LysC or AspN as

an enzyme, maximum 2 missed cleavages, precursor tolerance of 20 ppm in the first search used for recalibration, followed by 7

ppm for the main search and 0.5 Da for fragment ions. Carbamidomethylation of cysteine was set as a fixed modification and

methionine oxidation and protein N-terminal acetylation were set as variable modifications. The required false discovery rate

(FDR) was set to 1% both for peptide and protein levels and the minimum required peptide length was set to seven amino acids.

Quantification of SILAC pairs was performed by MaxQuant with standard settings using a minimum ratio count of 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Protein abundance determination
Protein abundances were calculated by dividing the protein MS intensity for each protein by the number of theoretically observable

peptides (all fully LysC digested peptides between 700 and 2,500 Da while missed cleavages were neglected and only carbamido-

methylation of cysteine was considered as fixedmodification) and normalized to summed intensity of all identified proteins. In epithe-

lial cells normalized values were multiplied with the number of protein copies in the mammalian cell - 109 (Milo, 2013). Protein

abundances are available in Table S1.

Calculation of protein turnover rates
To estimate protein turnover rates data had to be fitted to amodel describing the replacement of unlabeled proteins with labeled ones

as a function of protein turnover rate. Model can be described with following differential equation:

dfp;i
dt

= RN;i kd;i � fp;iðtÞkd;i (1)

Where kd,i describes the protein turnover rate, fp,i is heavy to light (H/L) ratio of labeled protein and RN,i is a maximum relative isotope

abundance of proteins in particular sample. Differential equation gives a following solution for incorporation of heavy labeled proteins:

fp;iðtÞ = RN;i

�
1� e�kd;i t

�
(2)
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Protein turnover rate kd,i is directly linked to average protein degradation time td,i. with the following formula:

kd;i =
ln2

td;i
(3)

Before fitting data to Equation 2, maximum relative isotope abundance had to be calculated. This was done using the data for

samples collected after 31 days of labeling and digested with AspN in order to have information for miss-cleaved peptides. Resulting

peptides contained a mixture of labeled and unlabeled lysine that can originate from degraded proteins or from gut microbiota

metabolism. To calculate relative isotope abundance, first for each peptides that had data for fully labeled (heavy-heavy i.e., HH)

and partly labeled (heavy-light i.e.HL) versions the ratio between heavy-heavy and heavy-light labeled peptides was calculated.

Median value of HH/HL ratio of all peptides of particular sample was used for calculating relative isotope abundance (RN) using

following formula:

RN =
2M

1+ 2M
(4)

where M is median HH/HL value.

Calculated relative isotope abundance values for each sample are presented in the following table.
DE MJE IE IM PCE DCE DCM

CR 0.8868 0.8634 0.8728 0.8728 0.8677 0.8689 0.8689

GF 0.8659 0.8535 0.8453 0.8453 0.8316 0.8263 0.8263
Calculation of protein turnover rates were done by fitting experimental data measured on the day when substrate feed was re-

placed with labeled feed and on 1st, 2nd, 3rd, 4rd, 5th, 7th, 10th, and 14th day after the feed was replaced into function (2).

Data fitting was done in Wolfram Mathematica using nonlinear fitting algorithm. This algorithm was preferred over linearization of

exponential as the fitting results were better according to the comparison of the coefficient of variance (CV), coefficients of determi-

nation (R2), etc. Obtained results fit relatively well to the particular model, as median R2 and CV values were 0.88 and 14.0% for CR

samples and 0.87 and 17.2% for GF samples (Figures S1C and S1D). Examples of the experimental data fit into the function are

presented on Figure S2.

Resulting protein turnover rates were subjected to simple one-sided non-parametric outliers test, where protein turnover rates with

CV above four times median were considered as outliers. Depending on the sample 3 to 53 protein turnover rates were eliminated.

This formed relatively small part (0.2%–3.8%) of total number of estimated protein turnover rates. Protein half-lives and turnover rates

are available in Table S1.

Statistical analysis
Perseus program (version 1.5.0.0) (Tyanova et al., 2016) function Significance A was used to calculate significant outliers in compar-

ison of GF versus CR. Significance A values < 0.05 for log2 protein abundance ratios and < 0.1 for protein turnover rate ratios are

marked with asterisk on the figures and are used in further data analysis. Comparison of turnover rate of proteins in epithelial cells

versus mucus was performed with one-way ANOVA followed by Dunnett’s multiple comparison test (Figure 5C).

Enrichment analysis
Enrichment analysis was performed with DAVID (version 6.7) (Huang et al., 2009a, 2009b) using KEGG and PANTHER database

biological process (BP) and molecular function (MF) annotations. Enrichment was performed for protein turnover rate ratios GF

versus CR with Significance A value < 0.1 and for protein abundance ratios GF versus CR with Significance A value < 0.05. Full

data of enrichment analysis is presented in Table S2.

DATA AND CODE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository (Vizcaı́no et al., 2013) with the dataset identifier PXD011457.
e3 Cell Reports 30, 1077–1087.e1–e3, January 28, 2020
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Figure S1
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Colon, before removing the epithelial cells Colon, after removing the epithelial cells
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Figure S1. Sample and data quality. Related to Figure 1. 
(A) GF and CR animal bodyweights and the food consumption in g per g of bodyweight in a day.
(B) Histology of the colon tissue before and after epithelial cell removal.
(C) Median coefficient of variance (CV) was 14.0% for CR samples and 17.2% for GF samples.
(D) Median coefficients of determination (R2) values were 0.88 for CR samples and 0.87 for GF samples.
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Figure S2. Data quality. Related to Figure 1. Examples of the experimental data fit into the function for calculating turnover rate. 
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Figure S3. Sample quality. Related to Figure 2. 
(A) Labeling speed of bacterial and mouse proteins in feces during first 11 days.
(B) Histograms of heavy label percentage distribution divided into 30 bins.



Figure S4. Correlations between protein abundances and turnover rates. Related to Figure 3. 
Panther GO “Biological Process” and “Molecular Function” terms for proteins with lowest abundance and slowest 
turnover rate (box 1), lowest abundance and fastest turnover rate (box 2), highest abundance and fastest turnover rate 
(box 3), highest abundance and slowest turnover rate (box 4). (A) Conventionally raised mice; (B) Germ-free mice.
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Figure S5. Protein turnover rates correlate with their function. Related to Figure 3C.
Examples of protein turnover rates (dots connected with solid line, error bars CV 95%) and abundances (bars 
with SD) for glycolysis, TCA and oxidative phosphorylation proteins, and proteins with slowest turnover. Dotted 
lines represent median of turnover rates. Asterisks show significant protein turnover rate (Significance A p<0.1) 
and abundance (Significance A p<0.05) difference GF vs CR. 


	CELREP7175_annotate_v30i4.pdf
	Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and  ...
	Introduction
	Results
	Protein Turnover Rates in CR and GF Mice
	Protein Turnover Rate Correlation with Function
	Protein Turnover Rate Comparison between GF and CR Mice
	Turnover Rate of Mucus and Other Secreted Proteins

	Discussion
	Conclusions

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Method Details
	Collection of epithelial cells and mucus
	Protein extraction and digestion
	LC-MS/MS Analysis
	MS data analysis

	Quantification and Statistical Analysis
	Protein abundance determination
	Calculation of protein turnover rates
	Statistical analysis
	Enrichment analysis

	Data and Code Availability



	celrep_7175_mmc1.pdf
	celrep_7175_mmc1.pdf
	Figure S1
	Figure S2
	Figure S3
	Figure S4
	Figure S5





