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SUMMARY

Plants, like other multicellular organisms, survive
through a delicate balance between growth and de-
fense against pathogens. Salicylic acid (SA) is a ma-
jor defense signal in plants, and the perception
mechanism as well as downstream signaling acti-
vating the immune response are known. Here, we
identify a parallel SA signaling that mediates growth
attenuation. SA directly binds to A subunits of pro-
tein phosphatase 2A (PP2A), inhibiting activity of
this complex. Among PP2A targets, the PIN2 auxin
transporter is hyperphosphorylated in response to
SA, leading to changed activity of this important
growth regulator. Accordingly, auxin transport
and auxin-mediated root development, including
growth, gravitropic response, and lateral root organ-
ogenesis, are inhibited. This study reveals how SA,
besides activating immunity, concomitantly attenu-
ates growth through crosstalk with the auxin distri-
bution network. Further analysis of this dual role of
SA and characterization of additional SA-regulated
PP2A targets will provide further insights into mech-
anisms maintaining a balance between growth and
defense.

INTRODUCTION

Life of multicellular organisms is a permanent trade-off to

allocate resources between growth and defense against

pathogens. Salicylic acid (SA) is a classical plant hormone

traditionally connected with plant immunity, and its levels in-

crease in response to pathogen attack [1]. SA functions as

an endogenous signal mediating local and systemic defense

responses against pathogens by upregulating the production
Current Biology 30, 381–395, Feb
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of pathogenesis-related (PR) proteins. The best characterized

components of the SA immunity pathway are the NPR

(NONEXPRESSOR OF PR GENES) proteins that include four

close isoforms, NPR1–NPR4 [2–4]. Following increase in SA

levels, NPR1 translocates from cytoplasm into nucleus [5–7],

thereby allowing binding to the downstream transcription

factors and regulation of the expression of downstream genes

[8]. NPR1, together with NPR3/NPR4, were shown to be bona

fide SA receptors for the immune pathway [7, 9, 10]. NPR1

functions as a transcriptional activator, whereas NPR3 and

NPR4 are transcriptional repressors, all working independently

and harmoniously to regulate the expression of downstream

genes [7].

Much less understood is the role of SA beyond plant immu-

nity, in particular in modulating plant growth and development.

SA has been implicated in the regulation of photosynthesis,

respiration, flowering, senescence, seed germination, and

growth. Nevertheless, whether SA signaling for these func-

tions depends on the NPR-mediated pathway or other, so

far molecularly uncharacterized mechanism(s) remains unclear

[8, 11–15]. Biochemical approaches have identified numerous

potential SA binding proteins (SABPs), but their potential roles

in SA physiological functions remain unclear [16–19].

SA, similarly to other endogenous signals in plants, exe-

cutes its effect in concert with other plant hormones. In partic-

ular, the SA-auxin signaling crosstalk has been proposed to

be important for SA roles in balancing plant defense and

development [15]. This notion was strengthened by the obser-

vation that SA affects the constitutive subcellular dynamics of

PIN (PIN FORMED) auxin transporters [14, 20], which are

important regulators of many developmental processes [21].

Nonetheless, the physiological relevance of this SA regulation

or the underlying signaling mechanism remains elusive.

Here, we demonstrate an alternative SA signaling mechanism,

by which SA, in addition to activating plant immunity, attenuates

root growth through regulating PIN-dependent auxin distribution

network.
ruary 3, 2020 ª 2019 The Author(s). Published by Elsevier Ltd. 381
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A Figure 1. Pathogen-Induced SA Response

in Roots, Revealed by the pPR1::eYFP-NLS

Reporter

(A) SA contents in the roots of 5- or 10-day-old

seedlings of Col-0, cpr6, and sid2 (sid2-3)

measured by LC/MS-MS. n = 4 replicates, with

multiple seedlings for each. Dots represent indi-

vidual values, and lines indicate mean ± SD.

Different letters represent significant difference;

p < 0.05; by one-way ANOVAwith a Tukeymultiple

comparison test.

(B–E) Induced pPR1::eYFP-NLS expression by

P. syringae DC3000 (B and D) or SA (C and E) in

roots.

(B and D) 5-day-old pPR1::eYFP-NLS seedlings

were treated with P. syringae DC3000 (optical

density 600 [OD600] = 0.01, �5 3 106 colony-

forming units [CFUs]/mL) or with resuspension

buffer (control) for 48 h and were then imaged by

confocal laser scanning microscope (CLSM).

(C and E) For SA treatment, 5-day-old

pPR1::eYFP-NLS seedlings were transferred to

plates with DMSO or 40 mM SA for 24 h and were

then imaged by CLSM. Scale bars, 10 mm. For

quantification, the average GFP florescence of 5–

10 representative cells from 10 seedlings for each

treatment was measured by Fiji. The data points

were shown as dot plots. Dots represent individual

values, and lines indicate mean ± SD. p values

were calculated by a two-tailed t test.

See also Figure S1.
RESULTS

SA Regulates Root Growth Independently of Canonical
NPR Receptors
The majority of SA physiology studies have focused on adult-

stage shoots and so far it remains unclear whether there are

significant levels of SA in the root. Therefore, we examined the

SA contents by liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS) first. SA production is typically highly elevated

after pathogen attack [22], and thus, the basal SA levels in the

roots were relatively low but detectable (Figure 1A). There was

a small decrease in the SA-biosynthesis-deficient mutant, sid2-

3 [1], and a corresponding increase in the SA overproduction

mutant, cpr6 [23]. Moreover, using pPR1::eYFP-NLS reporter

line for the NPR1 pathway [24], we detected an induced PR1

expression in both shoots (Figures S1A–S1D) and roots (Figures

1B–1E) following treatment with either a plant pathogen, Pseu-

domonas syringe DC3000 (Figures 1B and 1D), or SA (Figures

1C and 1E), confirming that pathogen- or SA-mediated activa-

tion of NPR1 pathway occurs also in roots.

Given detectable levels of SA in roots and previous indications

about a physiological role of SA in roots [14, 25], we examined

the effect of exogenously applied SA on root growth. Compared

to the control conditions, seedlings growing on 20 or 40 mM SA

exhibited shorter (Figures 2A and 2B) and partially agravitropic

roots (Figures 2C–2H), as well as fewer lateral roots (Figure 2I).

Two inactive SA isomers, 3-hydroxybenzoic acid (3-OH-BA)

and 4-hydroxybenzoic acid (4-OH-BA) [26], did not show any
382 Current Biology 30, 381–395, February 3, 2020
obvious effects at comparable concentrations (Figures S1E–

S1J). These observations show that SA impacts root develop-

ment at concentrations equal to or below those established in

shoots [7] and its activity is specific to its active structure.

Next, we addressed the requirement of the SA receptors,

NPR1/NPR3/NPR4, which are well established in the immune

response, for the observed root response [2–4, 7, 10]. NPR1 is

a central regulator of the canonical immune pathway, and the

downstream transcriptional responses are completely blocked

by npr1 deficiency [3]. Unexpectedly, the well-characterized

corresponding mutants npr1, npr3,4 double, and npr1,3,4 triple

mutants did not show a decreased sensitivity to SA in terms of

root elongation, gravitropic growth, and lateral root formation

(Figures 2B–2I and S1K–S1R). It is noteworthy that the npr1,3,4

triple mutant exhibited even a pronounced SA-hypersensitive

phenotype (Figures S1K–S1R), which might come from downre-

gulation of multiple genes involved in auxin biosynthesis, trans-

port, or signaling.

In conclusion, SA regulates multiple aspects of root develop-

ment by a signaling mechanism not requiring the established

NPR receptors.

SA Regulates PIN-Dependent Auxin Transport and PIN2
Phosphorylation
The root phenotypes generated by SA treatment are reminiscent

of defective auxin homeostasis because auxin and its distribu-

tion have been shown to regulate primary root growth, gravi-

tropic bending, and lateral root formation [21, 27]. To test the
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Figure 2. SA Regulates Root Growth and Development in a NPR1-Independent Manner

(A) Representative images showing the morphological changes of Col-0 and npr1 under SA treatment. DMSO is the solvent control. Scale bars, 2 cm.

(B) SA inhibited the primary root elongation in aNPR1-independent manner. Root length of 7-day-old Col-0 and npr1 seedlings grown onMS plates with different

concentrations of SA was measured. Relative length was calculated by dividing the values with the root length at SA = 0. Boxplots show the first and third

quartiles, with whiskers indicating maximum and minimum, the line for median, and the black dot for mean. n = 11–28; p values were calculated by a two-tailed t

test for indicated pairs of Col-0 and npr1 at a certain concentration of SA.

(C–H) SA interfered with root gravitropism independently of NPR1. Root tip angles of 7-day-old Col-0 (C–E) and npr1 (F–H) seedlings were measured and shown

as polar bar charts. Two-tailed t tests were performed to indicate the difference of mean value, and F-tests indicate the difference of variances. For Col-0, SA

treatments were compared with the DMSO control, and the npr1 groups were compared with Col-0 under the same SA treatment, respectively.

(I) Inhibition of lateral root formation by SA does not involve NPR1. The number of emerged lateral roots for 10-day-old plants was counted. n = 20–25. p values

were calculated by a two-tailed t test.

See also Figure S1.
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Figure 3. SA Regulates Auxin Transport via Modulating PIN2 Phosphorylation

(A) SA inhibited the relocation of DR5-n3GFP. 5-day-old DR5v2 and eir1-4 DR5v2 seedlings were transferred to different plates with DMSO, 40 mM SA, 40 mM

3-OH-BA, or 40 mM 4-OH-BA, respectively, and then turned 90 degrees for gravistimulation. After 4 h, the roots were imaged by CLSM. The GFP channel (DR5-

n3GFP) was shown. Scale bars, 10 mm.

(legend continued on next page)
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potential effect of SA on auxin response and distribution,

we used an auxin-responsive marker DR5-n3GFP (the GFP

channel of DR5v2) [28], which monitors auxin response in

plant tissues, including the gravity-induced auxin translocation

to the lower root side [28]. After 4-h gravistimulation by 90� reor-
ientation, the seedlings treated with SA, unlike the DMSO-

treated controls, failed to show a pronounced DR5-n3GFP

asymmetry with the stronger signal at the lower root side, in

line with the SA-induced gravitropism defect (Figures 3A, 3B,

and S2A), as observed before [14]. This suggests that SA inter-

feres with auxin distribution either at the level of transport [21]

or local auxin biosynthesis [29]. Recently, SA has been proposed

to increase auxin levels in root tips [30]. Nonetheless, this upre-

gulation of iIndole-3-acetic acid (IAA) biosynthesis cannot

explain the auxin-related phenotypes described here, such as

agravitropic root growth and the reduced lateral root number,

because increased auxin levels have rather opposite effects. It

is likely that increased IAA biosynthesis after SA treatment is

rather the consequence, but not the cause, of the auxin transport

regulations by SA, presumably due to a feedback regulatory

mechanism.

To test a possible effect of SA on auxin transport, we

measured the basipetal (rootward) auxin transport in etiolated

hypocotyls, which revealed that SA can inhibit the rootward

transport of [3H]-IAA, similar to widely used PIN-dependent

auxin transport inhibitors NPA (1-N-naphthylphthalamic acid)

and TIBA (2,3,5-triiodobenzoic acid) (Figure S2B). With tobacco

BY-2 cultured cells [31], we tested the effect of SA on transport

of different auxin analogs, [3H]-NAA and [3H]-2,4-D. SA treat-

ment increased the cellular accumulation of [3H]-NAA (Figure

3C), but not of [3H]-2,4-D or [3H]-BA (Figures S2C and S2D).

Despite possible effect on auxin metabolism, this selective ef-

fect of SA on accumulation of NAA, which is a good substrate

of PIN auxin exporters [32], strongly suggests a regulatory

role of SA in PIN-dependent auxin transport. Overall, these ob-

servations show that SA, exhibiting distinct activities for

different tissues, directly or indirectly regulates auxin transport.
(B) The ratio of fluorescence between the upper side and the lower sidewasmeasu

are calculated by a two-tailed t test, comparing different datasets with the DR5-n

DR5-n3-GFP SA 4 h.

(C) SA treatment increased the accumulation of [3H]-NAA in tobacco BY-2 cells, s

cell culture and then the radioactivity inside of cells was measured at indicated

cultures. n = 3.

(D–G) SA treatment impaired the polar localization and promoted the internalizat

grown on plates with DMSO and 40 mM SA for 4 days and were then imaged by

indicate the beginning of root transition zone.

(F) The intensity ratio of apical/lateral was measured by Fiji to assess PIN2 polar

(G) Quantification of the PIN2-GFP intensity ratio of intracellular/PM.

(F and G) Dots represent individual values, and lines indicate mean ± SD. p valu

(H) SA treatment enhanced the phosphorylation of PIN2. Roots of 7-day seedlings

by western blot with an anti-PIN2 antibody (upper panel). Phosphorylation of the

more highly phosphorylated, the slower the migration. The same membrane was s

antibodies, sequentially. The molecular weight (MW) of PIN2 and PIN1 is 69 and

perhaps due to incomplete denaturing when heated only at 50�C. The shifted band

shown. Asterisk indicates partial contribution by a non-specific band (see also in

(I) SA treatment increased the phosphorylation of His-PIN2-HL in plant extracts.

60min, respectively, and thenwere subject to protein extraction. Crude plant extra

MgCl2. The first lane was without His-PIN2-HL as negative control. Reaction samp

panel: autoradiography is shown; lower panel: Coomassie Brilliant Blue (CBB) st

See also Figures S2 and S3.
To investigate the mechanism underlying the role of SA in

regulating root growth and development, we focus on the root

gravitropic phenotype. PIN2 and AUX1 auxin transporters play

a prominent role in shootward auxin transport in the root and

thus in the auxin redistribution during the gravitropic response

[33–37]. Therefore, we analyzed the response of eir1-4 [36]

loss-of-function mutant, which exhibits strongly agravitropic

roots. After SA treatment, eir1-4 showed a slight SA hypersensi-

tivity in primary root elongation but no further enhancement

of the gravitropic defect at 40 mM SA (Figures S2E–S2J). These

observations suggest that SA acts in the gravitropic response

through the auxin efflux carrier PIN2. Using the eir1-4 DR5-n3-

GFP cross, we could not see gravity-induced DR5-n3-GFP

asymmetry and SA treatment had no additional effect (Figures

3A and 3B). Furthermore, we examined the SA effect on the

localization of these proteins using pAUX1::AUX1-YFP and

pPIN2::PIN2-GFP marker lines. Whereas we observed no

obvious effect of SA treatment on AUX1-YFP except a slight

decrease in the overall intensity (Figures S2K–S2M), PIN2-GFP

incidence in the plasma membrane of the root epidermis cells

upon SA treatment was visibly decreased with higher intracel-

lular signal and less pronounced polar distribution as compared

to the control (Figures 3D–3G).

Reversible phosphorylation plays an important role in regu-

lating PIN polarity, subcellular dynamics, and activity. PIN

proteins can be phosphorylated bymultiple kinases, most prom-

inently PID (PINOID)/WAGs (WAVY ROOT GROWTHs), D6PK/

D6PKLs, and PAX (PROTEIN KINASE ASSOCIATED WITH

BRX), and dephosphorylated by various phosphatases,

including protein phosphatase 2A (PP2A), PP1, and PP6 [38–

40]. We examined the PIN2 phosphorylation status by western

blot. When roots were extracted with a protocol [36, 41] specif-

ically modified to preserve phosphorylation, PIN2 appeared as a

smear of bands (Figure 3H). Phosphatase treatment shifted the

slower migrating bands toward the faster migrating band at the

base of the smear (Figure S3A), indicating that the upper parts

of the smear comprise phosphorylated species. We found that
red, as shown in (A). n = 34, 30, 35, 24, 11, 29, 19, and 12, respectively. p values

3-GFP DMSO control (t = 4 h), as shown with the horizontal line in the case of

uggesting a decrease in auxin export. DMSO and 200 mMSAwere added to the

time points after the addition of [3H]-NAA to the DMSO- and SA-treated cell

ion of PIN2-GFP in root epidermis (D and E). pPIN2::PIN2-GFP seedlings were

CLSM. Scale bars, 20 mm (D) and 10 mm (E), respectively. Arrowheads in (D)

ity.

es are calculated by a two-tailed t test.

were treated with DMSO or 40 mMSA for 15 min and 60 min and then analyzed

multiple phosphorylation sites in PIN2 causes slower migrating species. The

tripped and detected by anti-PIN1 (second panel) and anti-PIP2;1 (third panel)

67 kDa, respectively. For unknown reasons, PIN2 runs faster than expected,

s indicate the phosphorylated PIN proteins. Bottom panel: Ponceau staining is

Figure 4A).

Roots of 7-day seedlings were treated with DMSO or 40 mM SA for 15 min and

cts were incubated with recombinant His-PIN2-HL for 60minwith 32P-ATP and

les were analyzed by SDS-PAGE and the subsequent autoradiography. Upper

aining is shown.
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Figure 4. SA Functions through PP2A in Regulating Root Development

(A) SA treatment promoted the phosphorylation of PIN2 in Col-0 to a similar degree as that in pp2aa1-6. Roots of 7-day-old Col-0 and pp2aa1-6 seedlings were

treated with DMSO or 40 mM SA for 60 min and were then sampled for protein isolation and western blot. The shifted bands indicate the phosphorylated PIN

proteins (upper panel). Asterisk indicates a non-specific band that contributes partially to the signal. The samemembrane was stripped and probed with a PIP2;1

antibody to indicate the loading (upper panel). Ponceau staining is shown in the bottom panel.

(B) Phosphorylation with 32P-ATP revealed that SA treatment increased the phosphorylation of His-PIN2-HL in Col-0, whereas this increase was attenuated in

pp2aa1-6. Upper panel: autoradiography is shown; lower panel: CBB is shown.

(C) Representative images revealing the hypersensitivity of pp2aa1-6 to SA. Col-0 and pp2aa1-6 seedlings were grown on plates with SA. Scale bars, 2 cm.

(D) pp2aa1-6was hypersensitive to SA in root growth inhibition. Col-0 and pp2aa1-6 seedlings grew on plates with SA for 7 days and then the primary root length

was measured. n = 11–28. p values were calculated by a two-tailed t test for indicated pairs of Col-0 and pp2aa1-6 at a certain concentration of SA.

(E and F) pp2aa1-6was hypersensitive to SA in terms of interfering with root gravitropism. Col-0 (E) and pp2aa1-6 (F) seedlings grew on plates containing different

concentrations of SA for 7 days, and the root tip angles weremeasured by ImageJ and shown as polar bar charts. p values were calculated by a two-tailed t test in

(E) and (F) and indicate differences of variances by a further F-test in (F).

(legend continued on next page)
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SA treatment led to a more pronounced shift of PIN2 protein

mobility to slower migrating species than seen in control, indi-

cating an increase in phosphorylation status. This occurred as

rapidly as after 15 min and more pronounced after 60 min

(Figures 3H and S3A). To confirm the SA effect on the change

of PIN2 phosphorylation, we expressed and purified the PIN2 hy-

drophilic loop with His tag (His-PIN2HL) and incubated it with the

protein extract from seedlings treated with SA or the inactive iso-

mers in a 32P-ATP phosphorylation reaction (Figure 3I). There

was more phosphorylation of the His-PIN2HL with SA. This

confirmed that SA treatment led to an increase in PIN2 phos-

phorylation level, either through stimulating phosphorylation or

suppressing dephosphorylation.

Taken together, the physiological, microscopic, and biochem-

ical observations collectively suggest that SA regulates PIN-

dependent auxin transport, presumably by changing the

phosphorylation status and thus the cellular localization and

the activity of PIN proteins. Such mechanism would explain the

observed physiological SA effects on root development.
PP2A Is Required for SA Regulation of PIN2
Phosphorylation and Root Development
To gain insight into the mechanism by which SA modulates

PIN phosphorylation and root development, we focused on the

potential regulators of PIN phosphorylation. Of those, the A sub-

unit of PP2A (PP2AA1/RCN1, ROOTS CURL IN NPA1), an estab-

lished regulator of PIN phosphorylation and auxin transport [42,

43], came to our attention, as it also appeared in a high-

throughput proteomics study as potentially associated with SA

binding [44].

We first tested whether PP2AA1 is involved in SA-induced

increase of PIN phosphorylation status. Western blot showed

that SA treatment could increase the phosphorylation level of

PIN2 in wild-type (WT), whereas in PP2AA1 loss-of-function

mutant, pp2aa1 (also known as pp2aa1-6 and rcn1-6), there

was already a higher level of PIN2 phosphorylation, consistent

with PP2AA1 involvement in PIN2 dephosphorylation (Figures

4A and S3B). This phosphorylation was still increased further

by SA treatment (Figure 4A), suggesting that the other PP2AA

homologs can play a role in the absence of PP2AA1. Accord-

ingly, the 32P-ATP phosphorylation reaction using purified

His-PIN2HL incubated with the protein extracts from SA-

treated WT and pp2aa1 seedlings (Figure 4B) confirmed at least

partial PP2AA1 requirement for the SA effect on PIN2

phosphorylation.

In line with this, pp2aa1 mutants (pp2aa1-6 and pp2aa1-1)

roots showed hypersensitivity to SA in terms of primary root

growth and gravitropic bending (Figures 4C–4F and S3C–S3I).

In addition, SA treatment at higher concentrations (50 mM) often

led to a slight swelling in WT root tips, whereas in pp2aa1, a

much stronger root tip swelling was observed even at a lower

SA concentration (20 mM; Figure S3C).
(G) The pp2aa1, a3 double mutant exhibited decreased sensitivity to SA. Col-0 an

root length was measured. n = 11–25. p values were calculated by a two-tailed t te

(H) The pp2ac3, c4 double mutant exhibited decreased sensitivity to SA. Col-0 an

root length was measured. n = 10–21. p values were calculated by a two-tailed t te

See also Figures S3 and S4.
PP2A is a heterotrimeric complex composed of A, B, and

C subunits with three homologs for the PP2A A subunits,

PP2AA1/RCN1, PP2AA2, and PP2AA3 [45]. Notably, overex-

pression of PP2AA1 (35S::myc-PP2AA1) alone did not lead

to obvious changes in SA sensitivity (Figures S3J–S3L), sug-

gesting importance of the whole heterotrimeric PP2A holoen-

zyme integrity. Single mutants of pp2aa2 and pp2aa3 did not

show any visible difference in SA sensitivity compared to WT

(Figures S4A–S4C). The double mutant of pp2aa1 pp2aa2-3

(pp2aa1,a2) showed a much stronger response to SA than

WT or pp2aa1/rcn1 single mutant (Figures 4D and S4D).

The pp2aa1,a3 double mutant had severe defects in growth

and development with a short primary root already without

any treatment (Figures S4E–S4H) [43, 45], which is reminiscent

to WT treated by higher concentration of SA, and subsequent

SA treatment could not further enhance this phenotype

(Figure 4G). Similar results were observed for the pp2ac3,c4

double mutant of the catalytic C subunits [46]. The roots

of pp2ac3,c4 were short without any treatment, and higher

exogenous SA treatment did again not further enhance this

phenotype (Figure 4H). The mutant in the regulatory subunit,

fass/tonneau2 (ton2), has been reported to show a similar

phenotype as pp2aa1,a3 [46]. However, fass [46], the double

knockout mutant pp2aa1-1 pp2aa2-1 [43, 45], and triple

pp2aa1-1 pp2aa2-1 pp2aa3-1 [43, 45] were too sick to

perform meaningful SA sensitivity assays. It has been well

described that these mutants exhibited severe growth defects,

with swelling root morphology [45, 46], which are similar to

seedlings treated with SA. Thus, loss-of-function mutants in

all PP2A subunits perturbed plant sensitivity to SA in terms

of root growth. Importantly, phenotypes of the stronger higher

order mutants could be phenocopied by SA treatment. The

SA-overproducing cpr6 mutants show a severe dwarf pheno-

type [8] and increased SA levels in roots (Figure 1A) but no

obvious changes in root development (Figure 5A). On the other

hand, the pp2aa1-6 cpr6 double mutant had shorter roots

and increased sensitivity to SA (Figures 5A and 5B) as well

as exhibited a much more severe dwarf phenotype than

cpr6 alone (Figures 5C and 5D). This provides a genetic confir-

mation that PP2A is involved in the SA-mediated develop-

mental regulation.

In summary, these biochemical and genetic analyses suggest

that the PP2A complex is involved in SA regulation of PIN (de)

phosphorylation and root growth.

SA Inhibits PP2A Activity
To further confirm whether SA is an endogenous regulator of

PP2A, we tested the sensitivity of pp2aa1-1 to a known PP2A in-

hibitor, cantharidin, that binds the C subunits in both animals and

plants [45, 47–49]. When grown on media with cantharidin, WT

seedlings exhibited shorter, agravitropic roots and root tip

swelling as observed for SA treatment, and notably, pp2aa1

mutants were hypersensitive to cantharidin (Figures S4I and
d pp2aa1, a3 seedlings grew on plates with SA for 7 days and then the primary

st for indicated pairs of Col-0 and pp2aa1, a3 at the given concentration of SA.

d pp2ac3, c4 seedlings grew on plates with SA for 7 days and then the primary

st for indicated pairs of Col-0 and pp2ac3, c4 at the given concentration of SA.
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Figure 5. Genetic Analysis of pp2aa1-6 and cpr6 Mutations, and SA Inhibits PP2A Activity In Planta

(A) Representative images showing the enhanced sensitivity of pp2aa1-6 to SA. Col-0, pp2aa1-6, cpr6, and pp2aa1-6 cpr6 seedlings were grown on plates with

different concentrations of SA for 7 days. Scale bars, 2 cm.

(B) The root growth analysis revealed that the cpr6 mutation decreased the primary root length and increased the SA sensitivity of pp2aa1-6. n = 16. Different

letters represent significant difference; p < 0.05; by one-way ANOVA with a Tukey multiple comparison test.

(C and D) The pp2aa1-6mutation enhances the stunted shoot phenotype of cpr6. Col-0, pp2aa1-6, cpr6, and pp2aa1-6 cpr6 plants were grown for 38 days, and

representative plants are shown (C). Scale bar, 2 cm.

(D) The height of plants was measured and shown as dot plots. Dots represent individual values, and lines indicate mean ± SD. n = 16. Different letters represent

significant difference; p < 0.05; by one-way ANOVA with a Tukey multiple comparison test.

(legend continued on next page)
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S4J) as they were to SA. The identical physiological effects of SA

to an established PP2A inhibitor and similarities between the SA

effects and stronger loss-of-function phenotypes of the PP2A

complex indicated that SA may act as an endogenous inhibitor

of PP2A.

Therefore, we analyzed PP2A activity in the protein extracts of

Arabidopsis seedlings using the established colorimetricmethod

with phospho-Ser/Thr peptides as PP2A substrates [50]. This re-

vealed that the pp2aa1 mutant had lower PP2A activity than WT

[48] and that SA treatment decreased PP2A activity in WT (Fig-

ure 5E). Notably, the npr1 mutant defective in an established

SA receptor still showed high sensitivity to SA in the PP2A activ-

ity assay (Figure 5E). Next, we established an independent

method to assess the PP2A activity. In mammalian cells, phos-

phorylation at Tyr307 (pY307) of the catalytic subunit PP2Ac is

used as a measure of PP2A activity and can be detected by a

phospho-Tyr307 (pY307)-PP2Ac antibody [51]. Alignment of

the five Arabidopsis PP2AC subunits with the human and mice

homologs indicated that the antigen motif recognized by this

antibody is highly conserved across different homologs (Fig-

ure S4K), which makes it feasible to use the same antibody to

evaluate the PP2A activity in planta. The phosphorylation status

of PP2ACs,monitored by this method, was robust and stable un-

der control treatments, whereas treating seedlings with SA led to

an increased PP2AC phosphorylation (Figure 5F) indicative of

decreased PP2A activity.

Taken together, our physiological and biochemical observa-

tions show that SA inhibits PP2A activity, indicating that the

PP2A complex could be a direct target of SA.

SA Binds to the A Subunits of PP2A
Next, we addressed a mechanism by which SA inhibits PP2A ac-

tivity. The finding that establishedSA receptors from theNPR fam-

ily are not required for this SA effect on root growth and on PP2A

activity supported a possibility that SA targets PP2A directly.

To test for a direct SA binding to PP2A, we first used the drug

affinity responsive target stability (DARTS) method based on the

fact that ligand binding to its protein target typically causes a

conformational change, which affects the exposure of protease

recognition sites and thus influences protein stability in the pres-

ence of the ligand [52]. DARTS using extracts of pPP2AA1::P-

P2AA1-GFP seedlings revealed that SA treatment led to an

obvious protection of PP2AA1-GFP against Pronase (mixture

of proteases) degradation, but 4-OH-BA did not (Figures 6A,

S5A, and S5B). This suggests that SA targets PP2AA1 in planta.

Notably, although SA concentration as high as 500 mM still

showed pronounced protective effects toward PP2AA1-GFP,

the 50 mM SA was more effective (Figure 6A). This suggests a

more complicated regulatory effect of SA on PP2AA1-GFP sta-

bility for the high concentrations.
(E) SA treatment decreased the total PP2A activity in planta. Col-0, pp2aa1-6, and

and then sampled for protein isolation and PP2A activity measurement. n = 6. Diffe

Tukey multiple comparison test.

(F) SA treatment increased the phosphorylation of the PP2A catalytic subunits (PP

treated with DMSO or 40 mMSA for 0, 15 min, 30 min, and 60 min respectively, an

pY307-PP2Ac antibody was used, 1:1,000 (upper panel). The anti-actin blot (me

amounts.

See also Figure S4.
Differential scanning calorimetry (DSC) is a method to detect

thermostability of a protein by measuring the heat release during

denaturing [53]. We expressed and purified from E. coli His-

PP2AA1 (Figures S5C–S5F) and used the recombinant protein

for DSC. We detected a denaturing temperature (Tm) of His-

PP2AA1 at 48.01�C, but following SA treatment, the Tm shifted

to 45.03�C (Figure 6B), suggesting that SA treatment changed

PP2AA1 stability, which might be due to conformational

changes. A further control with the inactive SA isomer, 4-OH-

BA, did not show any effect on PP2AA1 thermostability, confirm-

ing this specific activity of SA (Figure S5G). Usually ligand

binding stabilizes the target protein [54], but in somewell charac-

terized cases, such as receptors for the plant hormone strigolac-

tone, ligand binding caused the destabilization of the protein,

which is similar to what we observed for SA and PP2AA1 [55].

Thus, DSC also supports the hypothesis of direct SA binding

to PP2AA1.

To further confirm SA binding to PP2AA1 and to measure the

binding affinity, we employed the surface plasmon resonance

(SPR) method [56]. We first designed a SA analog with a linker,

SA-f, which can be immobilized on the SPR sensory chip. A set

of SA derivatives have been synthesized with modifications at

the meta- and para- positions in the benzoic ring and then we

first tested their bioactivity in terms of PIN2-GFP endocytic

trafficking as an output of NPR-receptors-independent SA ac-

tivity [14], as well as the physiological effects on root

morphology that we describe here. These tests indicated

that modifications at the meta- position did not affect this SA

bioactivity (Figure S5H), thus identifying C-10 moiety as being

most promising for further modification (Figures S6A, S6B,

and S6D–S6F). For the second round, we added a -(CH2-)6-

O- linker at the meta-position, SA-1�3 (Figure S5H), with

different groups at the end of the linker to mimic the matrix of

sensor chips. SA-2 and SA-3 still kept the activity on PIN2-

GFP trafficking (Figures S6C and S7A–S7C) and root develop-

ment similar to non-modified SA (Figures S6C, S6D, and S7A–

S7C). Finally, we synthesized SA-f, with an NH2- group for

immobilization on the SPR sensor chips. Then, we used recom-

binant His-PP2AA1 and His-PP2AA3 proteins and measured

their binding affinity to immobilized SA (Figures S5C–S5F).

Indeed, we detected a concentration-dependent binding of

His-PP2AA1 to immobilized SA. Plotted with the steady-state

binding with different concentrations of the protein, we ob-

tained a KD of 3.623 mM (Figures 6D and S7D). Performing

the same experiment for His-PP2AA3, we also detected bind-

ing with an even smaller KD value of 1.916 mM (Figures 6E and

S7E). In a different, single-cycle SPR experimental setup,

including 0.1%BSA in the SPR flow to prevent unspecific bind-

ing, a similar KD value (2.374 mM) for PP2AA1 was obtained

(Figures S7F and S7G).
npr1 seedlings were grown on plates containing DMSO or 40 mMSA for 5 days

rent letters represent significant difference; p < 0.05; by one-way ANOVAwith a

2Ac), suggesting the decrease in PP2A activity. 7-day-old Col-0 seedlings were

d were then collected for protein extraction and the subsequent western blot. A

dium panel; 1:2,000) and Ponceau staining (bottom panel) indicate the loading
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Figure 6. SA Binds to the A Subunit of PP2A

(A) DARTS assay suggests that PP2AA1 is potential target of SA. pPP2AA1::

PP2AA1-GFP seedlings were used for the protein isolation. Samples were

treated with DMSO (mock) and SA and digested by different concentrations of

Pronase. Samples were further analyzed by western blot with an anti-GFP

antibody.
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Thus, all these methodically distinct approaches have

confirmed a direct binding of SA to A subunits of PP2A at con-

centrations well matching the SA physiological activity. The

binding of SA to PP2AAs is in line with observations on SA regu-

lating PP2A activity, downstream PIN2 (de)phosphorylation, and

auxin-mediated root development.
DISCUSSION

Balancing allocation of resources between growth and defense

against pathogens is a common challenge in multicellular or-

ganisms [57]. It has been long proposed that, except for the ca-

nonical roles as stress hormones, both SA and jasmonic acid

(JA) also regulate plant growth and development [12, 15].

Meanwhile, another phytohormone, auxin, well recognized as

an essential signaling molecule for growth and development

and seemingly involved in almost every aspect of plant life,

was proposed to also participate in plant defense against path-

ogens [11, 15, 58]. Here, we revealed a dual role for the plant

hormone SA, which by two parallel perception and signaling

mechanisms concomitantly activates immunity and represses

growth.

SA is a well-established defense signal of plants; its levels

rapidly rise following pathogen attack, and it acts via the

NPR-type receptors on transcription of defense genes (Fig-

ure 7A) [1]. Here, we identify a parallel signaling pathway that

leads to regulation of growth. Both in vivo and in vitro experi-

ments show that SA specifically binds to the A subunit of the

PP2A complex and inhibits its activity. PP2A is a protein phos-

phatase important formany cellular processes through dephos-

phorylating various protein substrates [43, 45, 48]. Prominent

among its substrates are PIN auxin transporters that play key

roles in many developmental processes, and multiple aspects

of PIN activity, localization, and subcellular dynamics are medi-

ated by different phosphorylation states [27, 39]. In line with our

observation that SA inhibits PP2A activity, increased SA levels

lead to an increase in PIN phosphorylation and thus to a change

in subcellular PIN distribution and decrease in auxin export ac-

tivity (Figure 7B). This leads to attenuation of auxin-mediated

growth as manifested by a decrease in primary root elongation,

inhibition of gravitropic response, and repression of lateral

root organogenesis. Identification of SA as direct regulator of

PP2Ahighlights a role for this phosphatase complex as amolec-

ular hub for the trade-off between immune response and
(B) DSC analysis suggesting the potential binding of SA to recombinant His-

PP2AA1. 5 mM of purified His-PP2AA1 protein was analyzed by DSC with or

without 50 mM SA. Tm = 48.01�C and 45.03�C for His-PP2AA1+DMSO and

His-PP2AA1+SA, respectively.

(C) SPR analysis of the His-PP2AA1 and SA interaction. An active synthetic SA

analog (SA-f) was immobilized on a CM-5 sensor chip, and different concen-

trations of His-PP2AA1 were applied. The binding curve was plotted by values

at the steady state, for which the sensorgram is shown is Figure S7D. A KD

value of 3.623 mM was detected.

(D) SPR assay reveals the binding of His-PP2AA3 to SA. The same sensor chip

as above was used, and different concentrations of His-PP2AA3 were applied.

The binding curve was plotted by values at the steady state, with the data

points shown in the sensorgram in Figure S7E. A KD value of 1.916 mM was

detected.

See also Figures S5, S6, and S7.
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(A) SA plays a key role in the growth-immunity transition following pathogen attack: on one hand, SA activates the immune response, through stimulating NPR1

and repressing NPR3/4, all together increasing the expression of downstream defense genes; on the other hand, SA inhibits growth via suppressing PP2A activity

and the subsequent dephosphorylation of substrates.

(B) The auxin efflux carrier PIN2 is phosphorylated by different kinases, including PINOID/WAGs, D6PK/D6PKLs, and MAPKs, and dephosphorylated by PP2A.

Following pathogen attack, the SA levels increase. SA binds to the A subunits of PP2A and thereafter represses its dephosphorylation activity toward PIN

proteins, which leads to hyperphosphorylation of PIN, thereby a decrease in PIN activity ultimately resulting in a decrease in auxin export and attenuation of

growth.

(C and D) Induced stronger expression of pPR1::eYFP-NLS by SA was detected in pp2aa1-6.

(C) pPR1::eYFP-NLS seedlings were constantly grown on plates with DMSOor 40 mMSA for 5 days from germination andwere then imaged byCLSM. Scale bars,

10 mm.

(D) For quantification, the average GFP florescence of 5–10 representative cells from 10 seedlings for each treatment was measured by Fiji. The data points were

showed as dot plots, and lines indicate mean ± SD. Different letters represent significant difference; p < 0.05; by one-way ANOVA with a Tukey multiple

comparison test.
growth. It is noteworthy that SA does not completely inhibit the

PP2A activity, perhaps because PP2AAs are solely the scaffold

proteins for the PP2A holoenzyme. This regulatory mode may

present a mechanism to fine-tune PP2A activity under different

conditions. Notably, we demonstrate that this hyperphosphory-

lation by PP2A inhibition leads to mislocalization of PIN2, sug-

gesting more kinases, other than PID, involved in apical versus

basal PIN targeting [43]. Phosphorylation by mitogen-activated

protein kinase (MAPK) gives rise to a decreasedPINpolarity and

plasma membrane (PM) targeting [59]; thus, it would be inter-

esting to investigate whether PP2A also antagonizes with

MAPK in directing PIN localization.
Our previous study revealed that SA interferes with the inter-

nalization of PIN proteins, which depends on the clathrin-medi-

ated endocytosis pathway [14]. It has been also reported that

pp2a mutants, including pp2aa1, show decreased PIN

internalization [60, 61]. Our proposed SA-PP2A model further

clarifies the molecular mechanism underlying the SA effect on

PIN trafficking [14]. A recent study shows that SA has an impact

on the root meristem patterning via auxin distribution through

both upregulating auxin biosynthesis and interfering with trans-

port [30]. Though elevated auxin levels do not typically lead to

agravitropic root growth and therefore are likely a result of a

regulatory feedback from the blocked auxin transport, it would
Current Biology 30, 381–395, February 3, 2020 391



still be interesting to test whether PP2A is also involved in this SA

effect. Likewise, the observed developmental abnormalities in

SA-treated root columella cells [30] were also reported in PP2A

mutants [48], further supporting our hypothesis that this SA-

PP2A pathway plays more roles in plant growth and develop-

ment. Here, this study focuses on the SA action on root develop-

ment, especially PIN2-mediated gravitropism. It is likely that

more PP2A substrates, other PIN proteins, or even non-PIN sub-

strates are also involved in these effects.

Previous studies uncovered that plant pathogens interfere

with the auxin pathway at the level of the signaling. For example,

flagellin of pathogen can induce a microRNA (miRNA) to nega-

tively regulate the expression of auxin receptors, TRANSPORT

INHIBITOR RESISTANT1 (TIR1)/ AUXIN SINGNALING F BOX

(AFB) [58]. Moreover, SA also stabilizes the negative regulators

of auxin signaling pathway, AUXIN/IAA (AUX/IAA) [8], or inter-

feres with auxin biosynthesis [11]. Notably, the npr1 mutation

suppresses the immune response, but not the growth attenua-

tion phenotype of snc2-1D, which shows constitutive defense

response [62]. Recently, a gain-of-function mutation of NPR4,

npr4-4D, was identified to work together with npr1-1 and addi-

tively to regulate immune response as well as the growth

pathway [7]. In view of these observations, we conclude that

SA regulates plant growth and development through multiple

mechanisms, many of which involve auxin. Generally, it remains

unclear whether these other SA effects are mediated by the

canonical, NPR1-mediated pathway or require here identified

SA-PP2A signaling module.

Notably, by investigating the NPR1-mediated immune

response with pPR1::eYFP-NLS, we found that pp2aa1mutation

leads to an increased SA sensitivity (Figures 7C and 7D). It has

been reported that bacterial type-III effector proteins could

target PP2A to facilitate infection and that multiple pp2a loss-

of-function mutants, including pp2aa1, exhibit elevated

response to pathogen attack [63]. Together with our findings,

we hypothesize that PP2A, as an essential regulator for multiple

pathways, might play a central role in coordinating plant immune

response with attenuation of growth and development.

Previous studies demonstrated that NPR1/NPR3/NPR4 are

genuine SA receptors, mediating the downstream transcriptional

response. NPR proteins share sequence similarity with the

mammalian master regulator in the inflammatory response, nu-

clear factor kB (NF-kB), and specifically its subunit, inhibitor pro-

tein I-kB (IkB) [3, 4]. IkB is phosphorylated by an IkB kinase (IKK)

complex, whose activity is directly inhibited by salicylates, the

active breakdown compound of the common anti-inflammatory

drug Aspirin (2-acetoxybenzoic acid), thus providing mechanism

of their well-known anti-inflammatory effects [64]. These inter-

esting analogies between plant and mammalian pathogen de-

fense mechanisms, both at the sequence level of involved regu-

lators as well as at structural level of the involved ligands, point to

possible evolutionary conservation between these otherwise

seemingly unrelated pathogen defense strategies. Given the

fact that PP2A regulates the dephosphorylation of numerous

substrates, it would be interesting to investigate whether the

SA-PP2A signaling module is a part of this evolutionary

conservedmechanism and also regulates theNPR-mediated im-

munity in plants or NF-kB-controlled inflammatory response in

mammals.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-PIN1 [37] N/A

Rabbit anti-PIN2 [36] N/A

Mouse anti-His-tag monoclonal Antibody Agrisera Cat# AS11 1771

Mouse anti-myc-tag monoclonal Antibody, clone 4A6 Millipore (Merck) Cat# 05-724

Phospho-PP2A alpha (Tyr307) Polyclonal Antibody Thermo Scientific Cat# PA5-36874; RRID:AB_2553794

Anti-GFP-HRP Miltenyi Biotec Cat# 130-091-833; RRID:AB_247003

Monoclonal anti-GFP antibody produced in mouse Sigma Cat# G6539; RRID:AB_259941

Anti-PIP2;1 [65] N/A

Bacterial and Virus Strains

Escherichia coli DH5a Lab stock N/A

E.coli BL21 (DE3) New England Biolabs Cat# C2527H

Agrobacterium tumefaciens GV3101 Lab stock N/A

Pseudomonas syringae pv. tomato DC3000 Armin Djamei lab N/A

Chemicals, Peptides, and Recombinant Proteins

brefeldin A Sigma Cat# B7651

Propidium Iodide Sigma Cat# P3566

PBS Buffer 10 3 (1000 mL) GE Healthcare Cat# BR100672

PhosSTOP Sigma/Roche Cat# 4906837001

cOmplete protease inhibitor cocktail Sigma/Roche Cat# 4693124001

Benzoic acid (BA) Sigma Cat# 242381

Salicylic Acid (SA) Sigma Cat# 247588

3-Hydroxybenzoic acid (3-OH-BA) Sigma Cat# H20008

4-Hydroxybenzoic acid (4-OH-BA) Sigma Cat# H20059

N-(1-Naphthyl)phthalamidic acid Sigma Cat# N12507

2,3,5-Triiodobenzoic acid (TIBA) Sigma Cat# T5910

[3H]-IAA (([5-3H]-Indole-3-acetic acid) American Radiolabeled Chemicals Cat# ART 0340

[3H]- NAA ([4-3H]-1-Naphthylacetic acid) American Radiolabeled Chemicals Cat# ART 0610

[3H]-2,4-D (([5-3H]-2,4-Dichlorophenoxy acetic acid) American Radiolabeled Chemicals Cat# ART 0559

Cantharidin Sigma Cat# C7632

Imidazole Sigma Cat# I5513

FastDigest Hin1II Thermo Fisher Scientific Cat# FD1834

FastDigest EcoRI Thermo Fisher Scientific Cat# FD0274

FastDigest XhoI Thermo Fisher Scientific Cat# FD0694

FastDigest BamHI Thermo Fisher Scientific Cat# FD0054

FastDigest SalI Thermo Fisher Scientific Cat# FD0644

T4 DNA Ligase Buffer Thermo Fisher Scientific Cat# 46300-018

T4 DNA Ligase (1 U/mL) Thermo Fisher Scientific Cat# 15224-017

GeneJET Plasmid Miniprep Kit Thermo Fisher Scientific Cat# K0503

GeneJET Gel extraction kit Thermo Fisher Scientific Cat# K0692

BSA (Bovine Serum Albumin) Sigma Cat# A2153

His-PP2AA1 This study N/A

His-PP2AA3 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

His-PIN2HL This study N/A

Critical Commercial Assays

Bio-Safe Coomassie Stain #1610786 Bio-Rad Cat# 1610786

Non-Radioactive Phosphatase Assay Systems Promega Cat# V2460

HisPur Ni-NTA Resin Thermo Fisher Scientific Cat# 88222

g-[32P]-ATP PerkinElmer Cat# NEG502A001MC

Experimental Models: Cell Lines

Nicotiana tabacum L., cv. Bright Yellow-2 (BY-2) N/A N/A

Experimental Models: Organisms/Strains

Arabidopsis thaliana Col-0 N/A N/A

A. thaliana Ws-4 NASC N5390

A. thaliana eir1-4 (pin2-T) [36] SALK_091142

A. thaliana aux1-T (aux1) [66] SALK_020355

A. thaliana pAUX1::AUX1-YFP [67] N/A

A. thaliana pPR1::eYFP-NLS [24] N/A

A. thaliana npr1-1 [2] N/A

A. thaliana npr3-1 npr4-3 [68] N/A

A. thaliana npr1-1 npr3-1 npr4-3 [68] N/A

A. thaliana cpr6 [23] N/A

A. thaliana sid2-3 [69] SALK_042603

A. thaliana rcn1-1 (rcn1, pp2aa1-1) [42] N/A

A. thaliana rcn1-6 (pp2aa1-6) [49] SALK_059903

A. thaliana pp2aa2-2 [45] SALK_037095

A. thaliana pp2aa2-3 [45] SALK_017541

A. thaliana pp2aa3-2 [45] SALK_099550

A. thaliana pp2aa1 pp2aa2-3 [45] N/A

A. thaliana pp2aa1 pp2aa3-1 [45] N/A

A. thaliana pPIN2::PIN2-GFP [70] N/A

A. thaliana pPP2AA1::PP2AA1-GFP [45] N/A

A. thaliana DR5v2 [28] N/A

A. thaliana eir1-4 DR5v2 This study N/A

A. thaliana pPR1::eYFP-NLS [24] N/A

A. thaliana pp2aa1-6 pPR1::eYFP-NLS This study N/A

A. thaliana 35S::4 3 myc-PP2AA1 This study N/A

A. thaliana pp2aa1-6 cpr6 This study N/A

Oligonucleotides

Primers used in this study, see Table S1 This study N/A

Recombinant DNA

Plasmid pET28a-PP2AA1 This study N/A

Plasmid pET28a-PP2AA3 This study N/A

Plasmid pET28a-PIN2HL This study N/A

Plasmid pEGAD-35S::4 3 myc-PP2AA1 This study N/A

Software and Algorithms

Arabidopsis Information Resource (TAIR) http://www.arabidopsis.org/ N/A

ImageJ https://imagej.nih.gov/ij/ NIH

Fiji https://fiji.sc/ N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ZEN https://www.zeiss.com/microscopy/

int/products/microscope-software/

zen-lite.html

ZEISS

DNA MAN https://www.lynnon.com/ N/A

ChemSketch https://www.acdlabs.com/resources/

freeware/chemsketch/

N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Requests for resources and reagents such as plasmids, compounds, mutant and transgenic lines should be directed to and will be

fulfilled by the Lead Contact, Ji�rı́ Friml (jiri.friml@ist.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Materials and Growth Conditions
Arabidopsis thaliana (L.) mutants or transgenic lines are in Columbia-0 (Col-0) background if not particularly mentioned. The mutants

and marker lines pPIN2::PIN2-GFP in eir1-1 [70], pAUX1::AUX1-YFP [67], aux1-T [66], eir1-4 (pin2-T) [36], npr1-1 [2, 3], sid2-3 (sid2)

[69], npr3-1 npr4-3 [68], npr3-2 npr4-2 [68], npr1-1 npr3-1 npr4-3 [68], cpr1 [71], cpr5 [72], cpr6 [23], rcn1-1 (pp2aa1-1, in Ws) [42],

rcn1-6 (pp2aa1-6) [49], pp2aa2-2 [45], pp2aa2-3 [45], pp2aa3-2 [45], pp2aa1,a2 (pp2aa1, pp2aa2-3) [45], pp2aa1,a3 [45], pp2aa2,a3

[45], pPP2AA1::PP2AA1-GFP in Col-0 [45] and DR5v2 [28] were published previously. The detailed information of plant lines,

including mutants and marker lines, used in this study is listed in Key Resources Table. The primers used for genotyping the mutants

were listed in Table S1.

For physiological experiments, surface-sterilized seeds were sown onMurashige and Skoog (1/2MS)medium, supplemented with

1% sucrose, 0.8%phytoagar (pH 5.9), stratified at 4�C for 3 days (d), and then grown vertically in a growth chamber at 21�Cwith a 16-

h-light/8-h-dark photoperiod.

METHOD DETAILS

Pseudomonas syringae treatment of Arabidopsis seedlings
P. syringae treatment was performed as reported previously [73]. A single colony of P. syringae pv. tomato DC3000 (kind gift from Dr.

Armin Djamei, IPK- Gatersleben) was cultured in 20 mL King’s B (KB) liquid media overnight, to get OD600 between 0.4 and 0.6. The

DC3000 cells were collected by spinning down at 1600 g, and were then resuspended in infection buffer (0.025% Silwet L-77, and

10 mM MgCl2). The concentration was adjusted to OD600 = 0.01 ( = �5 3 106 CFU/mL) for treatment. The DC3000 suspension was

dispensed into the plates with 5-day-old pPR1::eYFP-NLS seedlings and incubated for 3min at 25�C. Afterward, the suspension was

decanted, and seedlings were grown for another 2 days before imaging.

Pharmacological treatments
For long-term growth experiments, seeds were sown on MS plates containing indicated chemicals, including benzoic acid (Sigma,

242381), SA (Sigma, 247588), 3-OH-BA (Sigma, H20008), 4-OH-BA (Sigma, H20059), cantharidin (Sigma, C7632), NPA (Sigma,

N12507), and TIBA (Sigma, T5910). After 3-d stratification at 4�C, they were moved to grow in a growth chamber as mentioned in

the ‘‘Plant material and growth conditions’’ section, for 7 d or 10 d.

For short-term treatment, 4-d-old seedlings were incubated in liquid MSmedium containing indicated chemicals for a certain time

course as described in the Figure Legends. Detailed information of all chemicals used in this study is listed in Key Resources Table.

Free SA measurement by liquid chromatography-tandem mass spectrometry (LC-MS/MS)
Free SA contents wasmeasured by LC-MS/MS as previously reported [74]. Approximately 10mg fresh weight (FW) of roots fromCol-

0, sid2-3, and cpr6 were collected and frozen in liquid nitrogen for LC-MS/MS. SA contents were calculated by the whole amount

divided by the fresh weight (pmol/g FW).

Auxin transport in hypocotyls and tobacco BY-2 cells
The basipetal (rootward) transport assay of [3H]-IAA in etiolated hypocotyls was performed according to a previous report [75], with a

few modifications. 6-day-old etiolated Col-0 seedlings were placed on MS plates containing indicated chemicals, with 15 seedlings

as one biological replicate, and 3 replicates per treatment. The [3H]-IAA (PerkinElmer, ART-0340) droplets were prepared in MS me-

dium with 1.25% agar and 500 mM [3H]-IAA (1.45 mL in 10 mL), supplemented with same concentration of the chemicals as in the

respective plate. The seedlings were decapitated and then covered with a [3H]-IAA droplet at the shootward end. After incubation
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for 6 hours in the dark, the lower part of the hypocotyls was cut and collected and were then ground completely in liquid nitrogen and

homogenized in 1mL scintillation solution (PerkinElmer, 6013199). The samples were incubated overnight to allow the radioactivity to

evenly diffuse into the whole volume of the scintillation cocktail. Finally the radioactivity was measured with a scintillation counter

(Hidex 300XL), with each sample counted for 100 s, 3 times. 3 samples with only the scintillation solution were used as background

controls.

The transport of [3H]-NAA, [3H]-2,4-D, and [3H]-BA in tobacco BY-2 cells was performed as published previously [32].

Imaging with Confocal Laser Scanning Microscopy (CLSM)
Fluorescence imaging was performed using a Zeiss LSM800 confocal laser scanning microscope (CLSM) with a GaAsP detector

(Zeiss, Germany). The manufacturer’s default settings (smart mode) were used for imaging GFP (excitation, 488 nm; emission,

495-545 nm)-, and tdTomato (excitation 561 nm; emission, 571-630 nm)-tagged proteins respectively. To image FM4-64-stained

cells, a laser line of 543 nm was used for excitation, and an emission light with a wavelength of 600-700 nm was collected. For PI

staining, excitation of 561 nm was used and emission signal was collected using a filter of 580- 680 nm. All images were recorded

in 8 bit depth, 2 3 line averaging. The images were analyzed and visualized with Fiji program [76].

Image analysis and morphological analysis
For root length measurement, photos were taken with a scanner (Epson Perfection V800 Photo) and then the root length was

measured with ImageJ. The representative photos were taken by a camera (Sony A600 with a macro lens, 30mm/F3.5).

Molecular cloning
For pET28a-PIN2HL, pET28a-PP2AA1 and pET28a-PP2AA3 constructs, coding regions of PIN2HL, PP2AA1 (primers PP2AA1-1/

PP2AA1-2) and PP2AA3 (primers PP2AA3-1/ PP2AA3-2) were amplified and subcloned into vector pET28a (Novagen) with EcoRI/

SalI, EcoRI/XhoI, and EcoRI/XhoI respectively.

All the plasmids were identified by PCR and confirmed by sequencing (LGC). The primers used were listed in Table S1.

PP2A activity assay
The total PP2A activity assay was performed as previously reported with a Ser/Thr protein phosphatase assay kit (Promega, V2460)

[48]. Approximately 1g of 7-d-old seedlings were ground in liquid nitrogen. Phosphatase storage buffer (250 mM imidazole, 1 mM

EGTA, 0.1% b-mercaptoethanol, and 0.5mg/ml BSA, pH7.2) was added (1/2, volume/weight, hereafter short as v/w) to the frozen

tissues and centrifuged to remove cell debris. Endogenous free phosphate was removed with the supplied Sephadex G-25 columns.

PP2A phosphatase activity was measured using a molybdate dye-based phosphatase assay kit (Promega, V2460). The reactions

were incubated at 37�C for 30 min before being terminated by the molybdate dye and additive mixture. The transparent 96-well plate

was read on a Biotek Synergy H1 plate reader at 25�C at 600 nm, with 4 reads per well. The experiment was performed in three in-

dependent biological replicates for each treatment.

Protein extraction and immunoblot
To examine the expression level of myc-PP2AA1 in the 35S::myc-PP2AA1 overexpression line, or the phosphorylation level at Tyr307

(Y307) of PP2AC subunits, 100mg of 7-d-old Col-0 seedlings were frozen in liquid nitrogen, ground totally, and homogenized in plant

extraction buffer (20 mM Tris-HCl, pH 7.5, 150 mMNaCl, 0.5% Tween-20, 1 mM EDTA (ethylenediaminetetraacetic acid), 1 mMDTT

(1,4-dithiothreitol)) containing a protease inhibitor cocktail (cOmplete, Roche). After addition of an equal volume of 33 SDS (sodium

dodecyl sulfate) loading buffer, the samples were boiled for 5 min, fractionated by 10% SDS-PAGE (sodium dodecyl sulfate-poly-

acrylamide gel electrophoresis) and transferred to a PVDF membrane by wet blotting. The membrane were incubated with a mouse

anti-myc antibody (Millipore) or a mouse pY307-PP2Ac antibody (Millipore) and then with a bovine anti-mouse IgG HRP (horseradish

peroxidase)-conjugated secondary antibody (GE Healthcare). HRP activity was detected by the Supersignal Western Detection Re-

agents (Thermo Scientific) and imaged with a GE Healthcare Amersham 600RGB system.

PIN2 phosphorylation assays
Roots from Col-0 and pp2aa1-6were treated with 40 mMSA or DMSO for 15 min, 1 h and 2 h. Untreated roots were also collected at

time zero from Col-0, pp2aa1-6 and eir1-4 respectively. Protein extraction was performed as previously [41], with modifications for

preserving phosphorylation status. The extraction buffer (EB) was: 50 mM Na2HPO4 (pH 7.4), 25% w/w sucrose, 7.5% glycerol,

20 mM betaglycerolphosphate, 5 mM Na2MoO4, 50 mM NaF, 0.1% casein, 10 mM EDTA (pH 8), 5 mM EGTA (pH 8), 20 mM

borate/10mMTris-HCl (pH 8.2), 1mMNa3VO4, 10 nMokadaic acid, 13PhosStop (Roche). Protease inhibitors (1mMPMSF (phenyl-

methanesulfonyl fluoride), 1 mM Pefabloc-SC, 2 mg/mL E64, 0.7 mg/mL pepstatin A, 1 mg/mL aprotinin, and 1 mg/mL leupeptin) and

insoluble PVPP (polyvinylpolypyrrolidone) were used. Samples weremilled in liquid N2, extracted with 4 volumes of EB, transferred to

PVPP and spun at 500 g (2 min, 4�C). The supernatant was cleared again at 400 g (3 min, 4�C). The supernatant was saved as a total

protein fraction, or diluted with 2 volumes of water and spun at 21, 000 g (20min, 4�C) or 55, 000 g (10min, 4�C) to obtain amembrane

fraction pellet. All samples were solubilized with 0.5%SDS plus 20mMDTE (Dithioerythritol), and precipitated with chloroform/meth-

anol. Samples (corresponding to 2 or 3 mg original root weight) were denatured by heated only at 50�C to avoid aggregation, and

were separated by SDS-PAGE and blotted. Blots were Ponceau stained to confirm loading, probed with rabbit anti-PIN2 [36],
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stripped and reprobed with anti-PIN1 [37] or anti-PIP2;1 [65]. HRP activity was detected by the Supersignal Western Detection

Reagents (Thermo Scientific) and imaged with Biorad XRS Chemidoc or conventional film.

PIN2-HL phosphorylation assay with [g-32P]-ATP
The phosphorylation assay of PIN2-HL with [g-32P]-ATPwas performed as previously described [43], with a fewmodifications. Roots

from Col-0 and pp2aa1-6 (approximately 100 mg) were treated with 40 mMSA or DMSO for 1 h, and harvested for protein extraction.

The samples were ground in liquid nitrogen and homogenized in 100 mL protein extraction buffer (20 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 0.5% Tween-20, 1mMDTT, cOmplete protease inhibitor cocktail). 20 mL (�10 mg) recombinant His-PIN2HL protein was added

with 4 mL plant extract, and then the reaction was initiated by adding 10 mMMgCl2 and 2 mL (20 mCi) [g-32P]-ATP (NEG502A001MC,

Perkin-Elmer). After incubation at 25�C for 1h, the reaction was terminated by adding 10 mL SDS loading buffer. The protein samples

were separated by SDS-PAGE. The gel was rinsedwith deionized H2O, coveredwith a thin transparent plastic membrane, and devel-

oped with a phosphor plate overnight. The phosphor plate was finally scanned with a Fujifilm FLA 3000 plus DAGE system.

Drug Affinity Responsive Target Stability (DARTS) assay
The DARTS assay to test the binding of SA to PP2AA1-GFP was performed as previously reported [77, 78]. pPP2AA1::PP2AA1-GFP

seedlings (7d) were used for total protein extraction. After harvesting, the samples were ground in liquid nitrogen, resuspended in

protein extraction buffer (25 mM Tris-HCl, pH 7.5; 150mMNaCl; 0.1% IGEPAL CA-630, Roche cOmplete protease inhibitor cocktail,

EDTA free) with a 1:2 (w/v) ratio, and spun down to discard the cell debris. After quantifying the protein concentration (Quick Start

Bradford Reagent, Bio-Rad), the cell lysate was aliquoted and incubated with 0, 50 mM or 500 mM SA respectively for 30 min at

25�C, mixing at a low speed. The treated extracts were further aliquoted, andmixed with different concentrations of Pronase (Roche)

in Pronase buffer (25 mM Tris-HCl, pH 7.5; 150 mM NaCl). After incubation at 25�C for 30 min, the proteolytic digestion was termi-

nated by adding protease inhibitor cocktail (cOmplete, Roche) and the samples were kept on ice for 10min. The protein sampleswere

then analyzed by western blot. PP2AA1-GFP was detected by an anti-GFP antibody (JL8, Clontech, 1:2000). HRP activity was de-

tected by the Supersignal Western Detection Reagents (Thermo Scientific) and imaged with a GE Healthcare Amersham 600RGB

system.

Recombinant protein expression and purification
Recombinant proteins were expressed in the E. coli strain BL21 (DE3) with induction by 0.5 mM IPTG (Isopropyl b-D-1-Thiogalacto-

pyranoside, 16�C, 12 h) and then purified using Ni-NTA His binding resin (Thermo Scientific) according to themanufacturer’s manual.

The eluted samples were then purified with size exclusion chromatography, with a Superdex 200 increase column, on an ÄKTA pure

chromatography system (GE Healthcare). Fractions were collected by 500 mL, and then analyzed by SDS-PAGE, followed by Coo-

massie brilliant blue (CBB, Bio-Safe Coomassie Stain #1610786 from BioRad) staining to check the protein quality.

Differential Scanning Calorimetry (DSC) analysis
The DSC analysis was performed with aMicroCal PEAQ-DSC Automated instrument (Malvern Panalytical). 5 mMPP2AA1 in 13 PBS,

with or without 50 mMSA,were heated from25�C to 85�Cat a heating rate of 1�C /min, cooled in situ and heated again under the same

conditions. Data was obtained and analyzed with the provided program.

Chemical synthesis of SA derivatives
General information

All starting materials were used as received from commercial sources (Sigma-Aldrich, Merck, and Lach-Ner) without further purifi-

cation. 2-(6-bromohexyl)isoindoline-1,3-dione was prepared using published procedure. THF [79] was distilled under argon from so-

dium benzophenone ketyl. All reactions were performed in round-bottom flasks fittedwith rubber septa using the standard laboratory

techniques. Reactions sensitive to air and/or moisture were performed under a positive pressure of argon. Analytical thin-layer chro-

matography (TLC) was performed using aluminum plates pre-coated with silica gel (silica gel 60 F254). TLC plates were visualized by

exposure to ultraviolet light and then were stained by submersion in basic potassium permanganate solution or in ethanolic phos-

phomolybdic acid solution followed by brief heating. Column chromatography was performed on silica gel 60 (40-63 mm). Melting

points (mp) were tested on a capillary melting point apparatus. 1H NMR and 13C NMR spectra were recorded on 500 and 125

MHz in CDCl3, CD3OD, acetone-d6 and DMSO-d6; chemical shifts (d ppm) and coupling constants (Hz) of 1H NMR are reported in

a standard fashion with relative to the remaining CHCl3 present in CDCl3 (dH = 7.27 ppm), central line of pentet in CHD2OD present

in CD3OD (dH = 3.31 ppm), central line of pentet in CHD2C(O)CD3 present in acetone-d6 (dH = 2.05 ppm), and central line of pentet in

CHD2SOCD3 present in DMSO-d6 (dH = 2.50 ppm). 13C NMR chemical shifts (d ppm) are reported relative to CDCl3 (dC = 77.23 ppm,

central line of triplet), CD3OD (dC= 49.0 ppm, central line of heptet), CD3C(O)CD3 (dC= 29.84 ppm, central line of heptet), and DMSO-

d6 (dC= 39.52 ppm, central line of heptet). Proton coupling patterns are represented as singlet (s), doublet (d), doublet of doublet (dd),

triplet (t), triplet of triplet (tt), pentet (p), and multiplet (m). HRMS data were obtained using quadrupole/ion trap mass analyzer. Anal-

ysis and assignments were made by comparison with literature spectroscopic data or using 2D-COSY, HSQC, HMBC, 2D-NOESY

and 1D-NOEdiff experiments. Purity of final compounds was determined using the following protocol: Compound (1 mg) was dis-

solved in 1mL of 1%methanol and injected (10 mL) onto a reverse-phased column (Symmetry C18, 5 mm, 150mm3 2.1mm;Waters,

Milford, MA, USA) incubated at 25�C. Solvent (A) consisted of 15mMammonium formate adjusted to pH 4.0. Solvent (B) consisted of
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methanol. At flow-rate of 200 mL/min, following binary gradient was used: 0 min, 10% B; 0-24 min. linear gradient to 90% B;

25-34 min. isocratic elution of 90% B; 35-45 min. linear gradient to 10% B. The effluent was introduced then to PDA detector (scan-

ning range 210-700 nm with 1.2 nm resolution) and an electrospray source (source temperature 120�C, desolvation temperature

300�C, capillary voltage 3 kV, cone voltage 20 V). Nitrogen was used as well as cone gas (50 L/h) and desolvation gas (500 L/h).

Data acquisition was performed in the full scan mode (50-1000 Da), scan time of 0.5 s. and collision energy of 6 V. Analyses were

performed in positive mode (ESI+) or in negative mode (ESI-), therefore data were collected as quasi-molecular ions of [M+H]+

and [M-H]-, respectively.

C-10 (5-(allyloxy)-2-hydroxybenzoic acid)

Successively, K2CO3 (1.23 g, 8.93 mmol, 1.5 equiv) and allyl bromide (0.643 mL, 7.4 mmol, 1.25 equiv) were added to a solution of

methyl 2,5-dihydroxybenzoate (1.0 g, 6.0 mmol, 1.0 equiv) in dry acetone (60 mL) and the resulting mixture was heated up to 60�C.
After 5h at 60�C, the reaction mixture was cooled to 25�C (room temperature) and diluted with H2O (50 mL). The whole mixture was

extracted with CH2Cl2 (3 3 75 mL). Organic layers were combined and washed with brine (50 mL), dried over MgSO4, filtered and

volatiles were removed under reduced pressure. The residue was purified by flash column chromatography (SiO2; hexane:EtOAc =

20:1 - > 10:1) and yielded 5-O-allylated ester (0.719 g, 58%). 1H NMR (500MHz, CDCl3) d (ppm): 3.95 (s, 3H), 4.52 (dt, J = 5.2, 1.8 Hz,

2H), 5.32 (dd, J = 10.5, 1.6 Hz, 1H), 5.43 (dd, J = 17.2, 1.7 Hz, 1H), 6.06 (ddt, J = 17.6, 10.5, 5.3 Hz, 1H), 6.92 (d, J = 9.2 Hz, 1H), 7.11

(dd, J = 9.2, 3.2 Hz, 1H), 7.32 (d, J = 3.2 Hz, 1H), 10.39 (s, 1H); 13C NMR (126 MHz, CDCl3) d (ppm): 52.3, 69.5, 111.7, 113.1, 117.8,

118.4, 124.6, 133.1, 150.8, 156.1, 170.2; MS (ESI+), m/z (%): 209 [M+H]+ (100); HRMS (ESI+) calcd. for C11H13O4 [M+H]+: 209.0808,

found 209.0808. 5-O-allylated ester (0.5 g, 2.4 mmol, 1.0 equiv) was dissolved in dry THF (24 mL) at 25�C. Potassium trimethylsila-

nolate (TMSOK, 0.924 g, 7.2 mmol, 3.0 equiv) was added and the resulting mixture was stirred at 25�C for 24 h. After this period of

time, pH of the reaction mixture was adjusted to 2 with help of 10% aq. HCl. Organic solvents were removed under reduced pressure

and additional H2O (20 mL) was added. The whole mixture was extracted with CH2Cl2 (23 50mL) and combined organic layers were

washed with brine (30 mL), dried over MgSO4 and evaporated to dryness under reduced pressure. The residue was purified by col-

umn chromatography (SiO2; hexan:EtOAc:AcOH = 2:1:0.1 - > 1:1:0.1) to yield the desired compound C-10 (364 mg, 78%). 1H NMR

(500 MHz, CDCl3) d (ppm): 4.53 (dt, J = 5.3, 1.7 Hz, 2H), 5.32 (dd, J = 10.6, 1.5 Hz, 1H), 5.43 (dd, J = 17.4, 1.6 Hz, 1H), 6.06 (ddt, J =

17.5, 10.6, 5.4 Hz, 1H), 6.96 (d, J = 9.2 Hz, 1H), 7.19 (dd, J = 9.0, 3.1 Hz, 1H), 7.39 (d, J = 3.3 Hz, 1H), 10.03 (s, 1H); 13C NMR (126MHz,

CDCl3) d (ppm): 69.8, 110.9, 113.8, 118.2, 119.1, 126.6, 133.2, 151.4, 157.1, 174.7; MS (ESI+), m/z (%): 195 [M+H]+; HRMS (ESI+)

calcd. for C10H11O4 [M+H]+: 195.0652, found 195.0651.

SA-1 (5-((6-aminohexyl)oxy)-2-hydroxybenzaldehyde hydrochlorid)

SA-3 (0.4 g, 1.09 mmol, 1.0 equiv) was dissolved in THF/H2O = 2:1 (9.0 mL) and the resulting solution was cooled to 0�C. A solution of

HSO3(NH2) (0.211 g, 2.2 mmol, 2.0 equiv) in H2O (2.2 mL) followed by NaClO2 (0.108 g, 1.2 mmol, 1.1 equiv) in H2O (1.2 mL) was

added, and the resulting mixture was stirred at 0�C for 2 h. H2O (20 mL) was added and the resulting solution was extracted with

CH2Cl2 (3 3 50 mL). Organic layers were combined and washed with brine (25 mL), dried over Na2SO4, filtered and volatiles were

removed under reduced pressure to yield carboxylic acid (0.343 g, 82%) sufficiently pure to be used in the next step. 1H NMR

(500 MHz, acetone-d6) d (ppm): 1.37 – 1.50 (m, 2H), 1.49 – 1.60 (m, 2H), 1.67 – 1.75 (m, 2H), 1.81 – 1.92 (m, 2H), 3.66 (t, J =

7.1 Hz, 2H), 4.20 (t, J = 6.6 Hz, 2H), 7.04 (dd, J = 8.9, 3.1 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H), 7.42 (d, J = 3.1 Hz, 1H), 7.92 (dd, J =

6.0, 3.3 Hz, 2H), 8.20 (dd, J = 6.0, 3.3 Hz, 2H); MS (ESI+), m/z (%): 384 [M+H]+; HRMS (ESI+) calcd. for C21H21NO6Na [M+Na]+:

406.1261, found 406.1262. Carboxylic acid (0.300 g, 0.78 mmol, 1.0 equiv) was dissolved in EtOH (8 mL) and hydrazine hydrate

(0.076mL, 1.56 mmol, 2.0 equiv) was added. The resulting mixture was stirred at 60�C for 6 h. White precipitate formed upon heating

was filtered off and the filtrate was concentrated under reduced pressure to yield viscose oil. EtOH (10 mL) and H2O (10 mL) were

added and the pH was adjusted to 2 with help of 2.0 M aq. HCl. Concentration of the resulting mixture under reduced pressure

and subsequent co-evaporation of the residue with EtOH (2 3 10 mL) and toluene (2 3 15 mL) yielded desired compound SA-1

(0.052 g, 27%). Mp: > 190�C (dec.); 1H NMR (500 MHz, CD3OD) d (ppm): 1.44 – 1.51 (m, 2H), 1.51 – 1.62 (m, 2H), 1.65 – 1.75 (m,

2H), 1.82 (ddt, J = 14.2, 7.9, 4.2 Hz, 2H), 2.94 (t, J = 7.6 Hz, 3H), 4.07 (t, J = 6.3 Hz, 2H), 6.96 (dd, J = 8.9, 3.0 Hz, 1H), 7.00 (d, J =

8.9 Hz, 1H), 7.24 (d, J = 3.0 Hz, 1H); 13C NMR (126 MHz, CD3OD) d (ppm): 26.6, 27.1, 28.5, 30.1, 40.7, 70.8, 116.9, 118.1, 121.3,

122.3, 152.1, 157.8, 168.5; MS (ESI+), m/z (%): 254 [M-Cl]+; HRMS (ESI+) calcd. for C13H20NO4 [M-Cl]+: 254.1387, found 254.1388.

SA-2 (5-((5-(1,3-dioxoisoindolin-2-yl)pentyl)oxy)-2-hydroxybenzaldehyde)

2,5-dihydroxybenzaldehyde (0.5 g, 3.62 mmol, 1.0 equiv) was dissolved in dry DMF (36 mL) and K2CO3 (0.6 g, 4.3 mmol, 1.2 equiv)

and 2-(6-bromohexyl)isoindoline-1,3-dione (1.07 g, 3.62mmol, 1.0 equiv) were added. The resultingmixture was heated at 70�C for 4

h. All volatiles were removed under reduced pressure and the residue was dissolved in H2O (50mL). Thewholemixture was extracted

with EtOAc (33 50 mL) and combined organic layers were washed with brine (25 mL), dried over Na2SO4, filtered and evaporated to

dryness. The residue was purified by flash column chromatography (SiO2; hexane:EtOAc = 4:1- > 2:1) to yield SA-2 (0.627 g, 49%) as

a yellowish viscose oil. 1HNMR (500MHz, CDCl3) d(ppm): 1.48 – 1.60 (m, 2H), 1.77 (p, J = 7.3 Hz, 2H), 1.82 – 1.93 (m, 2H), 3.73 (dd, J =

7.8, 6.5 Hz, 2H), 4.01 (t, J = 6.3 Hz, 2H), 6.85 (d, J = 9.0 Hz, 1H), 7.08 (dd, J = 8.9, 3.2 Hz, 1H), 7.28 (d, J = 3.1 Hz, 1H), 7.72 (dd, J = 5.5,

3.1 Hz, 2H), 7.85 (dd, J = 5.5, 3.1 Hz, 2H), 10.40 (s, 1H); 13C NMR (126MHz, CDCl3) d (ppm): 23.5, 28.4, 28.9, 37.9, 68.9, 113.5, 114.4,

123.4, 123.7, 125.4, 132.2, 134.2, 150.8, 155.8, 168.7, 189.9; MS (ESI+), m/z (%): 354 [M+H]+; HRMS (ESI+) calcd. for C20H20NO5

[M+H]+: 354.1336, found 354.1335.

SA-3 (5-((6-(1,3-dioxoisoindolin-2-yl)hexyl)oxy)-2-hydroxybenzaldehyde)

Using the same procedure as for SA-2 synthesis. The residue was purified by flash column chromatography (SiO2; hexane:EtOAc =

4:1- > 2:1) to yield SA-3 (1.04 g, 78%) as a white solid. Mp = 148-149�C; 1H NMR (500MHz, CDCl3) d (ppm): 1.41 (dd, J = 15.3, 7.9 Hz,
Current Biology 30, 381–395.e1–e8, February 3, 2020 e6



2H), 1.46 – 1.56 (m, 2H), 1.70 (dt, J = 15.0, 7.6 Hz, 2H), 1.74 – 1.84 (m, 2H), 3.69 (t, J = 7.3 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 6.83 (d, J =

9.2 Hz, 1H), 7.07 (dd, J = 8.9, 3.1 Hz, 1H), 7.28 (d, J = 3.3 Hz, 1H), 7.70 (dd, J = 5.3, 2.9 Hz, 2H), 7.82 (dd, J = 5.3, 2.9 Hz, 2H), 7.90 (s,

1H), 10.40 (s, 1H); 13C NMR (126 MHz, CDCl3) d (ppm): 25.8, 26.7, 28.6, 29.2, 38.0, 69.1, 113.4, 114.4, 123.4, 123.7, 125.4, 132.2,

134.1, 150.9, 155.7, 168.7, 190.0; MS (ESI+), m/z (%): 368 [M+H]+; HRMS (ESI+) calcd. for C21H22NO5 [M+H]+: 368.1492, found

368.1492.

SA-f (5-((5-aminopentyl)oxy)-2-hydroxybenzoic acid)

Methyl 2,5-dihydroxybenzoate (4.1 g, 24.4 mmol, 1.0 equiv) was dissolved in acetone/H2O = 3.3:1 (190 mL) and K2CO3 (13.48 g,

98 mmol, 4 equiv) followed by 1,5-dibromopentane (10.0 mL, 73.4 mmol, 3.0 equiv) were added. The resulting mixture was refluxed

for 4h, allowed to cool to 25�C and volatiles were removed under reduced pressure. Residue was extracted with CH2Cl2 (540mL) and

the organic layer was washedwith H2O (220mL), brine (150mL), dried overMgSO4, filtered and evaporated to dryness yielding crude

methyl 5-((5-bromopentyl)oxy)-2-hydroxybenzoate (16.5 g) as a brown oil. Crude ester was dissolved in acetone/H2O = 3.3:1

(190 mL) and NaN3 (7.9 g, 121.8 mmol, 5.0 equiv) was added. The resulting mixture was refluxed for 24 h before being allowed to

cool to 25�C. Volatile solvents were removed under reduced pressure and the resulting mixture was extracted with CH2Cl2
(500 mL). Organic layer was washed with H2O (150 mL), brine (100 mL), dried over MgSO4, filtered and evaporated under reduced

pressure. Resulting crude product was purified by flash column chromatography (SiO2; hexan:EtOAc = 20:1- > 10:1) and yielded

the desired methyl 5-((5-azidopentyl)oxy)-2-hydroxybenzoate (6.8 g, 99%) as a colorless oil. 1H NMR (500 MHz, CDCl3) d (ppm):

1.40 – 1.53 (m, 2H), 1.60 – 1.67 (m, 2H), 1.81 (dt, J = 14.6, 6.5 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H), 3.93 (t, J = 6.3 Hz, 2H), 3.96 (s,

3H), 6.92 (d, J = 9.0 Hz, 1H), 7.08 (dd, J = 9.0, 3.1 Hz, 1H), 7.29 (d, J = 3.1 Hz, 1H), 10.37 (s, 1H); 13C NMR (126 MHz, CDCl3)

d (ppm): 23.6, 28.8, 29.0, 51.5, 52.5, 68.5, 112.1, 113.0, 118.7, 124.7, 151.6, 156.2, 170.5; MS (ESI+), m/z (%): 280 [M+H]+; HRMS

(ESI+) calcd. for C13H18N3O4 [M+H]+: 280.1292, found 280.1291. Azide (6.79 g, 24.4 mmol, 1.0 equiv) was dissolved in dry THF

(234 mL) and TMSOK (10.4 g, 73.2 mmol, 3 equiv; 90% purity) was added. The resulting mixture was stirred at 25�C for 24 h, cooled

to 0�C and the pH of themixture was adjusted to pH = 2 by 10% aq. HCl. The volume of the resultingmixture was in vacuo reduced to

½ of its original volume, and H2O (100 mL) was added. The whole mixture was extracted with CH2Cl2 (2 3 400 mL) and combined

organic layers werewashedwith H2O (120mL), brine (180mL), dried overMgSO4, and organic solventswere removed under reduced

pressure. Crude product was dissolved in CH2Cl2 (20 mL) and hexane (60 mL) was added. Two third of the resulting solvent mixture

were removed under reduced pressure and the desired 5-((5-azidopentyl)oxy)-2-hydroxybenzoic acid crystalized off the solution

upon prolonged standing (24 h) at 25�C in form of white needles (5.89 g, 91%). Mp = 81-82.5�C; 1H NMR (500 MHz, CDCl3)

d (ppm): 1.53 – 1.63 (m, 2H), 1.64 – 1.75 (m, 2H), 1.82 (dq, J = 8.0, 6.3 Hz, 2H), 3.33 (t, J = 6.9 Hz, 2H), 3.95 (t, J = 6.3 Hz, 2H),

6.95 (d, J = 9.1 Hz, 1H), 7.15 (dd, J = 9.1, 3.1 Hz, 1H), 7.35 (d, J = 3.1 Hz, 1H), 10.08 (s, 1H); 13C NMR (126 MHz, CDCl3) d (ppm):

23.6, 28.9, 29.0, 51.6, 68.6, 110.9, 113.3, 119.0, 126.2, 151.8, 157.0, 173.6; MS (ESI-), m/z (%): 264 [M-H]-; HRMS (ESI+) calcd.

for C12H15N3O4Na [M+Na]+: 288.0955, found 288.0956. 5-((5-azidopentyl)oxy)-2-hydroxybenzoic acid (0.75 g, 2.83 mmol, 1.0 equiv)

was dissolved in EtOAc (14 mL) and 10% of palladium on carbon (3.8 mg, 0.05 equiv) was added. The whole mixture was placed

under the hydrogen atmosphere (1.0 atm) and stirred for 24h. The whole mixture was filtered throughmicrofilter (0.5 mm) and the filter

was washed with MeOH (23 15 mL). Combined filtrates were evaporated under reduced pressure to give 5-((5-aminopentyl)oxy)-2-

hydroxybenzoic acid SA-f (0.664 g, 98%) as a viscose oil. 1H NMR (500 MHz, DMSO-d6) d (ppm): 1.42 (p, J = 7.7 Hz, 2H), 1.57 (p, J =

7.6 Hz, 2H), 1.64 (p, J = 7.3, 6.8 Hz, 2H), 2.78 (t, J = 7.4 Hz, 2H), 3.80 (t, J = 6.2 Hz, 2H), 6.69 (d, J = 8.8 Hz, 1H), 6.86 (dd, J = 8.8, 3.1 Hz,

1H), 7.36 (d, J = 3.2 Hz, 1H); 13C NMR (126 MHz, DMSO-d6) d (ppm): 22.6, 26.8, 28.3, 38.8, 67.7, 114.4, 116.3, 119.5, 120.2, 149.4,

156.4, 171.5; MS (ESI-),m/z (%): 238 [M-H]-; HRMS (ESI+) calcd. for C12H15N3O4Na [M+Na]+: 262.1050, found 262.1050. Purity 98+%

(LC-MS), Rt = 11.93 min.

SPR analysis
SPR analysis of SA binding to His-PP2AA1 or His-PP2AA3 was performed with a Biacore T200 instrument (GE Healthcare). A syn-

thesized active SA analog, SA-f, was immobilized on a CM5 sensor chip (GE Healthcare) first: the carboxyl group of the CM5 sensor

chip was activated using a mixture of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy-succini-

mide (NHS) for 7min at a flow rate of 5 mL/min. After activation, 1mMof SA-f dissolved in 0.1Mborate buffer (pH 10) was passed over

for a period of 3 min at 5 mL/min for immobilization. Then excess reactive groups were inactivated by flowing ethanolamine hydro-

chloride-NaOH pH 8.5 for 7 min, at 5 mL/min. 1 3 PBS buffer (GE Healthcare) was used as running buffer in all assays. To test SA

binding of His-PP2AA1 or His-PP2AA3, proteins were diluted in 1 3 PBS buffer, and then flowed through the flow cell of sensor

chip with SA-f immobilized or through the reference cell. The binding signal was generated by subtracting the signal of reference

cell from that generated with the SA-f flow cell. The flow cells were regenerated with flowing 250 mM NaOH solution. Details about

the chemical synthesis of SA derivatives are described in the Supplemental Information.

Accession Numbers
Sequence data from this article can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following

accession numbers: PIN1 (AT1G73590), PIN2 (AT5G57090), NPR1 (AT1G64280), NPR2 (AT4G26120), NPR3 (AT5G45110), NPR4

(AT4G19660), PINOID (AT2G34650), PP2AA1 (AT1G25490), PP2AA2 (AT3G25800), PP2AA3 (AT1G13320), PP2AC3 (AT3G58500),

and PP2AC4 (AT2G42500).
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QUANTIFICATION AND STATISTICAL ANALYSIS

For measurement of primary root length and root tip angles, photos were analyzed with ImageJ (https://imagej.nih.gov/ij/download.

html). Fluorescence intensity of marker lines were quantified by Fiji (https://fiji.sc/).

Most data plotting and statistics were performed with Graphpad Prism8. A two-tailed t test was used for comparing two datasets.

One-way ANOVA with a Tukey multiple comparison test was performed to evaluate the differences of multiple datasets. For root

gravitropic responses, polar bar charts were generated by Origin 8.0, and both two-tailed t test and F-test were used to evaluate

the mean value and variances respectively.

DATA AND CODE AVAILABILITY

This study did not generate/analyze datasets/code.
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Figure S1. Structural isomers and the specific role of SA in the root growth regulation.
Related to Figures 1 & 2.

(A-D) Induced pPR1::eYFP-NLS expression by P. syringae DC3000 (A, C) or SA (B, D) in
cotyledons. (A, C) 5-d-old pPR1::eYFP-NLS seedlings were treated with P. syringae
DC3000 (OD600 = 0.01, ~5×106 CFU/mL) or with resuspension buffer (control) for 48 h,
and were then imaged by CLSM. Scale bars, 10 µm. (B, D) Induced pPR1::eYFP-NLS
expression by SA in cotyledons. 5-d-old pPR1::eYFP-NLS seedlings were transferred to
plates with DMSO or 40 µM SA for 24h, and were then imaged by CLSM. Scale bars, 10
µm. For quantification, the average GFP fluorescence of 5-10 representative cells from 10
seedlings for each treatment was measured by Fiji. The data points were shown as dot plots.
Dots represent individual values, and lines indicate mean ± SD. P values were calculated
by a two-tailed t-test.

(E) Structures of benzoic acid analogues, including benzoic acid (BA), 2-hydroxybenzoic
acid (also known as ortho-salicylic acid, SA), 3-hydroxybenzoic acid (3-OH-BA, also
known as meta-salicylic acid), and 4-hydroxybenzoic acid (4-OH-BA, also known as para-
salicylic acid). Chemical structures were illustrated with the ChemSketch program.

(F) 3-OH-BA and 4-OH-BA do not inhibit primary root elongation. Root length of 7-d-old
Col-0 seedlings grown on MS plates containing different concentrations of SA, 3-OH-BA or
4-OH-BA was measured. Note that the same DMSO control was used for all the indicated
chemicals. n = 100-129. **, P < 0.01, by a two-tailed t-test.

(G) 3-OH-BA and 4-OH-BA do not repress lateral root formation. The lateral root number
of 10-d-old plants was counted. The same DMSO control was used for all the indicated
chemicals. n = 10-22. **, P < 0.01, by a two-tailed t-test.

(H-J) 3-OH-BA and 4-OH-BA do not have a significant effect on root gravitropism. The
root tip angles of 7-d-old Col-0 seedlings on different plates were measured. P values were
calculated by a two-tailed t-test to evaluate the mean value and by a further F-test to
indicate differences of variances.

(K) SA inhibited primary root elongation, which was not suppressed by NPR deficiency.
Root length of 7-d-old Col-0, npr3,4 and npr1,3,4 seedlings grown on MS plates containing
different concentrations of SA was measured. n = 10-26. **, P < 0.01. P values were
calculated by one-way ANOVA with a Tukey multiple comparison test, compared to Col-0
in each treatment.

(L) Inhibition of lateral root formation by SA does not depend on NPRs. The lateral root
number of 10-d-old Col-0, npr3,4 and npr1,3,4 plants was counted. n = 9-24. **, P < 0.01.
P values were calculated by one-way ANOVA with a Tukey multiple comparison test,
compared to Col-0.

(M-R) SA repressed root gravitropism independently of NPRs. The angles of root tips of 7-
d-old Col-0 (M, N), npr3,4 (O, P) and npr1,3,4 (Q, R) seedlings were measured. P values
were calculated by a two-tailed t-test to evaluate the mean value and by a further F-test to
indicate differences of variances.
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Figure S2. Specific SA action on root gravitropic response and auxin export, in a PIN-
dependent manner. Related to Figure 3.
(A) Representative images showing the gravitropic response of WT seedlings on different
concentrations of SA. 5-d-old seedlings were transferred to indicated plates, and grown for
additional 16 h. DMSO as the solvent control. Agravitropic roots are marked. Scale bars, 2
cm.
(B) SA inhibited the basipetal transport of [3H]-IAA in etiolated hypocotyls. DMSO, 10 μM
NPA, 10 μM TIBA, and 500 μM SA were added to both the [3H]-IAA droplets and the
medium. 15 seedlings were pooled as a biological replicate; n = 3. Dots represent individual
values, and lines indicate mean ± SD. P values were calculated by one-way ANOVA with a
Tukey multiple comparison test, compared to DMSO.
(C-D) SA has no effect on the accumulation of [3H]-2,4-D (C) or [3H]-BA (D) in tobacco
BY-2 cells, suggesting no effect on export, as controls for [3H]-IAA. DMSO (the solvent
control) and 200 μM SA were added to the cell culture, and then the radioactivity of 3H was
measured at indicated timepoints after the addition of [3H]-2,4-D (C) or [3H]-BA (D) to the
DMSO- and SA-treated cell cultures. n = 3.
(E) Representative images show the sensitivity of eir1-4 to SA. Col-0 and eir1-4 seedlings
were grown on plates with different concentrations of SA for 7 d. Scale bars, 2 cm.
(F) eir1-4 shows slightly increased sensitivity to SA in root growth inhibition. Col-0 and
eir1-4 seedlings were grown on plates with concentrations of SA for 7 d, and the primary
root length was measured. n = 16-23; P values were calculated by a two-tailed t-test for
indicated pairs of Col-0 and eir1-4 at a certain concentration of SA.
(G-J) eir1-4 showed agravitropic roots, which were not further enhanced by SA treatment.
Col-0 and eir1-4 seedlings were grown on plates with different concentrations of SA for 7 d,
and the root tip angles were measured by Image J, and shown by polar bar charts. P values
were calculated by a two-tailed t-test to evaluate the mean value and by a further F-test to
indicate differences of variances. The eir1-4 groups were compared with Col-0 under
treatment with the same concentration of SA respectively.
(K) The localization of AUX1-YFP. Plants were grown for 4 d on DMSO or 40 µM SA.
Scale bars, 10 μm.
(L-M) Quantification of AUX1-YFP subcellular distribution revealed by its
intracellular/PM fluorescence ratio. The average AUX1-YFP fluorescence of the
intracellular area and PM of 5-10 representative cells from 10 seedlings for each treatment
was measured by Fiji. The data points were shown as dot-plots. Dots represent individual
values, and lines indicate mean ± s.d.. P values were calculated by a two-tailed t-test. (L) 4-
d-old seedling grown on plates with 40 µM SA are shown in (K); (M) 4-d-old seedling were
treated with 40 µM SA for 12 h.
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Figure S3. Deficiency of the PP2A A subunit, PP2AA1 (RCN1), leads to SA
hypersensitivity, and SA treatment inhibits PP2A activity in planta. Related to Figure
4.
(A) PIN2 phosphorylation gave rise to shifted smears, revealed by dephosphorylation of
PIN2 by lambda phosphatase (λ PPase) in vitro. Total membrane extracts were incubated
with or without 2 U of λ PPase for the indicated time, and samples were then analysed by
Western blot with an anti-PIN2 antibody. Upper, anti-PIN2; bottom, Ponceau staining.
(B) Increase of PIN2 phosphorylation in pp2aa1-6. Total membrane extracts from Col-0,
pp2aa1-6, and eir1-4 were incubated with or without 5 U λ PPase for the indicated time,
and samples were analysed by Western blot with an anti-PIN2 antibody. Upper, anti-PIN2;
bottom, Ponceau staining.
(C) Close views of the morphology of Col-0 and pp2aa1-6 roots under different
concentrations of SA. Seedlings were observed by a differential interference contrast (DIC)
microscopy. Scale bars, 1 mm.
(D) Sensitivity of pp2aa1-6 to SA in terms of inhibiting lateral root formation. Col-0 and
pp2aa1-6 seedlings were grown on plates containing different concentrations of SA for 10
d, and the number of emerged lateral root was counted. P values were calculated by a two-
tailed t-test.
(E-H) Following Figure 4F. pp2aa1-6 is hypersensitive to SA in terms of interfering with
the gravitropic response. Col-0 (E-F) and pp2aa1-6 (G-H) seedlings were grown on plates
containing different concentrations of SA for 7 d, and the root tip angles were measured by
Image J, and shown as polar bar charts. P values were calculated by a two-tailed t-test to
evaluate the mean value and by a further F-test to indicate differences of variances. The
pp2aa1-6 groups were compared with Col-0 under treatment with the same concentration of
SA respectively.
(I) Representative images showing hypersensitivity of pp2aa1-1 to SA. WT (Ws-4) and
pp2aa1-1 seedlings were grown on plates with different concentrations of SA for 7 d. Scale
bars, 2 cm.
(J) Western blot verified the expression of myc-PP2AA1. 7-d-old seedlings were subjected
to protein extraction and the subsequent Western blot with an anti-myc antibody (1:2000).
Upper panel, anti-myc; lower panel, Ponceau staining to show the loading. Lines 9 and 10
(T3 generation, homozygous lines) were used for further analysis.
(K) Representative images showing the sensitivity of 35S::myc-PP2AA1 to SA. Col-0 and
35S::myc-PP2AA1 seedlings were grown on plates with different concentrations of SA for 7
d. Scale bars, 2 cm.
(L) 35S::myc-PP2AA1 did not show any difference in sensitivity to SA in root growth
inhibition. Col-0 and 35S::myc-PP2AA1 seedlings were grown on plates with
concentrations of SA for 7 d, and the primary root length was measured. n = 11-30; *, P <
0.05, by one-way ANOVA with a Tukey multiple comparison test, compared to Col-0.



A B C

D

0 10 20 30 40 50
0

5

10

15

20

25

SA concentration (µM)

Pr
im

ar
y 

R
oo

t L
en

gt
h 

(m
m

) Col-0
pp2aa2-3

P = 0.1206
P = 0.4778

P = 0.9576
P = 0.2766

P = 0.7231
P = 0.0553

P < 0.0001
P < 0.0001

P < 0.0001
P < 0.0001

P < 0.0001
P < 0.0001

0 10 20 30 40 50
0

10

20

30

SA concentration (µM)

Pr
im

ar
y 

R
oo

t L
en

gt
h 

(m
m

) Col-0
pp2aa1,a2

P = 0.0199
P = 0.4448

P = 0.1076
P = 0.0073

P = 0.3396
P = 0.0064

0 10 20 30 40 50
0

10

20

30

SA concentration (µM)

Pr
im

ar
y 

R
oo

t L
en

gt
h 

(m
m

) Col-0
pp2aa2-2

P = 0.0827
P = 0.0175

P = 0.0129
P = 0.3554

P = 0.1234
P = 0.0748

0 10 20 30 40 50
0

10

20

30

SA concentration (µM)

Pr
im

ar
y 

R
oo

t L
en

gt
h 

(m
m

) Col-0
pp2aa3-2

Col-0 pp2
aa1,
a3

pp2aa1 
pp2aa3

Col-0 pp2aa1,a3

E F

G H

pp2aa1,a3

pp2aa1,a3

I J
Ws-4 pp2aa1-1

Ws-4 pp2aa1-1

Ws-4 pp2aa1-1

Ws-4 pp2aa1-1

0

10 µM Cantharidin

20 µM Cantharidin

30 µM Cantharidin

W
s-

4
pp

2a
a1

-1

0 10 µM 20 µM

K pTyr

PP2AC1
PP2AC2
PP2AC3
PP2AC4
PP2AC5
HsPP2Aα
MmPP2Aα
consensus

306
306
313
313
307
309
309



Figure S4. SA sensitivity of the loss-of-function mutants of PP2A subunits, and
deficiency of the PP2A A subunit, PP2AA1 (RCN1), leads to hypersensitivity to a
known PP2A inhibitor, cantharidin. Related to Figures 4 & 5.
(A-D) The sensitivity of different PP2A mutants to SA in primary root elongation. Col-0,
pp2aa2-2, pp2aa2-3 (a knock-down line), pp2aa3-2, and pp2aa1 pp2aa2-3 (short as
pp2aa1,a2) seedlings were grown on plates with different concentrations of SA for 7 d, and
the primary root length was measured. (A) n = 11-27，(B) n = 12-30，(C) n = 10-28，(D)
n = 13-28. P values were calculated by a two-tailed t-test for indicated pairs of Col-0 and
pp2aa1, a3 at the given concentration of SA.
(E-H) The double mutant of pp2aa1 pp2aa3 exhibited deficiency in growth and
development with severe root defects, reminiscent of SA- or cantharidin- treatment. Scale
bar, 5 cm (E), 1 cm (F), 1 cm (G), and 1 mm (H) respectively.
(I) Representative images showing the hypersensitivity of pp2aa1-1 to cantharidin. Ws-4
and pp2aa1-1 seedlings were grown on plates containing different concentrations of
cantharidin for 7 d. Scale bars, 2 cm.
(J) Close view of the morphology of Ws-4 and pp2aa1-1 roots under different
concentrations of cantharidin. Scale bars, 1 mm.
(K) Sequence alignment of Arabidopsis PP2A C subunits, with their homologues in human
(Homo sapiens) and mice (Mus musculus). All the sequences share 87.13% similarity. The
arrowhead indicates the conserved phosphorylation site, which is responsible for PP2Ac
activity and is recognized by the pY307-PP2Ac antibody.
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Figure S5. DARTS assay suggests potential binding of SA to PP2AA1, protein
purification of His-PP2AA1 and His-PP2AA3 by Size exclusion chromatography
(SEC), and the design flow of the SA analogue, SA-f, for the SPR. Related to Figure 6.
(A-B) DARTS assay suggests PP2AA1 is potential target of SA. pPP2AA1::PP2AA1-GFP
seedlings were used for the protein isolation, and Samples were treated with DMSO (mock)
and SA (0, 5 µM, and 50 µM respectively, in A), with 4-OH-BA as a negative control (B),
and digested by different concentrations of pronase.
(C) SEC purification of His-PP2AA1 with a Superdex 200 increase column. A
representative run is shown here to indicate the purity of recombinant His-PP2AA1 used for
DSC and SPR analyses.
(D) SDS-PAGE to check the quality of His-PP2AA1, visualized by CBB staining.
(E) SEC purification of His-PP2AA3.
(F) SDS-PAGE to check the quality of His-PP2AA3, by CBB staining.
(G) DSC analysis of the effect of 4-OH-BA, an inactive SA isomer, on His-PP2AA1
stability. 5 μM of purified His-PP2AA1 protein were added with or without DMSO, or 50
μM 4-OH-BA, and were then analysed by DSC. Tm = 47.57°C, 47.69°C, and 47.69°C, for
His-PP2AA1, His-PP2AA1+DMSO, and His-PP2AA1+4-OH-BA respectively.
(H) Workflow for the design of the synthetic SA analogue, SA-f, which can be immobilized
on a CM-5 SPR sensor chip. Multiple SA analogues with different groups at different
positions of the benzoic ring were synthesized, tested, with C-10 coming out as the best one
with activity and the possibility to immobilize it. Further analysis for SA-1/2/3 with a linker
and a group to mimic the surface of the matrix of SPR sensor chips, revealed that the linker
does not affect the bioactivity of SA.
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Figure S6. Bioactivity test of the synthetic SA analogues. Related to Figure 6.
(A-B) Cellular activity of the synthetic compound, C-10, with the SA moiety, in terms of
inhibiting BFA (brefeldin A) body formation. 4-d-old pPIN2::PIN2-GFP seedlings were
treated with indicated chemicals and imaged by CLSM. (A), representative images, Scale
bars, 10 μm; (B), quantification of the BFA body formation by calculating the
intracellular/PM ratio for the PIN2-GFP fluorescence intensity.
(C) Cellular activity of the synthetic compounds, SA-1 to SA-3, in terms of inhibiting BFA
body formation. 4-d-old pPIN2::PIN2-GFP seedlings were treated with indicated chemicals
and imaged by CLSM. Quantification of the BFA body formation by calculating the
intracellular/PM ratio for the PIN2-GFP fluorescence intensity.
Dots represent individual values, and lines indicate mean ± SD. (B) n = 27-42; (C) n = 41-
50. Different letters represent significant difference, P < 0.05, by one-way ANOVA with a
Tukey multiple comparison test.
(D) Physiological activity of the synthetic SA analogue C-10, in terms of root morphology.
7-d-old Col-0 seedlings were grown on plates with indicated chemicals. Scale bars, 2 cm.
(E) C-10 inhibits primary root elongation. Dots represent individual values, and lines
indicate mean ± SD. n =10-23; P values were calculated by a two-tailed t-test.
(F) Treatment with C-10 gave rise to less gravitropic roots. The angles of root tips were
measured by Image J, and shown as polar bar charts. P values were calculated by a two-
tailed t-test to evaluate the mean value and by a further F-test to indicate differences of
variances. For Col-0, C-10 treatments were compared with the DMSO control, and the
pp2aa1-6 groups were compared with Col-0 under treatment with the same concentration of
C-10 respectively.
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Figure S7. Physiological test of the SA analogues, and additional data for the binding
between SA and His-PP2AA1. Related to Figure 6.
(A) Physiological activity of the synthetic SA analogues SA-1 to SA-3, in terms of root
morphology. 7-d-old Col-0 seedlings were grown on plates with indicated chemicals. Scale
bars, 2 cm.
(B) SA analogues (SA-1 to SA-3) inhibit the primary root elongation. Dots represent
individual values, and lines indicate mean ± SD. n =17-21; P values were calculated by a
two-tailed t-test.
(C) Treatment with SA analogues (SA-1 to SA-3) gave rise to less gravitropic roots. The
angles of root tips were measured by Image J, and shown as polar bar charts. P values were
calculated by a two-tailed t-test to evaluate the mean value and by a further F-test to
indicate differences of variances in comparison to mock treatment.
(D) SPR assay reveals the binding of His-PP2AA1 to SA. The sensorgram shows the
kinetics for the interaction between His-PP2AA1 and SA, used for generating Figure 6C.
(E) SPR assay reveals the binding of His-PP2AA3 to SA. Sensorgram showing the kinetics
for the interaction between His-PP2AA3 and SA.
(F-G) SPR revealing the binding between SA and His-PP2AA1. Single cycle binding
kinetics was conducted, without regeneration between different concentrations of His-
PP2AA1. 0.1% BSA (~15 μM) was included in the His-PP2AA1 flow. (F), sensorgram; (G),
plotted by the values at steady state. A Kd value of 2.374 μM was detected.



Primers Oligonucleotide (5’ to 3’)  use 

For Genotyping 

Oligo Name Sequence Mutants 

pp2aa1-1 _LP AGCACATCCTTCCTTGTGTGAAGG pp2aa1-1 

 

 

pp2aa1-1 _RP AACTTGCTTATGATGTTAAGGCGC 

pp2aa1-1 _RB TGTCCCGCGTCATCGGCGGGGGTC 

pp2aa1-6_LP GGCCAGCCAGTTAGGTATAGG pp2aa1-6 

pp2aa 1-6_RP AAACATAGCCACACGCATTTC  

pp2aa2-1_LP CGATGTTACGTGCCCTCTTAC pp2aa2-1 

pp2aa2-1_RP TCTACCGAATGACCATTTTGC  

pp2aa2-3_LP ATTGGTTATTTGGGATCGGAG pp2aa2-3 

pp2aa2-3_RP ACTCTCCCTCATCTGAGAGCC  

pp2aa3-1_LP TATTTCCAAACTTTGGGGGAC pp2aa3-1 

pp2aa3-1_RP ATGGACACAGCTTGAAGATGG  

pp2aa3-2_LP GCACCAAGCTTCTCATCAAAG pp2aa3-2 

pp2aa3-2_RP GACCGGAGCCAACTAGGTAAG  

LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC SAIL lines 

LBb1.3 ATTTTGCCGATTTCGGAAC SALK lines 

pp2ac3-1-LP GCTTGAAAGAACAGCATTTCG pp2ac3-1 

pp2ac3-1-RP GTGGATTATCACCATCCATCG  

pp2ac4-1-LP TAATTGGTATCAGGGCACTGC pp2ac4-1 

pp2ac4-1-RP TGTTTCCTGATCTGTTTTCCG  

npr1-1-F CGTGTGCTCTTCATTTCGCTGT npr1-1 

npr1-1-R GTGCGGTTCTACCTTCCAAAGTT  

npr3-1-F GAGTCAGATATCACTCTAGATCAAGC npr3-1 

npr3-1-R GGAAAGAACAACTGAGCAAGCCCCA  

npr4-3-F CGGATCTTGTTTCGTCATTTCAG npr4-1 

npr4-3-R CAAACGTGAAATCTGAAGCATTAGC  

sid2-3-LP ACCCTAATTTGGATTTGGTGC sid2-3 

sid2-3-RP AGCTCTAGGCCTAGTTGCAGC  

For Cloning 

Oligo Name Sequence Plasmid 



PIN2HL-
1(EcoRI) TGGAATTCGCTAAGCTTCTCATCTCCGAGC 

pET28a-

PIN2HL 

PIN2HL-
2(SalI) CCGGTCGACACTCGCCGGCGGCATCTGCTG  

PP2AA1-
1(EcoRI) GGAATTCATGGCTATGGTAGATGAACCGTTG 

pET28a-

PP2AA1 

PP2AA1-
2(XhoI) CCGCTCGAGGGATTGTGCTGCTGTGGAACCATC  

PP2AA3-
1(EcoRI) GGAATTCATGTCTATGGTTGATGAGCCTTTA 

pET28a-

PP2AA3 

PP2AA3-

2(XhoI) CCGCTCGAGGCTAGACATCATCACATTGTC  

 

Table S1. List of primers used in this study. Related to STAR METHODS and Key 

Resources Table. 
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