Production of added-value metabolites by *Yarrowia lipolytica* growing in olive mill wastewater-based media under aseptic and non-aseptic conditions

Dimitris Sarris<sup>*a*</sup>, Nikolaos G. Stoforos<sup>*a*</sup>, Athanasios Mallouchos<sup>*a*</sup>, Ioannis K. Kookos<sup>*b*</sup>, Apostolis A. Koutinas<sup>*a*</sup>, George Aggelis<sup>*c*</sup>, Seraphim Papanikolaou<sup>*a*</sup>\*

<sup>*a*</sup> Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece

<sup>*b*</sup> Department of Chemical Engineering, University of Patras, 26504, Patras, Greece <sup>*c*</sup> Department of Biology, Division of Genetics, Cell and Development Biology,

University of Patras, 26504 – Patras, Greece

Running title: Olive mill wastewater-based media fermentation by Yarrowia lipolytica

\*Corresponding author: Dr. S. Papanikolaou, Associate Professor, Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75 – Athens, Greece, e-mail: <a href="mailto:spapanik@aua.gr">spapanik@aua.gr</a>, tel., fax: +30-210-5294700





**Fig. S1** Cellular lipids (L, g/L) (a) and total cellular lipid in dry weight ( $Y_{L/X}$ , g/g) (b) evolution during growth of *Yarrowia lipolytica* ACA-YC 5033 on OMW-based media ( $Glc_0=35.0\pm2.0$  g/L, ( $NH_4$ )<sub>2</sub>SO<sub>4</sub>=0.50\pm0.05 g/L, yeast extract=0.50±0.05 g/L; initial phenolic compounds concentration 4.50±0.35 g/L and 5.50±0.40 g/L) enriched with commercial glucose in nitrogen-limited conditions. Culture conditions: growth on 250-mL flasks at 180 ±5 rpm, initial pH=6.0 ±0.1, pH ranging between 5.0 and 6.0, DOT>20%  $\nu/\nu$ , incubation temperature *T*=28 °C. Each point is the mean value of two independent measurements.



**Fig. S2** Comparison of *Yarrowia lipolytica* ACA-YC 5033 kinetics between aseptic shake-flask and aseptic batch-bioreactor cultures regarding biomass (X, g/L) and glucose (Glc, g/L) evolution on OMW-based media enriched with commercial glucose with initial phenolic compounds concentration 2.90±0.25 g/L. Culture conditions: growth on aseptic shake-flask 250-mL cultures agitated at 180 ±5 rpm, Glc0~35.0 g/L, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>=0.50±0.05 g/L, yeast extract=0.50±0.05 g/L, initial pH=6.0±0.1, pH ranging between 5.0 and 6.0, DOT>20% *v/v*, incubation temperature *T*=28 °C; aseptic batch bioreactor cultures agitated at 300 rpm, Glc0~35.0 g/L, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>=0.50±0.05 g/L, yeast extract=0.50±0.05 g/L, initial pH=6.0±0.1, pH ranging between 5.0 and 6.0, DOT>20% *v/v*, incubation temperature *T*=28 °C; aseptic batch bioreactor cultures agitated at 300 rpm, Glc0~35.0 g/L, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>=0.50±0.05 g/L, yeast extract=0.50±0.05 g/L, initial pH=6.0±0.1, pH ranging between 5.0 and 6.0, DOT>20% *v/v*, incubation temperature *T*=28 °C; aseptic batch bioreactor cultures agitated at 300 rpm. Glc0~35.0 g/L, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>=0.50±0.05 g/L, yeast extract=0.50±0.05 g/L, initial pH=6.0±0.1, pH ranging between 5.0 and 6.0, DOT>20% *v/v*, incubation temperature *T*=28 °C, and sparging of air at 1.0 vvm. Each point is the mean value of two independent measurements.



**Fig. S3** Cellular lipids (L, g/L) and total cellular lipid in dry weight ( $Y_{L/X}$ , g/g) evolution during growth of *Yarrowia lipolytica* ACA-YC 5033 on OMW-based media ( $Glc_0 \sim 80.0 \text{ g/L}$ , ( $NH_{4})_2SO_4 = 0.50 \pm 0.05 \text{ g/L}$ ; yeast extract=0.50±0.05 g/L; initial phenolic compounds concentration 2.90±0.25 g/L) enriched with commercial glucose in nitrogen-limited conditions. Culture conditions as described in Fig. S1.



**Fig. S4** Phenolic compounds removal (% *w/w*) and color removal (%) during growth of *Y. lipolytica* strain ACA-YC 5033 on OMW-based media enriched with commercial glucose, with initial phenolic compounds concentration 5.50±0.40 g/L in nitrogen limited media. Culture conditions as described in Fig. S1.