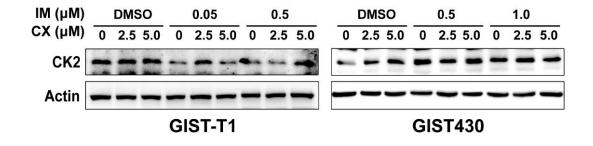
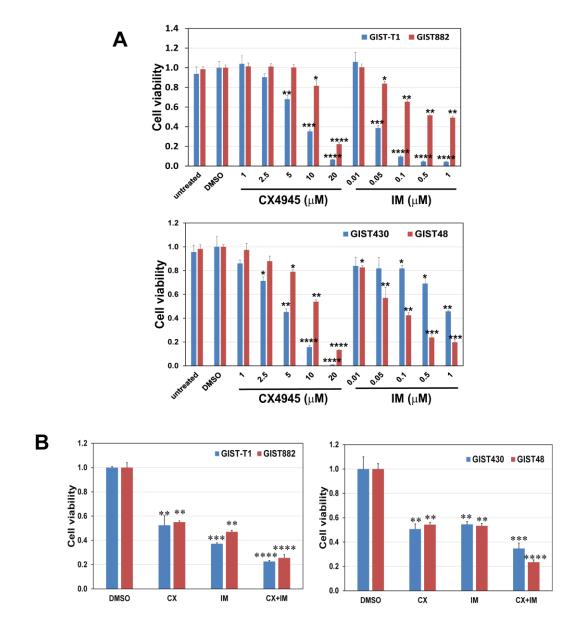

Cell lines	GIST-T1			GIST882			GIST430			GIST48		
inhibitors	Early	late	dead	early	late	dead	early	late	dead	early	late	dead
DMSO	0.3	3.2	3.8	0	4.2	7.9	0.7	6.3	18	0	14.4	0.2
CX	0	3.4	2.4	0	4.6	8.7	0.2	7.1	13.2	0.1	3.2	0.1
IM1	0	3.4	3.5	0	4.1	10.1	0	7.2	14.5	1.5	13.7	29.2
IM1+CX	0	5.6	11	0.3	21	38.4	0.2	11	22.2	1.0	18.3	26
IM2	0	6.5	7.8	0	5.1	9.8	0.1	8.4	22.5	1.6	12.1	25.8
IM2+CX	0	30.5	14.5	0.2	22.6	41	0	12	25.4	1.6	16.3	26.2

Supplemental Table 1. Apoptosis evaluation (%) in GIST cell lines after treatment with CX4945 and imatinib.

Notes: GIST cells in six-well plates were treated with CX4945 (5 μ M) or imatinib (0.05 and 0.5


 μM for GIST-T1 and GIST882; 0.5 and 1 μM for GIST430/654 and GIST48).

SFigure 1


Supplemental Figure 1. Immunoblotting evaluation of CK2 expression in GIST-T1 and GIST882 cells after treatment with the CK2 inhibitor CX4945 (0.5, 1.0, 2.5, and 5 μ M) for 6 h in serum-free medium. Actin stain is a loading control. CX4945 treatment had no impact on CK2 expression in GIST-T1 and GIST882. Immunoblotting experiments were performed from two independent replicates for each sample.

Supplemental Figure 2. CK2 expression was evaluated in GIST-T1 and GIST430/654 by immunoblotting 6 h after treatment with CX4945 (CX: 2.5 and 5 μ M) and imatinib (IM: 0.05, 0.5 μ M, and 1 μ M). Actin stain is a loading control. CX4945 treatment had no impact on CK2 expression in both GIST cell lines. Immunoblotting experiments were performed from two independent replicates for each cell line.

Supplemental Figure 3. Additive effects of coordinated inhibition of KIT and CK2 as demonstrated by cell viability (**A** and **B**), showing that combined inhibition of KIT and CK2 induced greater anti-proliferative effects than either intervention alone in GIST cell lines (GIST-T1, GIST882, GIST430/654, and GIST48). **A**) Cell viability was evaluated by a Cell-titer Glo® ATP-based luminescence assay in GIST cell lines

(GIST-T1, GIST882, GIST430/654, and GIST48), 6 days after treatment with CX4945 (1, 2.5, 5, 10, and 20 μ M) and IM (0.01, 0.05, 0.1, 0.5, and 1 μ M). Data are normalized to DMSO and represent the mean values (±s.d.) from quadruplicate wells, averaged from two independent experiments for each cell line. Statistically significant differences between untreated control and inhibitor treatments are presented as **p*< 0.05, ***p*< 0.01, ****p*< 0.001, *****p*< 0.0001. **B**) Cell viability was evaluated by a Cell-titer Glo® ATP-based luminescence assay in GIST cell lines, 6 days after treatment with CX4945 (6.8 μ M for GIST-T1, 16.4 μ M for GIST882, 4.7 μ M for GIST430/654, and 11 μ M for GIST48) and IM (0.039 μ M for GIST-T1, 0.5 μ M for GIST882, 0.66 μ M for GIST430/654, and 0.09 μ M for GIST48). Data are normalized to DMSO and represent the mean values (±s.d.) from quadruplicate wells, averaged from two independent experiments for each cell line. Statistically significant differences between untreated control and inhibitor treatments are presented as **p*<0.01, ****p*<0.001, ****p*<0.0001, ****p*<0.0001.