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1 Network controllability, stability, and fragility

1.1 The controllability Gramian and its properties

Consider a dynamic network with graph G and dynamics

d

dt
x(t) = Ax(t) +Bu(t), t ≥ 0, (1)

where x(t) ∈ Rn and u(t) ∈ Rnc denote the network state and input, respectively. The matrix
A ∈ Rn×n denotes a weighted adjacency matrix of G, while B ∈ Rn×nc denotes the input matrix.
The network is stable when the eigenvalues of A have negative real part, in which case the state x
vanishes asymptotically when the network has no input. The network (1) is said to be controllable
when its controllability Gramian Gtf is invertible1, Thm 3.4.1

Gtf :=

∫ tf

0

eAtBBTeA
Ttdt, (2)

where tf > 0 denotes the control horizon, and AT denotes the transpose of A.
If the network (1) is controllable, then there exist control inputs to drive the network state from

any initial state x(0) = x0 to any final state x(tf ) = xf . It is known that this happens if and only if
Gtf is invertible. In particular, the input with minimum energy to drive the network state from x0

to xf is given by

uopt(t) = BTe−A
T(t−tf )G−1

tf
(xf − eAtfx0), (3)

whose energy is ∫ tf

0

uTopt(t)uopt(t)dt = (xf − eAtfx0)TG−1
tf

(xf − eAtfx0).
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When tf =∞ and the network is stable,

G := G∞ =

∫ ∞
0

eAtBBTeA
Ttdt, (4)

and the energy to drive the state from x0 to xf equals∫ ∞
0

uTopt(t)uopt(t)dt = xTfG
−1xf (5)

The controllability GramianG can be computed in different ways. For instance,G is the unique
solution of the Lyapunov equation1, Thm 3.3.1

AG+GAT = −BBT. (6)

Moreover2,

G =
1

2πi

∫
Γ

(zI − A)−1(−BBT)(zI + AT)−1dz,

where Γ is a curve in the complex plane that encloses all the eigenvalues of A. By choosing Γ as
the semi-circle with infinite radius enclosing the stable half plane, we obtain

G =
1

2π

∫ +∞

−∞
(ωiI − A)−1BBT(ωiI − A)−Hdω. (7)

where (ωiI−A)−H denotes the inverse of the complex conjugate of ωiI−A. While equations (4),
(7) and (6), are valid only when A is stable, the expression (2) is valid also for unstable networks.

The controllability Gramian can be used to quantify the responsiveness of a network to external
stimuli. In particular, several scalar metrics can be defined to measure the “size” of the control-
lability Gramian, and therefore quantify the control energy needed to reach particular states. In
this paper, we use σ̄(G) = 1

n

∑n
i=1 σi(G) = tr(G)/n to quantify the responsiveness of a network,

which is also an indirect measure of the average energy needed to control the network. Different
metrics are also interesting. For instance, σmin(G) = min{σ1(G), . . . , σn(G)} = 1/‖G−1‖, whose
inverse 1/σmin(G) quantifies the largest control energy over all possible target states. Clearly,
σmin(G) ≤ n/tr(G−1) ≤ (det(G))1/n ≤ σ̄(G) ≤ σmax(G), where tr(G), det(G), and σmax(G)

denote the trace, determinant, and largest eigenvalue of the Gramian G. Notice that tr(AB) ≤
tr(A2)tr(B2) for any positive semidefinite matrices A and B. Then, the following inequality holds:

n2 = tr(I)2 = tr(G1/2G−1/2)2 ≤ tr(G)tr(G−1)

This implies that tr(G−1)/n grows when σ̄(G) = tr(G)/n becomes small.

1.2 The stability radius of a network and its fragility

When the network (1) is stable, the following definition of stability radius quantifies its distance to
instability (‖ · ‖ denotes the Euclidean norm):

r(A) := min{‖∆‖ : ∆ ∈ Cn×n, A+ ∆ is unstable}.
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The index r(A), namely, the stability radius of A, quantifies the degree of stability of (1), as it
quantifies the minimum size of a perturbation of the weights that renders the network unstable.
Conversely, 1/r(A) can be used to measure the degree of fragility of (1) with respect to changes
of its weights. It can be shown that 3, Prop 4.1

r(A) = min
ω∈R

σmin(ωiI − A) =
1

maxω∈R ‖(ωiI − A)−1‖
.

2 Network responsiveness and fragility

In this section we characterize analytical relationships between the responsiveness and fragility
degrees of a network. Recall that4, 5 σmin(X)tr(Y ) ≤ tr(XY ) ≤ σmax(X)tr(Y ). Then, from (4) we
obtain

tr(G)= tr
(∫ ∞

0

eAtBBTeA
Ttdt

)
≤σmax

(∫ ∞
0

eA
TteAtdt

)
tr(BBT) = nc

∥∥∥∥∫ ∞
0

eA
TteAtdt

∥∥∥∥ . (8)

Further, using (7), we have∫ ∞
0

eA
TteAtdt =

1

2π

∫ +∞

−∞
(ωiI − AT)−1(−ωiI − A)−1dω

=
1

2π

∫ +∞

−∞
[(−ωiI − A)(ωiI − AT)]−1dω

=
1

2π

∫ +∞

−∞
[ω2I + AAT − ωiA+ ωiAT]−1dω

=
1

2π

∫ +∞

−∞
[ω2I + AAT + ωi(AT − A)]−1dω.

We will now derive a family of upper bounds for σ̄(G) = tr(G)/n, which will be parametrized
by the scalar α ∈ [0, 1]. For the results in the main text, only the case of α = 1/2 will be used.
However, the family of upper bounds derived here remain of general and independent interest, as
they provide different insights into σ̄(G) for different values of α. Let ω satisfy

ω2I + ωi(AT − A) ≥ α2ω2I

or, equivalently,

(1− α2)ω2I + i(AT − A)ω ≥ 0.

Observe that AT − A is skew symmetric. Then, i(AT − A) is a Hermitian matrix, and it features
only real eigenvalues that are symmetric with respect to the origin. Namely, if µ is an eigenvalue of
i(AT − A), so is −µ. This implies that the maximum and the minimum eigenvalues of i(AT − A)

are ‖A−AT‖ and −‖A−AT‖, respectively. We conclude that (1− α2)ω2I + i(AT −A)ω ≥ 0 if
and only if |ω| ≥ ω̄ where ω̄ := ‖A−AT‖

1−α2 .
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Let
∫∞

0
eA

TteAtdt = I1 + I2, where

I1 :=
1

2π

∫ ω̄

−ω̄
[ω2I + AAT + ωi(AT − A)]−1dω

I2 :=
1

2π

∫ −ω̄
−∞

[ω2I + AAT + ωi(AT − A)]−1dω +
1

2π

∫ +∞

ω̄

[ω2I + AAT + ωi(AT − A)]−1dω.

Notice that

I1 ≤
ω̄

π
max
ω∈[0,ω̄]

‖(ωiI − AT)−1‖2 ≤ ω̄

π
max
ω∈[0,∞]

‖(ωiI − A)−1‖2 =
ω̄

π

1

r(A)2
=

1

π

‖A− AT‖
1− α2

1

r(A)2
.

Similarly,

I2 ≤
1

2π

∫ −ω̄
−∞

[α2ω2I + AAT]−1dω +
1

2π

∫ +∞

ω̄

[α2ω2I + AAT]−1dω ≤ 1

2π

∫ +∞

−∞
[α2ω2I + AAT]−1dω.

Let U be a unitary matrix satisfying AAT = UHdiag {σi(A)2}U , where σi(A) denotes the i-th
singular value of A. Then,

I2 ≤
1

2π
UH

∫ +∞

−∞
diag

{
1

α2ω2 + σi(A)2

}
dωU =

1

2πα2
UHdiag

{[
α

σi(A)
arctan

(
α

σi(A)
ω

)]∞
−∞

}
U

=
1

2πα2
UHdiag

{
α

σi(A)
π

}
U =

1

2α
UHdiag

{
1

σi(A)

}
U.

Consequently, we have

‖I2‖ ≤
1

2ασmin(A)
,

where σmin(A) is the minimum singular value of A. Notice now that r(A) ≤ σmin(A). Thus,

‖I2‖ ≤
1

2α

1

r(A)
.

Finally, for each value of α we obtain∥∥∥∥∫ ∞
0

eA
TteAtdt

∥∥∥∥ ≤ 1

π

‖A− AT‖
1− α2

1

r(A)2
+

1

2α

1

r(A)
,

and, for α = 1/2, ∥∥∥∥∫ ∞
0

eA
TteAtdt

∥∥∥∥ ≤ (1 +
4‖A− AT‖

3π

1

r(A)

)
1

r(A)
(9)

Substituting (9) into equation (8) yields

σ̄(G) ≤ nc
n

(
1 +

4‖A− AT‖
3π

1

r(A)

)
1

r(A)
.

If A is symmetric, then it is more convenient to choose α = 1, which yields

σ̄(G) ≤ nc
n

1

2r(A)
.
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2.1 The role of the non-normality degree of A

In this section we assume that the matrix A is diagonalizable, and characterize the role of the
non-normality degree of A with respect to its fragility and responsiveness. Observe that

∥∥∥∥∫ ∞
0

eA
TteAtdt

∥∥∥∥ =

∥∥∥∥∫ ∞
0

V −HeΛ∗tV HV eΛtV −1dt

∥∥∥∥ = ‖V ‖2‖V −1‖2

∥∥∥∥∫ ∞
0

eΛ∗teΛtdt

∥∥∥∥
= κ2(V )

∥∥∥∥∫ ∞
0

e2<(Λ)tdt

∥∥∥∥ = κ2(V ) max
i

1

−2<(λi(A))
=
κ2(V )

2s(A)
,

where s(A) = −maxi<(λi(A)) > 0. Substituting the above result into (8) yields

σ̄(G) ≤ nc
n

κ2(V )

2s(A)
.

Observe that s(A) represents the distance of the eigenvalues of A from the instability region.
On the other hand, κ(V ) is instead related the sensitivity of the eigenvalues of A to possible
perturbations13. Thus, both the distance of the eigenvalues of A from the imaginary axis as well as
their sensitivity to perturbations contribute to the fragility degree of a network.

3 Numerical studies

3.1 Ecological networks

An ecological dynamical network is described by the following set of differential equations 6:

d

dt
xi(t) = cixi(t) + xi(t)

n∑
j=1

Mijxj(t) i = 1, . . . , n (10)

where n denotes the number of species, xi(t) is the density of the species i, and ci and Mij are
network parameters that regulate the interaction rates among the species. The network (10) can be
written in vector form as

d

dt
x(t) = diag(x(t))(c+Mx(t)) = f(x(t)), (11)

where diag(x) is the diagonal matrix defined by the species vector x, c is the vector of ci, and M is
the matrix of the coefficients Mij . Let x∗ ∈ Rn

+ an equilibrium point of (11). Then, either x∗ = 0,
which corresponds to the case where all species are extinct, or x∗ solves the equations c = −Mx∗.
The stability of an equilibrium point x∗ can be assessed through the linearized system

d

dt
δx(t) = Aδx(t), (12)

where A = diag(x∗)M is the Jacobian matrix of (11) at the point x∗.
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An ecological network is called mutualistic if the species can be divided into two classes, where
the species of each class benefit from the species in the other class. In a mutualistic network, the
matrix M can be partitioned as

M =

[
MPP MPA

MAP MAA

]
, (13)

where the matrices MPP and MAA have non-positive entries, while the matrices MPA and MAP

have non-negative entries. In Figure 1 in the main text we consider a three-dimensional network of
two species of plants x1 and x2 and one species of animals x3. Figures 1(a) and 1(b) highlight the
difference between the dynamics of a stable and an unstable equilibrium: in both cases the three
states are at equilibrium until time t = 10, when they are slightly perturbed by a vector ε, with
‖ε‖ = 0.1. Figures 1(c) and 1(d), instead, highlight the difference between a robust and a fragile
system. The state is at equilibrium until time t = 10, when a slight variation of the parameters
changes M into M + ∆, with ‖∆‖ = 0.01. The parameters used to obtain Figure 1 are below:
Parameters of Figure 1(a)

M =

−0.9144 0 0.5726

0 −0.5291 0.2423

0.2673 0.4296 −0.8914

 , c =
[
0.1925 0.6696 2.0752

]T
,

x∗ =
[
3.3885 3.5897 5.0745

]T
, ε =

[
0.0015 0.0886 0.0463

]T
.

Parameters of Figure 1(b)

M =

0.5006 0 0.8294

0 −0.8598 0.1686

0.1167 0.0605 −0.5828

 , c =
[
−3.1616 0.7901 1.5232

]T
,

x∗ =
[
1.2955 1.5130 3.0300

]T
, ε =

[
0.0764 0.0572 0.0300

]T
.

Parameters of Figure 1(c)

M =

−0.8420 0 0.1789

0 −0.9837 0.1776

0.7760 0.0756 −0.3488

 , c =
[
0.5612 2.1414 2.9214

]T
,

x∗ =
[
5.1633 5.9979 21.1595

]T
,∆ = 10−3 ×

1.0 2.0 6.6

3.8 1.9 4.8

2.0 4.0 2.1

 .
Parameters of Figure 1(d)

M =

0.5338 0 0.1369

0 −0.6678 0.0040

0.7117 0.0414 −0.7027

 , c =
[
−3.5456 2.7163 3.0247

]T
,
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x∗ =
[
4.3473 4.1209 8.9499

]T
,∆ = 10−3 ×

 1.4 4.7 4.7

1.1 4.7 3.1

0.92 3.3 3.2

 .
Figure 2 in the main text shows the percentage of stable equilibra in ecological networks of

growing dimension. For each dimension n ∈ {5, . . . , 320}, we generate 500 Watts-Strogatz (WS)
small-world networks Gn with mean degree 2bn/6c, and rewiring probability 0.5. The weighted
matrix M is such that Mij = 0 if (i, j) is not an edge of Gn, and, otherwise, it equals a random
number uniformly distributed in [0, 1]. The diagonal entries of M are randomly selected from the
uniform distribution in [−n, 0]. The equilibrium vector x∗ is formed by randomly selecting its
entries from the uniform distribution in [0, 5], and by letting c := −Mx∗. Finally, stability of x∗ is
assessed by computing the eigenvalues of the Jacobian matrix A = diag(x∗)M .

Figure 5(a) shows the trade-off between the stability radius and the average singular value
for the linearization of a sequence of mutualistic ecological networks generated by the algorithm
proposed in 7. This algorithm iteratively modifies the network weights so as to increase the to-
tal abundance of the species. Specifically, the algorithm starts by letting x

∗(0)
i = 1, for each

i = 1, . . . , n and by taking a random matrix M (0), which respects the sign constraints of a mutual-
istic network. The initial vector c(0) is consequently determined as c(0) = −M (0)x∗(0). In each step
of the procedure, c(k) is fixed and equal to c(0). At each step, two weights M (k)

ij 6= 0 and M (k)
rs = 0

(with M (k)
ij and M (k)

rs being entries of M (k)
PA or M (k)

AP ) are randomly selected and switched, so that
M

(k+1)
ij = M

(k)
rs and M (k+1)

rs = M
(k)
ij . If the sum of the entries of the new equilibrium point x∗(k+1)

is smaller than or equal to the sum of the entries of the previous equilibrium point x∗(k), then the
swap is discarded and M (k+1) = M (k). Otherwise the swap is accepted, and M (k+1) is updated
accordingly. At each step, A(k) denotes the linearization matrix of the mutualistic ecological net-
work associated with M (k) and c(k), and G(k) denotes the associated Gramian with B = I . The
coordinates of the points in the plot correspond to r(A(k)) and σ̄(G(k)).

3.2 Neuronal networks

Following8 a network of neurons can be modelled by the differential equation

τ
d

dt
x(t) = −x(t) +Mx(t) + e(t), (14)

where x(t) is the vector of spiking rates of the neurons, e(t) is the column vector with the external
inputs, τ is the time constant of the neurons, and the matrixM describes the strength of connections
among neurons. Because each neuron can be either excitatory or inhibitory, then the matrix M
obeys Dale’s law, namely, its columns are either non-negative or non-positive. This implies that
x(t) and M can be partitioned as follows

x(t) =

[
xE(t)

xI(t)

]
, M =

[
MEE −MEI

MIE −MII

]
, (15)

7



where xE(t) and xI(t) contain the states of the excitatory and inhibitory neurons, respectively, and
the matrices MEE , MEI , MIE and MII are non-negative.

We follow the algorithm in9 to construct a sequence of matrices M that obey Dale’s law
and tend to minimize the value of s such that

∫∞
0
e(M−sI)Tte(M−sI)tdt = 1

ε
(ε-smoothed spec-

tral abscissa10). We refer interested reader to 9 for a detailed description of this algorithm. To
generate Figure 5 (b), we consider a network of dimension n = 100 and nE = nI = 50. Let M (k)

be the coupling matrix at the k-th iteration of the algorithm in9, and let A(k) = (M (k) − I)/τ . We
then compute the controllability Gramian G(k) with B = I . Figure 5 (b) in the main text shows the
relationship between the stability radius r(A(k)) and the average singular σ̄(G(k)).

3.3 Traffic Networks

Following11, a traffic network where vehicles drive as an aligned platoon is described by the equa-
tions

d

dt
pi(t) = vi(t),

d

dt
vi(t) = fi(pi(t), pi+1(t), vi(t), ui(t)) = a [tanh (pi+1 − pi)− vi] + ui,

(16)

where pi and vi are the position and the velocity of the i-th vehicle i ∈ {1, . . . , n−1}, respectively,
tanh is the hyperbolic tangent function, and ui is an external input. We assume that the n-th vehicle
plays the role of leader, whose velocity is constant and equal to α, and whose position enters as
external input to the system (16). When all vehicles also move with velocity α, the system (16)
read as

d

dt
p̄i(t) = α, i = 1, . . . , n− 1 (17a)

d

dt
v̄i(t) = a [tanh (p̄i+1(0)− p̄i(0))− α] = 0, i = 1, . . . , n− 1, (17b)

whose solution is

p̄i(t) = αt+ p̄i(0), p̄i+1(0)− p̄i(0) = tanh(α)−1, i = 1, . . . , n− 1 (18a)

v̄i(t) = α, i = 1, . . . , n− 1. (18b)

In order to analyze the dynamics of system (16) in the neighborhood of the particular tra-
jectory (18), we linearize the nonlinear system (16) around the trajectory (18). Let us define
δi(t) = pi(t)−p̄i(t), and consider x =

[
δ1,

d
dt
δ1, . . . , δn−1,

d
dt
δn−1

]T and u = [u1, · · · , un−1, δn]T

as the state and input vectors of the linearized system. Then,

d

dt
x = Ax+Bu,
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where the matrices A ∈ R2(n−1)×2(n−1) and B ∈ R2(n−1)×n are defined as

A =



0 1 0 0 0 · · · 0 0

−ab a ab 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0

0 0 −ab a ab · · · 0 0
...

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...

0 0 0 0 0
. . . 0 1

0 0 0 0 0 · · · −ab a


, B =



0 0 · · · 0 0

1 0 · · · 0 0

0 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0

0 0 · · · 1 ab


, with b = 1− α2.

Figure 5(c) in the main text has been generated by considering a linearized system of dimension
200, derived by 101 vehicles (one leader, and 100 followers), 100 control nodes, driven by the 101

inputs (u1, . . . , u100, δn), which is determined by the selected constant velocity α of the leader.
Different values of α are color coded in the figure.

3.4 Networks obtained from discretization of the wave equation

Consider the first-order wave equation12, Ch. VII

∂

∂t
w(t, z) =

∂

∂z
w(t, z), (19)

with z ∈ (−1, 1) and boundary values w(1, t) = 0 for all t ≥ 0. We discretize (19) using a regular
grid and a centered difference scheme for the spatial coordinate. This yields,

∂

∂z
w(t,−1 + i∆z) ≈ w(t,−1 + (i+ 1)∆z)− w(t,−1 + (i− 1)∆z)

2∆z
,

and Eq. (19) becomes

d

dt
w(t,−1 + i∆z) ≈ w(t,−1 + (i+ 1)∆z)− w(t,−1 + (i− 1)∆z)

2∆z
, (20)

with i ∈ {1, . . . , N}, where the number of grid points N determines the discretization step ∆z =

2/N . In vector form, the system of discretized equations (20), read as

d

dt
w =

1

2∆z
Dw,

where D ∈ R(N−1)×(N−1) with

D =


−1 1 0

−1 0
. . .

. . . . . . 1

0 −1 0

 ,
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and where we have used w(t, 1) = w(t,−1 + N∆z) = 0 and w(t,−1) = w(t,−1 + ∆z) at all
times. We then discretize the temporal coordinate using the third-order Adams-Bashforth formula
and obtain

v(k + 1) ≈ v(k) +
∆t

12

1

2∆z
D (23v(k)− 16v(k − 1) + 5v(k − 2)) ,

where v(k) = w(k∆t) ∈ RN−1. Finally, letting

x(k) =

v(k + 2)

v(k + 1)

v(k)

 ,
we obtain

x(k + 1) = Ax(k), (21)

where δ = ∆t
∆x

and

A =

IN−1 0N−1 0N−1

IN−1 0N−1 0N−1

0N−1 IN−1 0N−1

+
δ

2

 23
12
D −16

12
D 5

12
D

0N−1 0N−1 0N−1

0N−1 0N−1 0N−1

 .
Finally, we add a control input and use the following equations

x(k + 1) = Ax(k) +Bu(k), with B =

IN−1

0N−1

0N−1

 , (22)

to evaluate the network controllability Gramian, and its eigenvalues as a function of the parameters
N and δ. Figure 6(a) in the main text shows the fragility versus responsiveness tradeoff for the
discrete-time network (22) for the value of δ that ranges from 0.1 to 0.7. Figure 6(b) shows the
condition number of the network matrix, as a function of δ. It can be seen, the smaller δ, the larger
the non-normality and fragility degrees of the network.
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