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A Markov chain model was developed to mimic the temporal variation of genetic
composition of bacteria'. The main assumptions of the model are the following: (i) at each
time step (cell division) mutations only depend on the current state of the cell (this is known
as the Markov property), (i1) mutation probabilities are time-independent, and (iii) the growth
(replication) rate of all genetic variants is assumed to be the same. The elements of the
transition matrix determine the recombination probabilities at each division. To mimic
possible mutations in the considered system the transition matrix should possess a particular
structure (e.g. a large number of elements will be zeros); the detailed description of the
matrix is provided below. The non-zero elements depend on a small number of parameters
which were estimated by fitting experimental distributions of bacterial composition obtained
when starting from different initial distributions of variants. The corresponding pseudo-code

required to fit model parameters to empirical data is discussed in detail below.
Model equations and parameters fit

Dynamics of variation of genetic composition of bacteria was modelled using the following

discrete Markov chain with a stationary matrix
Xnr1 = Xn* P=Xo* P",

where X, is a row vector describing the percentage of different genetic variants within the
population after n divisions (n =0 corresponds to the initial distribution of variants); the sum
of all elements of X, should always add up to 1; P is the transition matrix of size 8x8
modelling inversion rates, i.e. transition between different variants within a single cell
division. The matrix P is a Markov (stochastic) matrix, i.e. the sum of the elements of each

row is always equal to 1, i.e. Z?=1 pi,j=1. The meaning of each element p;; is the probability

that the variant ‘> will invert (recombine) and become ‘;’.
In the vector X, we consider the following order of variants: (A1, A2, B, C, D1, Do, E, F).

The transition matrix P has the form described by the table below.

Ay Az B C D D: E F
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Ay | 1-0u-Bi-y B o 71 0 0 0 0
Az B1 1-0-Bi-y1 0 0 0 0 o 71
B o2 0 1-02-B2-v2 0 V2 0 B2 0
C Y2 0 0 1-02-B2-y2 o 0 0 B2
D, 0 0 Yi o 1-a1-Bi-v1 Bi 0 0
D; 0 0 0 0 B 1-0-Bi-v1 Y1 o
E 0 o3 B3 0 0 Y3 1-03-B3-y3 0
F 0 V3 0 B3 0 o3 0 1-03-B3-y3

Here the coefficients ai, £i, yi (i=1,2,3) give the probability of the corresponding
recombination which occurs via a single inversion event. Initially, we neglected the
probability of having more than one inversion event at a time.

The elements p;; in P were found by fitting the model to experimental data which provided
the eventual distributions of variants starting from different initial conditions consisting of
pure variants Az, B, C, D2, E and F. We assume that the final experimental data sets
approximately corresponded to n=20 cell divisions. As a formal criterion of goodness of fit to
define the parameters ai, fi, yi, we minimised the following score Q which is the sum of

squares of the norms of deviations between the model prediction and the data

ka kg
Q@B v = ) Xao(42) = Hi(A)I + ) [1Xz0(B) = Vi (B
i=1 =1
kc kp
+ D X200 = (O + Y Xz0(D2) = Hi (DI

kg kp
+ ) Xao(B) = KB + ) Xao(F) = Hi(PIP,
i=1 =1

where X,,(Z) describes the distribution of variants in the model after =20 divisions starting
from 100% of the variant Z; Y,,,(Z) denotes the empirical distribution in experiment m (where
m=1,..., kz) starting from 100% of the variant Z, where Z is one of Az, B, C, D2, E, F. Here,
by the norm || X||of a vector X we understand the square root of its scalar product with itself,
i.e. |X|| = VX - X. Technically, minimisation of O was implemented using the built-in
MATLAB function ‘fminsearch’ which uses the Nelder-Mead simplex algorithm procedure
of finding the minimum of a multivariable function. The detailed description of the Nelder-

Mead algorithm can be found in the textbooks on optimisation?.
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The brief pseudo-code showing how the function Q can be computed numerically is provided
below.
Pseudo-code for constructing function Q
(1) Set the matrix P using parameters i, £i, and yi (see the above table for P).
(2) Set (initially) Q =0.
(3) Run simulations for / different initial conditions (/=6 starting variants):
for i=1:/
(1) Download the final distributions Y,,(7) from data (i corresponds to any of
Az, B, C, D, E, F); m is the number of experimental set for the given i here
m=1,2,.. k(i).
(i1) Set the current initial distribution X, starting from 100% of bacteria from
the given variant .

(ii1) Run the model for n=20 time iterations (cell divisions):

for j=1:n
X=X 1% P;
end

For each m find the difference between the model prediction and data:
for m=1: k(i)
Wi = X — Yo (D)
end
Compute the increment in Q corresponding to variant i:
for m=1: k(i)
0=0+ W, *xW,, (symbol “* signifies the scalar product)
end
end

(4) Print the final Q.

In this study we explored both cases where ai, i, yi were distinct parameter for i=1,2,3
(Model 1) and the case where they are identical (Model 2), i.e. when a1= o= a3, f1= > = f3;
1= y2=73. To compare the two models, we applied the Akaike information criterion by
calculating the Akaike weights. The corresponding Akaike weight is calculated as

_exp((AAIC)/2)
YT exp((RAIC)/2) + 1
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where AAIC is the difference in the Akaike score AIC between the models with the minimal
and the maximal scores’. For the Akaike score of a model with m parameters and N
experiments we can use the following approximation

AIC = 2m + NIn(Qpin),
where Qi 1s the minimised value of Q.
We obtained the following estimates for the parameters:
for Model 1: a1=0.0066, 51=0.0006, y1=0.0012, 02=0.0013, £>=0.0189, y>=0.0005, 02=0.0065,
$2=0.0007, y2=0.0019, m=9.
for Model 2: a=0.0779, =0.1063, y=0.0178, m=3.
Calculation of the Akaike weight gave w = exp(—55) <<1, which clearly favours Model 1.
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Figure S1 - The observed and modelled active AsdSdistribution in pneumococci recovered from the nasopharynx of individual volunteers

The initial active hsdS gene distributions within inoculating doses of S. pneumoniae BHN418 were experimentally determined. This represents time point zero for both modelled
(dashed lines) and experimentally quantified (solid lines) datasets. Experimentally quantified hsdS distributions are shown for individual volunteers (one volunteer per graph) over time
as hsdSA (red), hsdSB (dark blue), hsdSC (grey), hsdSD (black), hsdSE (yellow) and hsdSF (light blue). Not all volunteers were carriage positive up to day 22, and for some time points

fewer than 10 colonies were recovered and therefore not analysed.
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Figure S2- The observed versed expected active AsdSdistribution in pneumococci recovered from the nasopharynx of individual volunteers at 7 days post colonisation

The initial active hsdS gene distributions within inoculating doses of S. pneumoniae BHN418 were experimentally determined. Experimentally quantified time points include all
volunteers carriage positive by PCR. When the experimental outcomes of group one (panel A) and group two (panel B) were compared to the outcome predicted by the model at 7
days (84 generations) there were no significant differences were observed. Model range is shown by the vertical line, mean percentage of active genes is shown by squares.

Significance was tested used a student’s T test with a Holm-Sidak correction, *p <0.05, **p =0.01, ***p =0.001, ****p <0.001.
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