EMBO reports

Krzysztof Szade et al

Expanded View Figures

Figure EV1. Expression of HO-1 in BM niche (related to Fig 1).

EV1

- A HO-1 is expressed by CD31 $^+$ endomucin $^+$ endothelial cells in metaphysis region of a tibia, scale bar 200 μ m.
- B HO-1 is expressed in sinusoids in diaphysis region, however, at lower levels, scale bar 100 $\mu m.\,$
- C PDGFR β^+ stromal cells in diaphysis region of the bone express HO-1, scale bar 20 μm .
- D Pericytes express HO-1. Part of the HO-1* pericytes express Sca-1 (#), while others express no or low levels of Sca-1 (*), scale bar 20 µm.
- E HO-1 is expressed by PDGFR β^+ stromal cells. Part of HO-1⁺PDGFR β^+ cells produce SDF-1 α , scale bar 20 μ m.

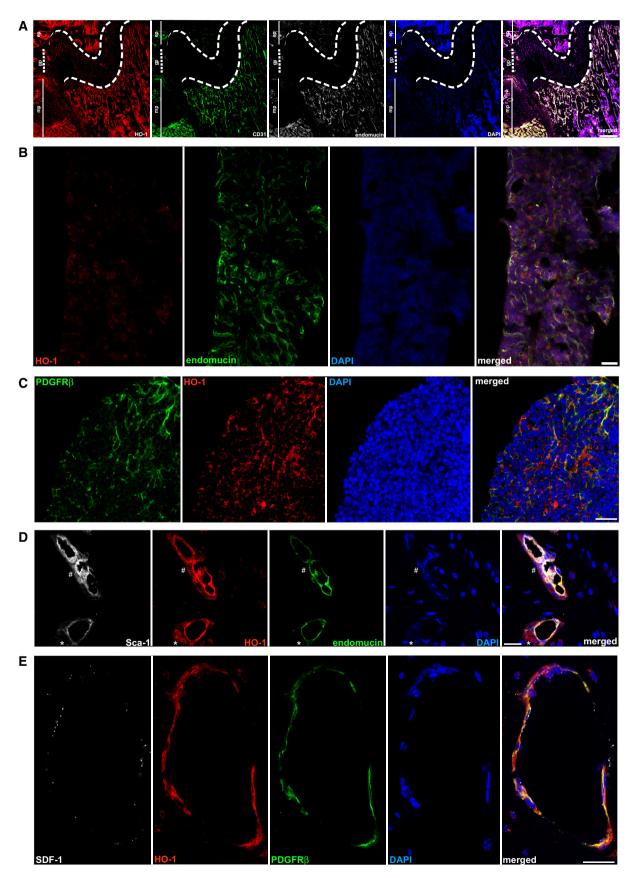


Figure EV1.

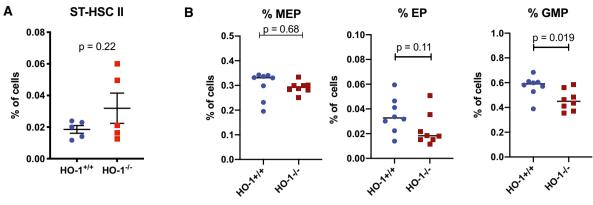

EMBO reports Krzysztof Szade et al

Figure EV2. Frequency of hematopoietic stem and progenitors cells in $HO-1^{-/-}$ and $HO-1^{-/-}$ mice (related to Fig 4).

- A Frequency of ST-HSC II population in young HO-1^{+/+} and HO-1^{-/-} mice. Two-tailed unpaired t-test. B Frequency of MEP, EP, and GMP populations in young HO-1^{+/+} and HO-1^{-/-} mice. Two-tailed unpaired t-test.
- C Frequency and total number of LT-HSCs, ST-HSCs, and MPPs in 12-month-old mice, n = 5 mice/group. Unpaired, two-tailed t-test.

EMBO reports e47895 | 2019 © 2019 The Authors

EV3

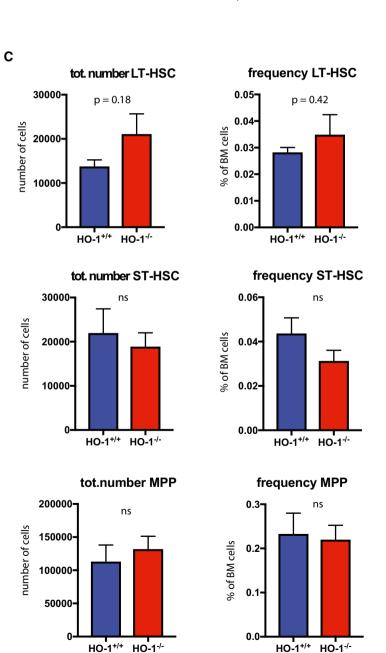
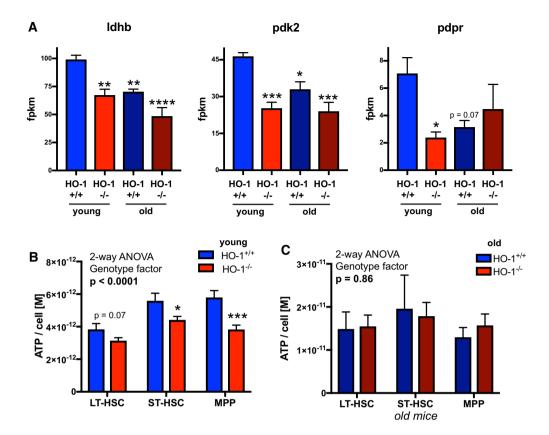
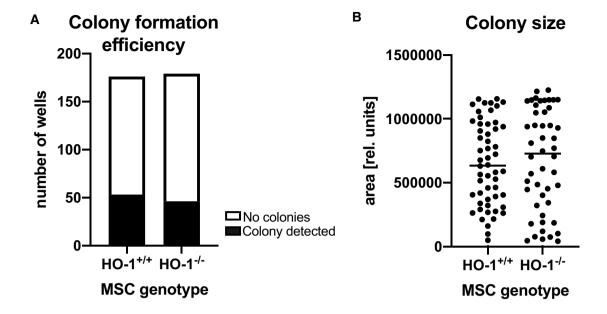


Figure EV2.

EMBO reports Krzysztof Szade et al




Figure EV3. Decreased expression of genes regulating pyruvate metabolism in young HO-1^{-/-} LT-HSCs and old LT-HSCs is associated with lower ATP levels.

- A Ldhb, Pdk2, and Pdpr are downregulated in young HO-1^{-/-} LT-HSCs, but not in old HO-1^{-/-} LT-HSCs. Analyzed by RNA-seq. Data are shown as mean ± SEM, four mice/group, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 comparing to young HO-1^{+/+} group, two-tailed unpaired *t*-test.

 B, C ATP levels are (B) lower in young HO-1^{-/-} LT-HSCs comparing to young HO-1^{+/+} LT-HSCs, (C) but not in old HO-1^{-/-} LT-HSCs comparing to old HO-1^{+/+} LT-HSCs.
- ATP levels measured in two independent experiments. Data are shown as mean \pm SEM, n = 8-18/group. *P < 0.05, ***P < 0.001, two-tailed unpaired t-test.

EMBO reports e47895 | 2019 © 2019 The Authors

EV5

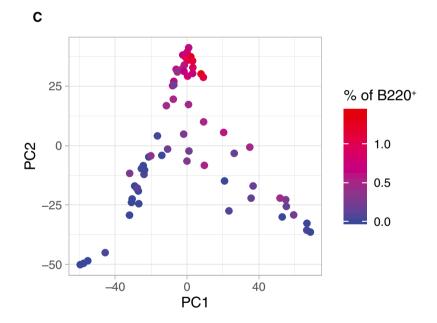


Figure EV4. Characteristic of colonies formed by HSCs co-cultured with $HO-1^{-/-}$ or $HO-1^{+/+}$ MSCs.

A, B (A) Colony formation efficiency and (B) the size of the formed colonies did not differ between groups.

C Frequency of B220⁺ cells among analyzed colonies. 46–56 analyzed colonies/group.

EMBO reports Krzysztof Szade et al

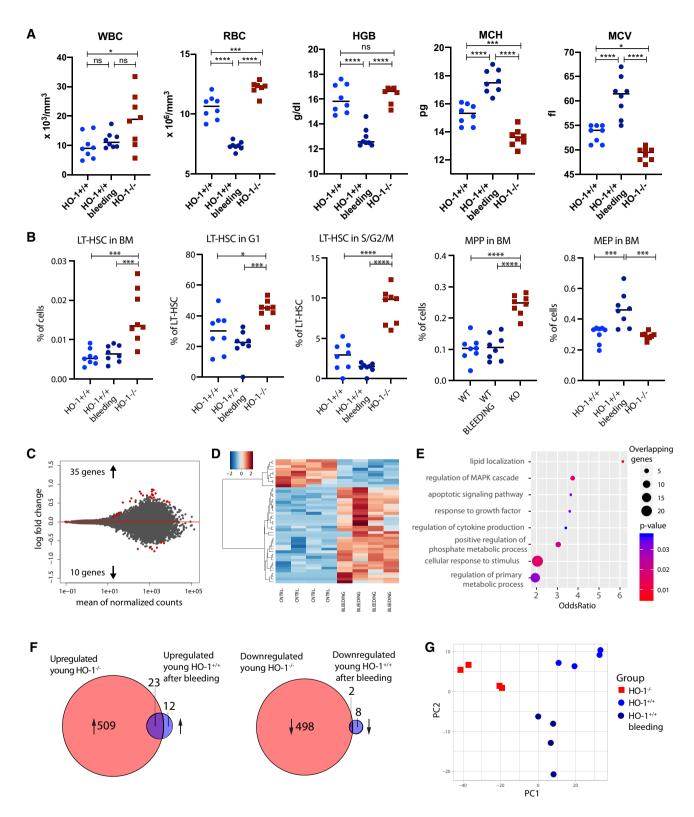


Figure EV5.

EV7 EMBO reports e47895 | 2019 © 2019 The Authors

Figure EV5. Induction of anemia by serial bleeding does not induce LT-HSC phenotype observed in HO-1 $^{-/-}$ mice.

A Comparison of selected blood morphology parameters of $HO-1^{-/-}$ mice with $HO-1^{*/+}$ that were bled. *P < 0.05, ***P < 0.001, ****P < 0.0001, two-tailed unpaired t-test.

- B Comparison of frequency and cell cycle of LT-HSCs and frequency of MPPs and MPPs from bled HO-1^{+/+} mice with LT-HSCs from HO-1^{-/-} mice. *P < 0.05, ***P < 0.001, ****P < 0.0001, two-tailed unpaired t-test.
- C, D RNA-seq analysis revealed 45 differentially regulated genes in LT-HSCs from bled HO-1*/+ mice vs. LT-HSCs from control HO-1*/+ mice. Color key represents gene expression (as z-score among row).
- E GSEA among GOBP annotations based on differentially regulated genes.
- F Comparison of overlapping genes that were differentially expressed in LT-HSCs from young HO-1^{-/-} mice with genes that were differentially expressed in LT-HSCs from bled HO-1^{+/+} mice.
- PCA based on genes differentially expressed in LT-HSCs from both young $HO-1^{-/-}$ and bled $HO-1^{+/+}$ mice.