Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for *Adv. Sci.,* DOI: 10.1002/advs.201902751

Tailoring Quantum Tunneling in a Vanadium-Doped WSe₂/SnSe₂ Heterostructure

*Sidi Fan, Seok Joon Yun, Woo Jong Yu, and Young Hee Lee**

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019

Supporting Information

Tailoring Quantum Tunneling in Vanadium-doped WSe2/SnSe² Heterostructures

*Sidi Fan, Seok Joon Yun, Woo Jong Yu, and Young Hee Lee ,**

***Correspondence to: leeyoung@skku.edu

Note1. Field-effect hole mobility calculation

The field-effect hole mobility μ_h is obtained from the following equations,

$$
\mu_{\rm h} = \frac{Lg_m}{Wc_i V_{\rm DS}} \qquad (1)
$$

where *L* and *W* are the length and width of the carrier transport channel, respectively, g_m is the transconductance, C_i is the capacitance of the gate dielectric layer, and V_{DS} is the sourcedrain bias.

$$
g_m = \frac{dI_{DS}}{dV_G} \qquad (2)
$$

where I_{DS} is the source-drain current at the gate bias of V_{G} .

$$
C_i = \frac{\varepsilon_0 \varepsilon_i}{d_i} \qquad (3)
$$

where ε_0 is the vacuum permittivity $(8.854 \times 10^{-12} \text{ Fm}^{-1})$, ε_i is the relative permittivity of SiO₂, and d_i is the thickness of $SiO₂$.

In our devices, *L/W* is equal to 0.18, 0.31, 0.14, 0.27, and 0.17 in pristine WSe₂, 1%, 2%, 4%, and 10% V-WSe₂ FETs, respectively. $V_{DS} = 0.5$ V, $\varepsilon_i = 3.9$, $d_i = 300$ nm, and g_m at a given gate bias is extracted from the transfer curve in Figure 2c. The field-effect hole mobilities in each device are shown in Figure S5. The highest values of each curve are taken for comparation in Figure 2e.

Note2. Hole carrier concentration calculation

The hole carrier concentration is calculated from $p = q^{-1} C_1 |V_{th} - V_G|$, where q is the unit charge, V_{th} is the threshold voltage, and V_G is the gate bias. In the pristine WSe₂ transistor, $V_{\text{th-0}} = -46$ V (from the linear scale). Thus, $p_0 = 3.31 \times 10^{12} \text{ cm}^{-2}$ at $V_G = 0$ V. Due to the *p*doping effect of V-substitution in $WSe₂$, the hole carrier concentration in V-WSe₂ is added to that in pristine WSe₂. Therefore, $p_{\text{dope}} = p_0 + q^{-1} C_1 |V_{\text{th-dope}} - V_{\text{th-0}}|$.

Note3. Band alignment simulations with various V-doping concentrations

As $SnSe₂$ is an intrinsically degenerate material and V-WSe₂ is a monolayer, the band bending in the heterostructure would take place in the planar direction instead of the vertical direction.^[1] The configurations of V-WSe₂ (right) and SnSe₂ (left) in the planar direction (Figure S11) are simulated based on Poisson's equation. We use a model similar as the previous one to calculate the charge distribution and obtain the band alignment in the heterostructures.^{[2],[3]} Because of the semiconductor property of both V-WSe₂ and SnSe₂, depletion approximation with uniform charge carrier is applied, where the charge density is equal to the doping level in the materials. The electron doping concentration in $SnSe₂$ is reported to be $N_d = \sim 10^{19}$ cm^{-3 [4]} The hole carrier density in V-WSe₂ is gradually increased along the V-concentration as shown in Figure 2c. In our simulation, N_a is chosen to be 10^{14} , 10^{17} , 10^{19} , and 10^{23} cm⁻³ to estimate the band alignment as a function of V-concentration. The Fermi level in the semiconductor is

$$
W_{f_n} = E_c + \frac{E_g}{2} - \frac{K_b T}{q} \ln \frac{N_d}{n_i}
$$
 (4)

for SnSe₂, and

$$
W_{fp} = E_c + \frac{E_g}{2} + \frac{K_b T}{q} \ln \frac{N_a}{n_i} \qquad (5)
$$

for WSe₂, where E_c is the conduction band, E_g is the band gap, K_b is the Boltzmann constant, *T* is the temperature, *q* is the unit charge, and *nⁱ* is the intrinsic doping level, which is set to be 10^{10} cm⁻³ in the simulation. Thus, the barrier height in V-WSe₂/SnSe₂ is

$$
V_{bi} = W_{fn} - W_{fp} + V_{DS} \qquad (6)
$$

under the applied source-drain bias of V_{DS} . The depletion layer width is estimated to be

$$
x_n = \sqrt{\frac{2\varepsilon_n V_{bi}}{q} \frac{N_a}{N_d (N_a + N_d)}}\tag{7}
$$

in SnSe2, and

$$
x_p = \sqrt{\frac{2\varepsilon_p V_{bi}}{q} \frac{N_d}{N_a (N_a + N_d)}}\tag{8}
$$

in WSe₂, where ε_n and ε_p are the dielectric constants of SnSe₂ and WSe₂, respectively. Based on Poisson's equation, the voltage potential of $V(x)$ at the *x* position in the planar direction is

$$
V(x) = \frac{qN_d}{2\varepsilon_n}(x + x_n)^2, \ -x_n \le x \le 0 \qquad (9)
$$

$$
V(x) = \frac{qN_d}{\varepsilon_p}\left(x_p x - \frac{x^2}{2}\right) + \frac{qN_d}{2\varepsilon_n}x_n^2, \ 0 \le x \le x_p \qquad (10)
$$

$$
V(x) = \frac{qN_d}{\varepsilon_p}\left(x_p^2 - \frac{x_p^2}{2}\right) + \frac{qN_d}{2\varepsilon_n}x_n^2, \ x_p \le x \qquad (11)
$$

The above equations are solved self-consistently to obtain the band diagrams. As shown in Figure S11, an initial type II band alignment is formed by the low V-concentration. With the increase in *Na*, the depletion layer width is gradually decreased, and eventually a type III broken gap alignment is formed by the high V-concentration.

Figure S1. (a) Photograph image of the liquid precursor coated (left) and pristine 300 nm $SiO₂/Si$ wafer (right). (b-e) Optical images of the CVD-grown WSe₂ with different concentrations of W-chemical in the liquid precursor. With increasing the mole concentration of W-chemical in the liquid precursor, the coverage of $WSe₂$ is higher and the $WSe₂$ film can be achieved with 90% coverage at 12.0 mmol per liter.

Figure S2. (a-e) Optical images of V-doped WSe₂ monolayer. The monolayer thickness of V-doped WSe₂ is maintained up to V-10% doping (nominal value of V-concentration), as confirmed by (f) AFM.

Figure S3. (a) Low magnification TEM observation and (b) diffraction patterns of V-10% doped WSe2. The diffraction patterns with the same orientation indicate single crystalline Vdoped $WSe₂$ flake. (c-f) EDS mapping images of yellow region in (a) for each element (V,W, and Se, respectively).

Figure S4. STEM images of the V-2% doped WSe₂ after (a) the Gaussian-blur filtering and (b) atomic mapping. W atom (cyan), V atom(red), 2Se atoms (yellow), and Se-vacancy (blue) are clearly distinguished. The extracted value of the defect density is 1.7×10^{13} cm⁻².

Figure S5. Raman spectra of V-doped WSe₂ with different V-concentrations.

Figure S6. Field effect hole mobilities as a function of gate bias in (a-e) pristine WSe₂, 1%, 2%, 4%, and 10% V-doped WSe2-FETs, respectively.

Figure S7. Fabrication process of V-doped WSe₂/SnSe₂ p-n diodes on the SiO₂ substrates. (a) Schematic illustration of the whole process. (b) Optical microscopy images with the numbers in the upper-left corner corresponding to each fabrication step in (a). The scale bar is 10 μm.

Figure S8. Characterization of SnSe₂ flakes as n-type materials. (a-c) OM images of V-1%, V-2%, and V-4% devices, respectively. The scale bar is 10 μm. (d-f) AFM mappings of each device, confirming the thickness of $SnSe₂$ flakes ranging from 11 to 17 nm. (h-g) Transfer curves of each individual $SnSe_2-FET$ corresponding to the devices in (a-c), exhibiting identical degenerate *n*-type properties with the same current level. The drain bias is fixed at 0.5 V.

Figure S9. Electrical characteristics of pristine WSe₂/SnSe₂ diode. (a) I_{DS} - V_{DS} output curves at various back-gate voltages (from -50 V to -110 V, WSe₂ in *p*-type on-state), showing the forward rectifying behavior. (b) Forward rectification ratio as the function of gate bias.

Figure S10. Electrical characteristics of V-10% WSe₂/SnSe₂ device. (a) I_{DS} -V_{DS} output curves at various gate biases, showing ohmic resistance in both forward and negative drain bias region. (b) Transfer curves of V-WSe₂ FET, SnSe₂ FET, and device with weak gate tunability.

Figure S11. (a-c) Near-ohmic contact in the 1%, 2%, and 4% V-WSe₂/Pd junctions, respectively. All the $WSe₂$ flakes are gated at -20 V for hole carrier transport.

V-doping concentration increase

Figure S12. (a-d) Band alignment simulations using Poisson's equation by gradually increasing N_a by 10^{14} cm⁻³, 10^{17} cm⁻³, 10^{19} cm⁻³, and 10^{23} cm⁻³, respectively.

Figure S13. Reproducibility of (a) V-1% diode with the forward rectifying behavior, (b) V-2% diode with the backward rectifying behavior, and (c-d) V-4% devices with NDR tunneling at various gate biases.

Figure S14. The $\ln(I/V^2)$ -1/*V* plot of I_{DS} -*V*_{DS} curve in Figure 3d, confirming the carrier transport of FN tunneling or thermionic FN tunneling with a negative slope at a high drain bias (near zero).

Figure S15. (a) Large hysteresis in V-4% WSe₂-FET. (b) Device with apparent I_{DS} pick-up behavior.