Supplementary Information

Self-Healing Heterometallic Supramolecular Polymers Constructed by Hierarchical Assembly of Triply Orthogonal Interactions with Tunable Photophysical Properties

Qian Zhang,^{†,‡,#} Danting Tang,^{†,#} Jinjin Zhang,[†] Ruidong Ni,[§] Luonan Xu,[†] Tian He,[†] Xiongjie Lin,[†] Xiaopeng Li,[§] Huayu Qiu,[†] Shouchun Yin,^{*,†} Peter J. Stang^{*,‡}

[†]College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.

^{*}Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States.

[§]Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States.

[#]Q.Z. and D.T. contributed equally to this work.

Contents

1.	Materials and methods	S3
2.	Synthetic procedures and characterization data	S4
	2.1 Synthesis of compound 1a	S4
	2.2 Synthesis of compound 1b	S10
	2.3 Synthesis of compound 1c	S14
	2.4 Synthesis of compound 1d	S16
	2.5 Synthesis of metallacycle 3a	S21
	2.6 Synthesis of metallacycle 3b	S23
	2.7 Synthesis of metallacycle 3c	S26
	2.8 Synthesis of metallacycle 3d	S28

	2.9 Synthesis of the linear supramolecular polymer 4a	S30	
	2.10 Synthesis of the cross-linked supramolecular polymer 6a	S30	
3.	Complexation study between 1a and Zn(OTf) ₂	S30	
4.	Concentration-dependent ¹ H NMR spectra of 3a and Zn(OTf) ₂		
5	Two-dimensional diffusion-ordered NMR (DOSY) and dynamic light scattering (DLS)	S32	
5.	results		
6.	SEM images of 4a	S32	
7.	¹ H NMR spectra of 2 and 5	S33	
8.	Determination of the association constant between 2 and monofunction model compound 7 by ¹ H NMR titration methods	S34	
9.	The average diameters of 4a and 6a	S36	
10.	Stimuli-responsiveness of supramolecular gel	S36	
11.	Optical characterization of ligands 1a-1d and metallacycles 3a-3d	S37	
12.	References	S37	

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Deuterated solvents were purchased from Energy Chemical. Compounds 2^[S1] and 4^[S2] were prepared according to the literature. NMR spectra were recorded on a Varian Unity 400 MHz or a Bruker Advance 500 MHz spectrometer. ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ${}^{31}P{}^{1}H$ NMR chemical shifts are referenced to an external unlocked sample of 85% H₃PO₄ (δ = 0.0 ppm). Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer and 6530 Q-TOF LC/MS. The melting points were collected on a YRT-3 automatic melting point apparatus. The UV-Vis absorption spectra were measured by a Hitachi U-5300 absorption spectrophotometer. The fluorescent emission spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. Scanning electron microscopy (SEM) was performed on a Hitachi S-4800. Dynamic light scattering experiments were performed using a Nano ZS90 instrument with a He-Ne laser (633 nm) and 90° collecting optics. The data were analyzed using the Malvern Dispersion Technology Software 5.10. Rheological data were obtained by using an ARES-G2 rheometer (Waters) with plate-plate geometry (diameter of 25 mm, gap is 300 μ m). Oscillatory frequency sweep experiments were performed from 0.1 rad s⁻¹ to 100 rad s⁻¹ with a strain in the linear region at 20 °C. The scanning frequency of self-healing experiments were performed with 10 rad s⁻¹ at 20 °C.

2. Synthetic procedures and characterization data.

Scheme S1 Synthetic routes to ligands 1a-1d and metallacycles 3a-3d.

2.1 Synthesis of compound 1a

2.1.1 Synthesis of compound 7

 three times. The combined organic layer was dried over anhydrous MgSO₄. After filtration, the solvent was removed by reduced pressure. The crude product was purified by flash column chromatography with petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford compound 7 (70 mg, 65%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 298K): δ 9.61 (s, 1H), 7.84 (s, 2H), 5.11 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K): 187.0, 146.0, 132.7, 127.3, 107.0. ESI-HRMS [7 + H]⁺: calcd. for [C₇H₆Br₂NO]⁺ 277.8816, found 277.8810.

Fig. S1 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 7.

Fig. S2 ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound 7.

Fig. S3 ESI-HRMS spectrum of compound 7.

2.1.2 Synthesis of compound 8

2-Acetylpyridine (87.2 mg, 0.72 mmol) was added to a stirred solution of compound 7 (100.2 mg, 0.36 mmol) in ethanol (30 mL), and then NaOH (280.1 mg, 2.52 mmol) was added. After the mixture was stirred at room temperature overnight, NH_3 · H_2O (15.3 mg, 0.9 mmol) was added and the mixture was then

heated at 65 °C for 24 h. After the mixture was cooled down and filtered, the solid was collected

and washed with ethanol for three times to afford compound **8** (130 mg, 75%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.66 (d, J = 5.7 Hz, 2H), 8.57 (d, J = 9.1 Hz, 2H), 8.52 (s, 2H), 7.90 (s, 2H), 7.79 (td, J = 7.7, 1.8 Hz, 2H), 7.28 (ddd, J = 7.5, 4.7, 1.2 Hz, 2H), 4.68 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K): 156.1, 156.0, 149.1, 147.6, 142.7, 136.9, 130.4, 129.7, 123.9, 121.4, 117.6, 109.1. ESI-HRMS [**8** + H]⁺: calcd. for [C₂₁H₁₅Br₂N₄]⁺ 480.9663, found 480.9651.

Fig. S4 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 8.

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 **Fig. S5** ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound **8**.

Fig. S6 ESI-HRMS spectrum of compound 8.

2.1.3 Synthesis of compound 1a

Compound **8** (100.0 mg, 0.21 mmol), 4-pyridineboronic acid (118.0 mg, 0.96 mmol), K_2CO_3 (265.7 mg, 1.93 mmol), Pd(PPh_3)₄ (19.6 mg, 0.02 mmol) were dissolved in 1,4-dioxane/H₂O (30 mL, 4/1, v/v) under nitrogen. The mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the solvent

was removed in vacuo. Then the mixture was extracted with CH_2Cl_2 for three times, dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography with CH_2Cl_2/CH_3OH (5:1, v/v) as the eluent to afford compound **9** (57 mg, 57%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.72 (d, J = 5.0 Hz, 4H), 8.70–8.57 (m, 6H), 7.85 (t, J = 7.8 Hz, 2H), 7.73 (s, 2H), 7.51 (d, J = 5.0 Hz, 4H), 7.32 (t, J = 6.0 Hz, 2H), 4.08 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K): δ 155.9, 155.6, 150.3, 148.7, 148.6, 146.6, 140.9, 136.6, 128.8, 128.3, 125.4, 123.9, 123.6, 121.1, 117.3. ESI-HRMS [**1a** + H]⁺: calcd. for [C₃₁H₂₃N₆]⁺ 479.1984, found 479.1986.

Fig. S7 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 1a.

 165
 160
 155
 150
 145
 140
 135
 130
 125
 120
 115
 110
 105
 100
 95
 90
 85
 80
 75
 70

 Fig. S8 ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound 1a.

Fig. S9 ESI-HRMS spectrum of compound 1a.

2.2 Synthesis of compound 1b

2.2.1 Synthesis of compound 4

2-Acetylpyridine (87.2 mg, 0.72 mmol) was added to a stirred solution of **3**, 5-dibromobenzaldehyde (90.0 mg, 0.34 mmol) (100.2 mg, 0.36 mmol) in ethanol (30 mL), and then NaOH (100.8 mg, 2.52 mmol) was added. After the mixture was stirred at room temperature overnight, $NH_3 \cdot H_2O$ (15.3 mg, 0.9

mmol) were added and the mixture was heated at 65 °C for 24 h. Then the mixture was cooled

down and filtered. The solid was collected and washed with ethanol for three times to afford compound **4** (105 mg, 66%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.67 (dd, J = 4.8, 0.9 Hz, 2H), 8.60 (d, J = 7.9 Hz, 2H), 8.58 (s, 2H), 7.89 (d, J = 1.7 Hz, 2H), 7.82 (td, J = 7.7, 1.8 Hz, 2H), 7.68 (t, J = 1.7 Hz, 1H), 7.30 (ddd, J = 7.5, 4.7, 1.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K): δ 156.2, 155.7, 149.2, 137.0, 134.4, 129.1, 124.1, 123.6, 121.4, 118.7. ESI-HRMS [**4** + H]⁺: calcd. for [C₂₁H₁₄Br₂N₃]⁺ 465.9549, found 465.9554.

Fig. S10 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 4.

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 Fig. S11 $^{13}\rm C$ NMR spectrum (500 MHz, CDCl₃, 298K) of compound 4.

Fig. S12 ESI-HRMS spectrum of compound 4.

2.2.2 Synthesis of compound 1b

4 (98.0 mg, 0.21 mmol), 4-pyridineboronic acid (118.0 mg, 0.96 mmol), K_2CO_3 (265.7 mg, 1.93 mmol), $Pd(PPh_3)_4$ (19.6 mg, 0.02 mmol) were dissolved in 1,4-dioxane/H₂O (30 mL, 4/1, v/v) under nitrogen. The mixture was stirred at 80 °C for 24 h. After cooling, the solvent was removed in vacuo,

and then the mixture was extracted with CH_2Cl_2 for three times. The combined organic layer was dried over anhydrous Na₂SO₄. After filtration, the solvent was removed by rotation. The crude

product was purified by flash column chromatography with CH₂Cl₂/CH₃OH (10:1, v/v) as the eluent to afford compound **1b** (65 mg, 67%) as a white solid. m. p. 250.3–258.9 °C. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.75 (s, 2H), 8.70 (dd, J = 4.5, 1.8 Hz, 6H), 8.65 (d, J = 7.9 Hz, 2H), 8.10 (s, 2H), 7.86 (dt, J = 7.7, 1.8 Hz, 3H), 7.60 (d, J = 6.2 Hz, 4H), 7.34 (dd, J = 6.3, 4.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K): δ 156.2, 155.9, 150.4, 149.2, 147.5, 140.1, 137.0, 126.6, 126.3, 124.1, 121.9, 121.5, 119.0. ESI-HRMS [**1b** + H]⁺: calcd. for [C₃₁H₂₂N₅]⁺ 464.1870, found 464.1876.

Fig. S13 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 1b.

Fig. S15 ESI-HRMS spectrum of compound 1b.

2.3 Synthesis of compound 1c

Boron tribromide solution (500.0 mg, 2.00 mmol) was added dropwise to a stirred solution of compound **1d** (99.2 mg, 0.20 mmol) in dichloromethane (10 mL) at -78 °C for 30 minutes. After the mixture was stirred at room temperature overnight, the reaction mixture was quenched by the addition of

saturated NaHCO₃ solution (100 mL). The mixture was filtered to afford compound **1c** (70 mg, 73%) as a magenta powder. m. p. 289.1–289.9 °C. ¹H NMR (500 MHz, DMSO- d_6 , 298K): δ 9.02 (d, J = 6.6 Hz, 4H), 8.87 (s, 2H), 8.79 (d, J = 4.9 Hz, 4H), 8.39 (d, J = 6.7 Hz, 4H), 8.23 (s, 2H),

8.16 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 6.2 Hz, 2H). ¹³C NMR (125 MHz, DMSO- d_6 , 298K): δ 155.106, 154.2, 153.7, 148.9, 143.1, 142.1, 139.5, 132.2, 130.8, 128.1, 127.7, 127.1, 125.6, 122.4, 119.1. ESI-HR-MS [**1c** + H]⁺: calcd. for [C₃₁H₂₂N₅O]⁺ 479.1866, found 479.1875.

Fig. S16 ¹H NMR spectrum (500 MHz, DMSO- d_6 , 293K) of compound 1c.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Fig. S17 ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298K) of compound 1c.

Fig. S18 ESI-HRMS spectrum of compound 1c.

2.4 Synthesis of compound 1d

2.4.1 Synthesis of compound 5

CHO 3,5-Dibromo-4-hydroxybenzaldehyde (510.0 mg, 1.82 mmol), potassium carbonate (1254.9 mg, 9.10 mmol), potassium iodide (5.2 mg, 0.04 mmol) and methyl iodide (1133.0 mg, 7.28 mmol) were dissolved in acetonitrile (30 mL) and the mixture was refluxed for 24 h. The solvent was removed by decompression, and the mixture was extracted with CH_2Cl_2 for three times. The combined organic layer was dried with anhydrous

Na₂SO₄. After filtration, the solvent was removed by rotation. The crude product was purified by flash column chromatography with petroleum ether/CH₂Cl₂ (5/1, ν/ν) as the eluent to afford compound **5** (480 mg, 90%) as yellow product. ¹H NMR (500 MHz, CDCl₃, 298K): δ 9.79 (s, 1H), 7.96 (s, 2H), 3.90 (s, 3H).

Fig. S19 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 5.

2.4.2 Synthesis of compound 6

2-Acetylpyridine (87.2 mg, 0.72 mmol) and NaOH (100.8 mg, 2.52 mmol) were added into the ethanol solution of **5** (100.0 mg, 0.34 mmol, 30 mL). After the mixture was stirred at room temperature overnight, NH_3 · H_2O (15.3 mg, 0.9 mmol) were added and the mixture was heated at 65 °C for another 24 h. After

the mixture was cooled down and filtered, the crude product was collected, and washed with ethanol for three times to afford compound **6** (115 mg, 68%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.74 (d, J = 4.1 Hz, 2H), 8.66 (d, J = 7.9 Hz, 2H), 8.63 (s, 2H), 8.04 (s, 2H), 7.89 (td, J = 7.7, 1.8 Hz, 2H), 7.37 (ddd, J = 7.5, 4.7, 1.2 Hz, 2H), 3.96 (s, 3H). ¹³C NMR (125 MHz,

CDCl₃, 298K): δ 156.2, 155.8, 149.2, 137.1, 137.0, 131.4, 124.1, 121.4, 118.8, 118.5, 60.8. ESI-HRMS [**6** + H]⁺: calcd. for [C₂₂H₁₅Br₂N₃O]⁺ 497.9640, found 497.9598.

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 Fig. S21 ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound 6.

Fig. S22 ESI-HRMS spectrum of compound 6.

2.4.3 Synthesis of compound 1d

6 (104.4 mg, 0.21 mmol), 4-pyridineboronic acid (118.0 mg, 0.96 mmol), K_2CO_3 (265.7 mg, 1.93 mmol), Pd(PPh_3)_4 (19.6 mg, 0.02 mmol) were dissolved in the mixture of 1,4-dioxane/H₂O (30 mL, 4/1, v/v) under nitrogen. The mixture was stirred at 80 °C for 24 h. After cooling, the solvent was

removed in vacuo, and the mixture was then extracted with CH_2Cl_2 for three times. The combined organic layer was dried with anhydrous Na₂SO₄. After filtration, the solvent was removed by rotation. The crude product was purified by flash column chromatography with CH_2Cl_2/CH_3OH (10:1, *v/v*) as the eluent to afford compound **1d** (60 mg, 58%) as a white solid. m. p. 262.3–262.9 °C. ¹H NMR (500 MHz, CDCl₃, 298K): δ 8.74 (d, *J* = 2.0 Hz, 4H), 8.73 (s, 3H), 8.72 (s, 2H), 8.69 (d, *J* = 8.0 Hz, 2H), 7.94–7.86 (m, 4H), 7.63 (d, *J* = 4.6 Hz, 4H), 7.39–7.34 (m, 2H), 3.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 298K): δ 156.2, 155.9, 155.9, 149.9, 149.1, 148.7, 145.7, 137.0, 135.4, 133.9, 130.0, 124.1, 124.0, 121.5, 118.6, 61.3. ESI-HRMS [**1d** + H]⁺: calcd. for [C₃₂H₂₄N₅O]⁺ 494.1975, found 494.1978.

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 Fig. S24 ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound 1d.

Fig. S25 ESI-HRMS spectrum of compound 1d.

2.5 Synthesis of metallacycle **3a**

1a (4.78 mg, 10.0 μ mol) and **2** (16.14 mg, 10.0 μ mol) were dissolved in DMSO (0.5 mL) and heated at 65 °C for 12 h and then cooled to room temperature. To the resulting homogeneous solution, toluene (0.5 mL) and diethyl ether (ca. 7 mL) were added to obtain the desired product **3a** (15.30 mg, 83%) as a yellow solid

precipitate. ¹H NMR (400 MHz, CD_2Cl_2 , 298 K): δ 9.00 (s, 2H), 8.90 (s, 2H), 8.75 (s, 4H), 8.64 (s, 6H), 8.45 (s, 4H), 8.34 (d, J = 11.2 Hz, 12H), 8.10 (s, 4H), 8.00 (s, 10H), 7.65 (s, 6H), 7.35 (s, 2H), 4.41 (s, 6H), 4.03 (s, 8H), 3.82 (s, 8H), 3.73 (s, 8H), 3.67 (s, 18H), 1.44 (s, 48H), 1.21 (s, 72H). ³¹P{¹H} NMR (202 MHz, CD_2Cl_2 , 298 K): δ 14.10 ppm (s, ¹ $J_{Pt-P} = 2678.1$ Hz). ESI-TOF-MS [**3a** – 30Tf]³⁺: calcd. for [C₁₆₃H₂₂₁N₁₂O₁₇P₈Pt₄F₃S]³⁺ 1247.11, found 1247.20.

Fig. S27 ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298K) of 3a.

Fig. S28 ESI-TOF-MS of **3a**. Inset: calculated (blue) and experimental (red) ESI-TOF-MS spectra of metallacycle **3a** [M-3OTf]³⁺.

Fig. S29 Partial COSY spectra (CD₃CN/CD₂Cl₂, 1/1 v/v, 298 K, 400 MHz) of 3a.

2.5 Synthesis of metallacycle 3b

1b (4.43 mg, 10.0 μ mol) and **2** (16.14 mg, 10.0 μ mol) were dissolved in 0.5 mL of DMSO and heated at 65 °C for 12 h and then cooled to room temperature. To the resulting homogeneous solution, toluene (0.5 mL) and diethyl ether (ca. 7 mL) were added to obtain the

desired product **3b** (14.62 mg, 81%) as a yellow solid precipitate. ¹H NMR (400 MHz, CD₂Cl₂, 298 K): δ 8.99 (s, 4H), 8.95 (s, 4H), 8.93–8.91 (m, 2H), 8.88 (s, 4H), 8.81 (s, 12H), 8.53 (s, 8H), 8.07 (d, *J* = 18.1 Hz, 8H), 7.94 (d, *J* = 8.0 Hz, 4H), 7.63 (d, *J* = 8.3 Hz, 4H), 7.27 (s, 4H), 4.35 (s, 8H), 3.96 (s, 8H), 3.75 (s, 8H), 3.67 (s, 8H), 3.60 (s, 16H), 1.37 (s, 48H), 1.15 (t, *J* = 8.5 Hz, 72H). ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 298 K): δ 13.98 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2681.7 Hz). ESI-TOF-MS [**3b** – 30Tf]³⁺: calcd. for [C₁₆₃H₂₁₉N₁₀O₁₇P₈Pt₄F₃S]³⁺ 1236.76, found 1236.86.

Fig. S31 ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298K) of 3b.

Fig. S32 ESI-TOF-MS of **3b**. Inset: calculated (blue) and experimental (red) ESI-TOF-MS spectra of metallacycle **3b** [M-3OTf]³⁺.

2.7 Synthesis of metallacycle 3c

1c (4.43 mg, 10.0 μ mol) and **2** (16.14 mg, 10.0 μ mol) were dissolved in 0.5 mL of DMSO and heated at 50 °C for 12 h and then cooled to room temperature. To the resulting homogeneous solution, toluene (0.5 mL) and diethyl ether (ca. 7 mL) were added to obtain the desired product **3c** (16.15 mg, 88%) as a yellow solid

precipitate. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 9.69 (s, 2H), 9.25 (d, J = 4.0 Hz, 4H), 9.12 (s, 6H), 8.80 (dd, J = 17.2, 6.0 Hz, 10H), 8.71 (s, 4H), 8.57 (s, 2H), 8.45 (d, J = 6.4 Hz, 4H), 8.40 (d, J = 5.9 Hz, 3H), 8.30 (s, 6H), 8.01 (d, J = 6.6 Hz, 4H), 7.87 (d, J = 8.2 Hz, 4H), 7.69–7.50 (m, 6H), 4.35 (s, 8H), 3.97 (s, 8H), 3.72 (s, 8H), 3.65–3.52 (m, 24H), 1.43–1.26 (m, 48H), 1.18–1.05 (m, 72H). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ 13.52 ppm (s, ¹⁹⁵Pt satellites, ¹ J_{Pt-P} = 2655.8 Hz). ESI-TOF-MS [**3**c – 3OTf + 2Na – 2H]³⁺: calcd. for [C₁₆₃H₂₁₆N₁₀O₁₉P₈Pt₄F₃SNa₂]³⁺ 1262.08, found 1262.18.

Fig. S34 ¹H NMR spectrum (500 MHz, CD₂Cl₂, 293K) of **3c**.

Fig. S35 ESI-TOF-MS of **3c**. Inset: calculated (blue) and experimental (red) ESI-TOF-MS spectra of metallacycle **3c** [M-3OTf+2Na-2H]³⁺ and [M-4OTf+2Na-2H]⁴⁺.

2.8 Synthesis of metallacycle 3d

1d (4.93 mg, 10.0 μ mol) and 2 (16.14 mg, 10.0 μ mol) were dissolved in 0.5 mL of DMSO and heated at 65 °C for 12 h and then cooled to room temperature. To the resulting homogeneous solution, toluene (0.5 mL) and diethyl ether (ca. 7 mL) were added to obtain the desired product 3d (12.4 mg, 67%) as a yellow solid

precipitate. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 9.17 (s, 4H), 9.00 (s, 4H), 8.90 (s, 4H), 8.80 (s, 5H), 8.75 (s, 6H), 8.59 (s, 8H), 8.15 (s, 8H), 8.05 (d, *J* = 8.3 Hz, 4H), 7.67 (d, *J* = 8.3 Hz, 6H), 7.34 (s, 4H), 4.46 (s, 8H), 4.07 (s, 9H), 3.87 (s, 9H), 3.79 (s, 8H), 3.71 (s, 16H), 3.45 (s, 6H), 1.57–1.40 (m, 48H), 1.33–1.19 (m, 72H). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ 12.94 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2689.9 Hz). ESI-TOF-MS [**3d** – 3OTf]³⁺: calcd. for [C₁₆₅H₂₂₃N₁₀O₁₉P₈Pt₄F₃S]³⁺ 1256.77, found 1256.87.

Fig. S37 ¹H NMR spectrum (500 MHz, CD₂Cl₂, 293K) of 3d.

Fig. S38 ESI-TOF-MS of **3d**. Inset: calculated (blue) and experimental (red) ESI-TOF-MS spectra of metallacycle **3d** [M-3OTf]³⁺.

2.9 Synthesis of the linear supramolecular polymer 4a

3a (21.16 mg, 5.0 μ mol) and Zn(OTf)₂ (1.8 mg, 5.0 μ mol) were dissolved in CH₃CN/CH₂Cl₂ (1/1, ν/ν , 0.5 mL).

2.10 Synthesis of the cross-linked supramolecular polymer 6a

3a (21.16 mg, 5.0 μ mol), Zn(OTf)₂ (1.8 mg, 5.0 μ mol) and bis-ammonium salt **5** (3.7 mg, 5.0 μ mol) were dissolved in CH₃CN/CH₂Cl₂ (1/1, ν/ν , 0.5 mL) to form the cross-linked supramolecular polymer immediately. By increasing the concentration, the gel was formed at the concentration of B21C7 unit of 240 mM in CH₃CN/CH₂Cl₂ (1/1, ν/ν).

3. Complexation study between 1a and Zn(OTf)₂

Fig. S39 The plot of the modified Benesi-Hildebrand equation $A_0/(A-A_0) = (a/(b-a))$ ((1/K_s) $[Zn^{2+}]^{-1} + 1$) for the complexation between **1a** and $Zn(OTf)_2$ using UV-Vis titration data in the high initial concentration of **1a**. Here a and b are constants while A and A_0 refer to the absorbance at $\lambda = 326$ nm with concentration of $[Zn^{2+}]$ and 0, respectively.^{S3}

4. Concentration-dependent ¹H NMR of **3a** and Zn(OTf)₂

Fig. S40 Partial ¹H NMR spectra (CD₃CN/CD₂Cl₂ = 1/1, v/v, 298 K, 500 MHz) of (a) **3a** and equal molar Zn(OTf)₂ and **3a** at the concentration of (b) 1 mM (c) 5 mM (d) 10 mM (e) 20 mM (f) 30 mM (g) 40 mM (h) 50 mM (i) 60 mM.

5. Two-dimensional diffusion-ordered NMR spectroscopy (DOSY) and dynamic light scattering (DLS) results

Fig. S41 (a) Concentration dependence of diffusion coefficient D ($CD_3CN/CD_2Cl_2 = 1/1$, v/v, 298 K, 400 MHz) of **4a**; (b) Size distributions of **4a** at different B21C7 concentrations.

6. SEM images of 4

Fig. S42 SEM images of 4a.

7. ¹H NMR spectra of $\mathbf{2}$ and $\mathbf{5}$

Fig. S43 Partial ¹H NMR spectra ($CD_3CN/CD_2Cl_2 = 1/1$, v/v, 298 K, 500 MHz) of (a) 10.00 mM **5**, (b) 10.00 mM **5** and **2**, (c) 10.00 mM **2**.

8. Determination of the association constant between **2** and monofunction model compound **7** by ¹H NMR titration methods.

Ν Μ L Κ J I Н G F Е D С В A 7.0 5.0 2.5 . 2.0 9.0 8.5 8.0 7.5 4.5 4.0 3.5 3.0 1.5 1.0

Fig. S44 Chemical structure of the monofunction model compound 7

Fig. S45 ¹H NMR spectra (400 MHz, CD₃CN/CD₂Cl₂ = 1/1, *v/v*, 295 K) of **2** at a concentration of 2.00 mM upon the addition of **7**: (A) 0.00 mM, (B) 0.498 mM, (C) 0.990 mM, (D) 1.478 mM, (E) 1.961 mM, (F) 2.913 mM, (G) 3.846 mM, (H) 6.542 mM, (I) 9.910 mM, (J) 14.530 mM, (K) 20.635 mM, (L) 26.471 mM, (M) 35.897 mM, (N) 48.980 mM.

Fig. S46 Non-linear fitting curve of the chemical shift changes of H_4 versus the concentration of 2. The association constant K_a was calculated according to the following equation:

$$\Delta \delta = (\Delta \delta_{\max} / [H]_0) (0.5[G] + 0.5 ([H]_0 + 1/K_a) - (0.5([G]^2 + (2[G](1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5}))$$

Where $\Delta\delta$ is the chemical shift change of H₄ on **2** upon titration, $\Delta\delta_{max}$ is the chemical shift change of H₄ when **2** is completely complexed, [H]₀ is the fixed concentration of **2** (0.002 mol/L), [G] is the concentration of added **7**. Based on the above equation, the K_a of **2**·**7** was calculated to be 4.6 (± 1.5) × 10² M⁻¹. 9. The average diameters of 4a and 6a

Fig. S47 Comparison of the average diameters of 4a and 6a under the same B21C7 concentrations.

10. Stimuli-responsiveness of the supramolecular gel

Fig. S48 Change in the UV/Vis absorption spectra of the cross-linked supramolecular polymer (10 μ M) upon stepwise addition of 12 μ M cyclen (a) and further stepwise addition of 12 μ M of Zn(OTf)₂ (b).

11. Optical characterization of ligands 1a-1d and metallacycles 3a-3d

Fig. S49 (a) Absorption and (b) emission spectra of the precursor ligands.

Compound	$\lambda_{ab, max}$ / nm [$\epsilon \times 10^3$, cm ⁻¹ M ⁻¹]	$\lambda_{\rm em,\ max}$ / nm
1a	289 [43.1], 323 [30.3]	437
1b	318 [7.6]	428
1c	284 [21.1]	432
1d	281 [37.4], 318 [8.9]	428
3a	376 [26.1]	448
3b	354 [11.3], 372 [8.4]	430
3c	356 [23.4], 374 [14.5]	472
3d	354 [11.5], 372 [8.9]	436

Table S1 Main optical data of ligands 1a-1d and metallacycles 3a-3d.

12. References

- S1. Zhang, M.; Yin, S.; Zhang, J.; Zhou, Z.; Saha, M. L.; Lu, C.; Stang, P. J. Proc. Natl. Acad. Sci.
- U. S. A. 2017, 114, 3044.
- S2. Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin,
- S.; Sepehrpour, H; Stang, P. J. Am. Chem. Soc. 2018, 140, 7674.
- S3. Benesi, H.A.; Hildebrand, J.H. J. Am. Chem. Soc. 1949, 71, 2703.