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Figure S1, related to Figure 2. BRET Analysis of Binding Interactions Between the Raf
Family Members and Mutant Ras Proteins

(A) BRET saturation curves were performed in 293FT cells to examine the interaction of C-Raf
(left), A-Raf (middle), or B-Raf (right) regulatory domain proteins (Reg) with Q61R mutants of H-
Ras, K-Ras, and N-Ras. The Rafs functioned as the energy donor tagged at the C-terminus with the
Rluc8 enzyme and the Ras proteins served as the energy acceptor tagged at the N-terminus with the
Venus fluorophore. BRETj, values are also listed. (B) The BRET-tagged Ras and Raf proteins
analyzed in (A) were examined in co-immunoprecipitation assays. (C) Venus-Ras!® complexes
were immunoprecipitated from 293FT cell lysates and probed for the presence of endogenous B-
Raf, C-Raf, or A-Raf and Venus-Ras by immunoblot analysis. Venus-Ras@'R proteins were also
examined for GTP-loading in Raf RBD pull-down assays, and lysates were examined for B-Raf, C-
Raf, and A-Raf levels. These findings demonstrate the distinct binding preferences of the Raf and

Ras family members.
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Figure S2, related to Figure 3. Effect of Raf N'-Segment on the Raf/K-Ras?¢® Interaction
Raf proteins were generated in which regions of the B-Raf and C-Raf regulatory domains were
exchanged. Shown are BRET saturation curves examining the interaction of WT- or domain-
exchanged Raff°¢-Rluc proteins with Venus-K-Ras®'®. BRETsj, values are also listed. The
presence of the B-Raf N”-segment reduced the BRET,,,, of the Raf/K-Ras?'® interaction but had no

significant effect on the BRETs5, values.
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Figure S3, related to Figure 4. Analysis of B-Raf/Ras Binding Requirements

(A) WT or HVR-exchanged Venus-Ras@!® proteins were immunoprecipitated from 293FT cell
lysates and examined for the presence of endogenous B-Raf or C-Raf and Venus-Ras. Endogenous
B-Raf selectively interacts with mutant Ras proteins that contain the K-Ras HVR, whereas
endogenous C-Raf interacts with all Ras proteins regardless of the HVR origin. (B) Venus-tagged
K-Ras4 AR or K- Ras4B!R proteins were immunoprecipitated from 293FT cell lysates and
examined for the presence of endogenous B-Raf or C-Raf and Venus-Ras. Endogenous C-Raf, but
not B-Raf, efficiently co-immunoprecipitates with the K-Ras4A splice variant, which lacks the PBR
sequences. (C) Listed are the reported effects of the PBR mutations on the lipid composition of K-
Ras®?Y membrane nanoclusters. (D) GFP-tagged K-Ras®'?V complexes were immunoprecipitated
from cell lysates and examined for the presence of endogenous B-Raf or C-Raf and GFP-K-Ras¢2V.
Binding of endogenous B-Raf was lower to the PBR mutants that have a reduced positive charge.
(E) BRET saturation curves are shown examining the interaction of Raf®¢-Rluc with the indicated

Venus-Ras®!?V proteins. BRETj, values are also listed.
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Figure S4, related to Figure 5. Effect of B-Raf/C-Raf Dimerization on Ras/Raf Binding

(A) BRET (left) and co-immunoprecipitation assays (right) were performed in 293FT cells

examining the interaction of WT, R509H (dimer-defective), or E586K (dimer-enhanced) B-Raft"-

Rluc proteins with Venus-K-Ras®'®. (B) BRET (left) and coimmunoprecipitation assays (right)

were performed examining the ability of WT Raft-Rluc or Raf proteins containing mutations in the

ERK-induced feedback phosphorylation sites (FBM-B-Raff"-Rluc or FBM-C-Raf*-Rluc) to interact

with Venus-tagged H-Ras@'®R or K-Ras®!®R, (C) BRET (left) and co-immunoprecipitation assays

(right) were performed examining the interaction of B-Raff*-Rluc or C-Raff*-Rluc with Venus-

tagged H-Ras!® K-RasQR H-RasQ!RPI54Q or K-RasQéIRDPI4Q - Eyents that alter B-Raf/C-Raf dimer

formation, but not Ras dimerization, impact the Ras/Raf interaction.
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Figure S5, related to Figure 5. Effect of Raf Inhibitor Treatment on Ras/Raf Binding
Interactions in Live Cells

(A) 293FT cells expressing full-length B-Raff*-Rluc and Venus-K-Ras@!® were treated for 1 hr
with DMSO or the indicated ATP-competitive Raf inhibitors at 1 uM concentration before BRET
measurements were obtained. BRET saturation curves and BRETSs, values are shown depicting the
effect of Raf inhibitor treatment on the B-Raf/K-Ras interaction. (B) 293FT cells expressing the B-
Raf regulatory domain B-RafR¢-Rluc protein and Venus-H-Ras?®'® were treated as in (A) prior to
obtaining the BRET measurements. The BRET results indicate that the effect of the Raf inhibitors
on the B-Raf/H-Ras®'® interaction requires binding of the compounds to the B-Raf catalytic

domain.
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Figure S6, related to Figure 6. Elucidating C-Raf Functions in Ras-dependent Signaling

(A) Co-immunoprecipitation assays were performed comparing the ability of WT, G466V, or
V600E-B-Rafft-Rluc proteins to interact with Venus-H-Ras®'®. Endogenous C-Raf was also
immunoprecipitated and examined for dimerization with the B-Raff-Rluc mutants. Lysates were
monitored for pMEK and B-Raf-Rluc levels. (B) Co-immunoprecipitation assays were performed
examining the interaction of WT, G466V or G466V/R>L B-Raft-Rluc with Venus-H-Ras®'R. Co-
immunoprecipitation of endogenous C-Raf with Venus-H-Ras®'®is also shown. (C) Human cancer
cell lines harboring K-Ras mutations, H358 and SW480, were infected with lentiviruses expressing
Cas9 and either a non-targeting sgRNA (NT) or sgRNAs targeting the A-Raf, B-Raf, C-Raf, or K-
Ras gene. Cell lysates were examined for A-Raf, B-Raf, C-Raf, and K-Ras expression (right).

Cells were assessed for 2D cell proliferation (left) and for 3D spheroid growth (middle). Data are



represented as mean +/-SD. ***p <0.001. (D) Lysates of 293FT cells expressing Venus-tagged H-
Ras®?V, K-Ras®'?V, or N-Ras®'?¥ were each incubated with H-Ras, K-Ras, or N-Ras antibodies,
following which the immune complexes were probed with pan-Ras antibodies in immunoblot
analysis. These results indicate that the Ras antibodies are functional in immunoprecipitation
assays and that the H-Ras and K-Ras antibodies specifically immunoprecipitate H-Ras and K-Ras
respectively, whereas the N-Ras antibody exhibits some cross-reactivity with H-Ras and K-Ras. (E)
Endogenous H-Ras was immunoprecipitated from lysates of control (NT) or H-Ras-depleted (H-
Ras-T) T24 cells using the H-Ras antibody, and endogenous K-Ras was immunoprecipitated from
lysates of control (NT) or K-Ras-depleted (K-Ras-T) H358 cells using the K-Ras antibody. The
immune complexes were then probed with pan-Ras antibodies to further demonstrate the specificity

of the H-Ras and K-Ras antibodies.



