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Supplementary Note 1: Derivations

1.1 Derivation of Friendship Paradox Conditions

Theorem 1. Let G = (V,E) be a directed network. Then,
1. Random friend Y has more followers than a random node X, on average;

i.e.,

E{do(Y )} − d̄ =
Var{do(X)}

d̄
≥ 0. (1)

2. Random follower Z has more friends than a random node X, on average;
i.e.,

E{di(Z)} − d̄ =
Var{di(X)}

d̄
≥ 0. (2)

Proof. Part 1:

E{do(Y )} − E{do(X)} =
∑

v∈V do(v)P(Y = v)−∑v∈V
do(v)
N

=
∑
v∈V

do(v)
do(v)∑

v′∈V do(v′)
−
∑

v∈V do(v)

N
(3)

=

∑
v∈V do(v)2

N −
(∑

v∈V do(v)

N

)2

∑
v′∈V do(v′)

N

(4)

=
E{do(X)2} − E{do(X)}2

E{do(X)} =
Var{do(X)}

d̄
≥ 0 (5)

Proof of part 2 follows using similar arguments.

Theorem 2. Let G = (V,E) be a directed network where in-degree di(X) and
out-degree do(X) of a random node X are positively correlated. Then,

1. Random friend Y has more friends than a random node X does, on aver-
age; i.e.,

E{di(Y )} − d̄ =
Cov{di(X), do(X)}

d̄
≥ 0. (6)

2. Random follower Z has more followers than a random node X does, on
average; i.e.,

E{do(Z)} − d̄ =
Cov{di(X), do(X)}

d̄
≥ 0. (7)

Proof. Part 1:
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E{di(Y )} − E{di(X)} =
∑

v∈V di(v)P(Y = v)−∑v∈V
di(v)
N

=
∑
v∈V

di(v)
do(v)∑

v′∈V do(v′)
−
∑

v∈V di(v)

N
(8)

=

∑
v∈V di(v)do(v)

N −
(∑

v∈V di(v)

N

)(∑
v′∈V do(v′)

N

)
∑

v′∈V do(v′)

N

(9)

=
E(di(X)do(X))− E{di(X)}E{do(X)}

E{do(X)} =
Cov{di(X), do(X)}

d̄
(10)

Hence, positive correlation (Cov{di(X), do(X)} > 0) between in-degree di(X)
and out-degree do(X) of a random individual X implies that E{di(Y )} >
E{di(X)}.

Proof of part 2 follows using similar arguments.

1.2 Derivation of Blocal

Let Y ′ denote a uniformly sampled friend of a random node X. Further, let
Auv denote the element (u, v) of the adjacency matrix of network: Auv = 1 if
there is a link pointing from u to v and Auv = 0 otherwise. Then, by definition
of the function qf in Section 2 of the main text,

qf (X) =

∑
U∈F(X) f(U)

di(X)
= E{f(Y ′)|X} (11)

Therefore,

E{qf (X)} =
1

N

∑
v∈V

{∑
u∈F(v) f(u)

di(v)

}
=

1

N

∑
v∈V

{∑
u∈v

f(u)

di(v)
Auv

}
(12)

=

∑
u,v∈V Auv

N

∑
v∈V

{∑
u∈V

f(u)

di(v)

Auv∑
u,v∈V Auv

}
(13)

= d̄× E
{
f(U)

di(V )

∣∣∣∣(U, V ) ∼ Uniform(E)

}
(14)

which yields the expression for the perception E{f(X)} of a random individual.
Next, assume, f(U) and A(V ) (where, (U, V ) is a random link) are positively

correlated (Cov{f(U),A(V )} ≥ 0). Then,

E{qf (X)} = d̄E
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}

(15)

≥ d̄E{f(U)|(U, V ) ∼ Uniform(E)} (16)

× E{A(V )|(U, V ) ∼ Uniform(E)}
= E{f(Y )} (17)
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Therefore, Cov{f(U),A(V )} ≥ 0 (condition (13) in the main text) is a
necessary and a sufficient condition for E{qf (X)} ≥ E{f(Y )}. Also, from
Equation (8), Cov{f(X), do(X)} ≥ 0 is a necessary and sufficient condition for
E{f(Y )} ≥ E{f(X)}. Hence, conditions specified in Equation (12) and Eq. (13)
collectively ensure Blocal ≥ 0.

Cases where Bglobal and Blocal disagree (difference of the signs): Note
that,

Blocal > 0 ⇐⇒ E{qf (X)} > E{f(X)}
⇐⇒ d̄E

{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
> E{f(X)}

⇐⇒ E
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
>

1

d̄
E{f(X)}

⇐⇒ E
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
> E{A(V )}E{f(X)}

(by noting that E{A(V )} =
1

d̄
)

⇐⇒ Cov
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
> −E{A(V )}

(
E{f(Y )} − E{f(X)}

)
(by subtracting E{f(U)E{A(V )} from both sides)

⇐⇒ Cov
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
> −1

d̄
Bglobal.

Hence, when Bglobal < 0, Blocal > 0 if and only if Cov
{
f(U)A(V )

∣∣∣(U, V ) ∼
Uniform(E)

}
> − 1

d̄
Bglobal =

|Bglobal|
d̄

. Similarly, when Bglobal > 0, Blocal < 0

if and only if Cov
{
f(U)A(V )

∣∣∣(U, V ) ∼ Uniform(E)
}
< − 1

d̄
|Bglobal| (where the

absolute value is not really necessary but introduced only to compare the two
cases easily). This proves the two cases considered in Sec. 2.2.3 of the main
text.
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Supplementary Note 2: Empirical Results

2.1 Individual-level Perception Bias
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Supplementary Figure 1: Individual-level perception bias qfh(v)− E{f(X)} for
(a) all hashtags h and all nodes v ∈ V , and (b) for two hashtags with similar
global prevalence, but with positive (#nyc) and negative (#rt) Blocal. This
illustrates that most hashtags are positively biased for individuals, with bias
levels that do not depend on global prevalence.

Using Equation (9) we can compute individual-level perception bias for hashtag h
as difference between perception of the individual about hashtag h and its global
prevalence. fh(v) shows whether user v used hashtag h or not. The perception
of node v about hashtag h can be shown as qfh(v). Then the individual-level
perception bias for hashtag h is:

Bh(v) = qfh(v)− E{fh(X)},
where E{fh(X)} is the global prevalence of hashtag h. Supplementary Figure 1a
shows the empirical distribution of Bh(v) for all users and hashtags. Most of
the mass of the histogram is for Bh(v) > 0, suggesting that most of the people
in our data overestimate the popularity of these hashtags.

Supplementary Figure 1b compares individual-level perception bias for two
hashtags that have similar global prevalence: #nyc (E{f(X)} = 0.021) and #rt
(E{f(X)} = 0.019). Of the two hashtags, #nyc is perceived as more popu-
lar (with Blocal#nyc

= 0.022), but #rt appears less popular (with Blocal#rt
=

−0.011) than it is globally.

2.2 Local and Global Bias

Global and local perception bias may either overestimate or underestimate the
global prevalence of an attribute E{f(X)}, depending on the values of the co-
variance between a node’s attribute value and its out-degree and the attribute
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1
Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} ≥ 0

Cov{f(X), do(X)} ≥ 0
0 ≤ Bglobal ≤ Blocal 474

2
Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} ≤ 0

Cov{f(X), do(X)} ≤ 0
Blocal ≤ Bglobal ≤ 0 187

3
Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)},
Cov{f(X), do(X)} have opposite signs

a) Bglobal ≤ 0 ≤ Blocal

b) Blocal ≤ 0 ≤ Bglobal

Other

19
75
398

Supplementary Figure 2: Value of Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} and
Cov{f(X), do(X)} for all hashtags. Both variables are normalized by dividing
to maximum value of the variable. The color represents the three cases. The
table shows the number of hashtags that fall into each case.
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value and attention along a random friend–follower link. We enumerate the
cases below (proofs on Section 1.2).

Case 1 : Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} ≥ 0 and Cov{f(X), do(X)} ≥
0.
In this case, Bglobal and Blocal both overestimate E{f(X)}, and local bias
is larger than global bias, i.e Blocal ≥ Bglobal ≥ 0.

Case 2 : Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} ≤ 0 and Cov{f(X), do(X)} ≤
0.
In this case, Bglobal and Blocal both underestimate E{f(X)}, and local
bias is smaller than global bias, i.e Blocal ≤ Bglobal ≤ 0.

Case 3 : Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} and Cov{f(X), do(X)} have op-
posite signs.
In this case the signs of the Bglobal and Blocal can be different, with one
overestimating and the underestimating the global prevalence of the at-
tribute. These extreme cases are caused by the large covariance between
the attribute and attention along a random friend–follower link. We make
this case more precise with the following results:

(a) If Bglobal < 0, then Blocal > 0 if and only if

Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} > |Bglobal|
d̄

(b) If Bglobal > 0, then Blocal < 0 if and only if

Cov{f(U),A(V )|(U, V ) ∼ Uniform(E)} < −|Bglobal|
d̄

.

We separate the hashtags in our Twitter data sample into the above three
cases (Supplementary Figure 2). The majority of hashtags fall into cases 1 and
2, suggesting that local perception bias is larger in magnitude than the global
perception bias.

Case 1: The hashtags (shown in green in Supplementary Figure 2) are used by pop-
ular users who are followed by high attention followers. These hashtags
include popular memes and political events, among others. Some exam-
ples of these hashtags are #ferguson, #tbt, #icebucketchallenge, #mike-
brown, #emmys, #tech, #nyc, #ebola, #robinwilliams, #sxsw, #alsice-
bucketchallenge, #applelive, #netneutrality, #worldcup, #startups, #michael-
brown, #earthquake, #apple, #sf, #iraq. Interestingly, all hashtags listed
as top 20 in Figure 3 belong to this case except #social media and #ff.

Case 2: Some of the hashtags falling into this case (shown in red in Supplemen-
tary Figure 2) include #rt, #tcot, #follow, #retweet, #oscars, #team-
followback, #leadfromwithin, #mtvhottest, #teaparty, #shoutout, #pjnet,
#cdnpoli, #gazaunderattack, #uniteblue, #asmsg, #tlot, #freepalestine,
#ccot, #tfb, #np. These hashtags are used by unpopular users; examples
of these hashtags are the last-10 hashtags of Figure 3 except #quote.
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Case 3: The hashtags falling into the left quadrant of Supplementary Figure 2
(in yellow) include #sotu, #occupy, #marriageequality, #sandy, #haiyan,
#esp, #openingday, #doma, #mex, #lightsout, #onthisday, #ufc, #ww1,
#wimbledon, #oscar, #joinin, #9, #ukedchat, #uru.

The hashtags falling into the right quadrant include #quote, #quotes,
#win, #news, #kindle, #author, #management, #p2, #romance, #mktg,
#iartg, #leaders, #ww, #b, #so, #mystery, #children, #aine, #autism,
#lp.
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Supplementary Figure 3: The ranking of popular Twitter hashtags based on
Global bias. Top-20 and bottom-10 are included in the ranking. The bars
compare Global bias (Bglobal) and Local Bias (Blocal).
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2.3 Global Bias Ranking

Supplementary Figure 3 shows the ranking of popular Twitter hashtags based
on global bias (Bglobal). Top-20 and bottom-10 are included in the ranking.
There are 94 hashtags among 1153 with opposite sign of local bias and global
bias, although both bias values for these hashtags are close to zero. Among the
remaining hashtags, 661 (62%) have larger local bias than global bias, and 398
(38%) have larger global bias than local bias.

Supplementary Note 3: Polling Algorithm

3.1 Follower Perception Polling (FPP) Algorithm

The proposed polling algorithm samples random followers (step 1 of Algo-
rithm 1) and asks about their perceptions (step 2 of Algorithm 1):
“What do you think is the fraction of individuals with attribute 1?”
We call the proposed algorithm Follower Perception Polling (FPP) algorithm.

Algorithm 1: Follower Perception Polling (FPP) Algorithm

Input: Graph G = (V,E), perceptions qf : V → R+, sampling budget
b.

Output: Estimate f̂FPP of E{f(X)} =
∑

v∈V f(v)

N .

1. Sample a set S ⊂ V of b followers independently from the distribution

pv =
di(v)∑

v′∈V di(v
′)
, ∀v ∈ V.

2. Compute the estimate

f̂FPP =
1

b

∑
v∈S

qf (v). (18)

3.2 Bias of the Polling Estimate

Theorem 3. The bias of the estimate f̂FPP computed in Algorithm 1 is equal
to the global perception bias Bglobal i.e.

Bias(f̂FPP) = E{f̂FPP} − E{f(X)} (19)

= Bglobal (20)

Proof. Let ev denote the n×1 dimensional unit vector with 1 at the vth element
and zeros elsewhere. Then,

qf (v) = eTvD
−1
i AT f (21)
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and let M =
∑

v∈V di(v). With Z defined in Equation (3) of the main text,

E{f̂FPP} = E{qf (Z)} =
∑
v∈V

di(v)

M
qf (v) (22)

=
∑
v∈V

di(v)

M

(
eTvD

−1
i AT f

)
=

1

M
1TDiD

−1
i AT f (23)

=
1

M
1TAT f (24)

=
∑
v∈V

f(v)
do(v)

M
= E{f(Y )} (25)

Therefore,

Bias{f̂FPP} = E{f̂FPP} − E{f(X)} (26)

= E{f(Y )} − E{f(X)} = Bglobal (27)

3.3 Variance of the Polling Estimate

Theorem 4. Consider the estimate f̂FPP generated by Algorithm 1 for a graph
G = (V,E) with labels f : V → {0, 1}. If the degree-discounted bibliographic
coupling matrix Bd is connected, non-bipartite, then

Var(̂fFPP) =
fTD

1/2
o

bM

(
D−1/2

o AD−1
i ATD−1/2

o − D
1/2
o 11TD

1/2
o

M

)
D1/2

o f (28)

≤ 1

bM
λ2||D1/2

o f ||2 (29)

where, M =
∑

v∈V di(v), λ2 is the second largest eigenvalue of Bd, f is the
N × 1 dimensional vector of binary attributes.

Proof. Since f̂FPP is the average of the perceptions of b independently sampled
random followers,

Var(̂fFPP) =
1

b
Var(qf (Z)) =

1

b

(
E{q2

f (Z)} − E{qf (Z)}2
)

(30)

where, Z is a random follower. Consider E{q2
f (Z)}.

E{q2
f (Z)} =

∑
v∈V

di(v)

M
q2
f (v) =

∑
v∈V

di(v)

M
fTAD−1

i eve
T
vD
−1
i AT f (31)

(by substituting for qf (v) from Equation (21))

=
1

M

(
fTAD−1

i

(∑
v∈V

di(v)eve
T
v

)
D−1

i AT f

)
(32)

=
1

M
fTAD−1

i AT f (33)
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Hence,

Var(qf (Z)) = E{q2
f (Z)} − E{qf (Z)}2 (34)

=
1

M
fTAD−1

i AT f − 1

M2
fTA11TAT f (35)

(by substituting from Equations (24) and (33))

=
1

M
fT
(
AD−1

i AT − 1

M
A11TAT

)
f (36)

=
fTD

1/2
o

M

(
D−1/2

o AD−1
i ATD−1/2

o − D
1/2
o 11TD

1/2
o

M

)
D1/2

o f (37)

≤ ||D
1/2
o f ||2
M

∣∣∣∣∣∣∣∣D−1/2
o AD−1

i ATD−1/2
o − D

1/2
o 11TD

1/2
o

M

∣∣∣∣∣∣∣∣ (38)

where, for a matrix A, ||A|| denotes the spectral norm (largest singular value)
and Equation (38) is obtained by applying the Cauchy-Schwarz inequality.

Note that the degree-discounted bibliographic coupling-matrix,

Bd = D−1/2
o AD−1

i ATD−1/2
o =

(
D−1/2

o AD
−1/2
i

)(
D−1/2

o AD
−1/2
i

)T
is a symmetric, positive semi-definite matrix. Hence, all eigenvalues are non-

negative. Further,
D1/2

o 1√
M

is the eigenvector with all non-negative elements and

corresponds to eigenvalue 1. Hence,

∣∣∣∣D−1/2
o AD−1

i ATD−1/2
o − D

1/2
o 11TD

1/2
o

M

∣∣∣∣ = λ2

where, λ2 is the second largest eigenvalue of Bd. Then, the result follows from
(Equation 30).

3.4 Heuristic Follower Perception Polling

It may not always be feasible to sample followers at random, specifically, by
sampling nodes proportional to their in-degree. Our Follower Perception Polling
(FPP) algorithm samples nodes based on their in-degree. For computing in-
degree we need to access whole network; however, in many cases the whole
network may not be available. We can approximate the sampling used by FPP
algorithm using the following heuristic. Instead of sampling b nodes weighted
based on their in-degree (which needs information about whole network), the
proposed Approximate-FPP algorithm samples b nodes at random, and as a
second step, it samples b nodes from followers of these nodes. This procedure
does not need whole network structure, and it could be shown that it is an
approximation of the FPP algorithm. Figure 4d shows the performance of
Approximate-FPP in comparison to the other polling algorithms.
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Supplementary Figure 4: Comparison of polling algorithms for estimating the
global prevalence of Twitter hashtags. Variation of (a) squared bias ( Bias{T}2
), (b) variance ( Var{T} ) and (c) mean squared error ( Bias{T}2 + Var{T} ) of
the polling estimate (IP, NPP and Approximated-FPP as T - polling algorithm
-) as a function of a hashtag’s global prevalence E{f(X)}. Each point represents
a different hashtag and a fixed sampling budget b = 25. (d) Fraction of hashtags
where the proposed FPP algorithm with the sampling heuristic (Approximate-
FPP) outperforms the other polling methods in terms of MSE. The fraction for
NPP approaches 0.5, and for IP approaches 0.8 as sampling budget b increases.
The main difference between Approximate-FPP and FPP is in Figure (d) with
low amount of budget b. In this case, the ratio of hashtags where Approximate-
FPP could perform better than NPP is around 0.8 compare with 0.9 for FPP
algorithm.
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