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Supplementary Notes 25 

Supplementary note 1. Variant allele frequency (VAF): The fraction of sequencing reads 26 

overlapping a genomic coordinate that support the non-reference allele. This fraction can be 27 

further normalized based on the sample’s ploidy and purity. 28 

Supplementary note 2. Variant call format (VCF) file: A text file format that includes sequencing 29 

information such as the position and frequency of every mutation in the sample. 30 

Supplementary note 3. Subclone: Cells that belong to a single lineage during population growth. 31 

Within the subclone, a higher mutational frequency is associated with an earlier time of I.   32 

Supplementary note 4. Linear subclones: Population growth where every subclone has at most 33 

one child subclone (e.g., Subclone A -> Subclone B -> Subclone C). 34 

Supplementary note 5. Fitness mutation: A mutation that increases the growth of the population. 35 

Typically, a fitness mutation might lead to the formation of a subclone. A fitness mutation does 36 

not necessarily induce tumorigenesis. 37 

Supplementary note 6. PCAWG drivers1: In our analysis, we used state-of-the-art driver 38 

detection by the PCAWG consortium. 39 

Supplementary note 7. Generational hitchhiker (g-hitchiker): A hitchhike mutation that occurred 40 

before the fitness mutation. These mutations have increased VAF (higher than their respective 41 

fitness mutation) and represent generational time as their respective branching lineages typically 42 

have low VAF (see Figure 1). 43 

Supplementary note 8. Growth r: Before a fitness mutation, the population grows at a rate r. In 44 

our model, we used the prevalence of generational hitchhikers to estimate growth r. 45 

Supplementary note 9. Scalar effect ki: After the fitness mutation i occurs, the population grows 46 

at rate ki×r. 47 
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Supplementary note 10. Projected scalar effect k*: Scalar effect k is projected by considering a 48 

larger population size when implementing our method directly in equation 49 
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A4 )?	;<$=,14+	×7898–	 @;<$=,14+	×7898
A4

7898
	[1].  50 

In our script the user is allowed to enter their own estimate of population size 𝑁EFE	to 51 

obtain projected k values. 52 

Supplementary note 11. Projected selection coefficient s*: Similar to k*, we use population 53 

genetics theory to project simulated selection coefficient s for larger population sizes.  54 

Supplementary note 12. Frequency Fi: The frequency of mutation i at the time of sequencing. 55 

Supplementary note 13. Frequency function 𝑓# (tg, ti-m, r, k): The function that describes the 56 

frequency Fi-m for m g-hitchhikers occurring before the fitness mutation i. 57 

Supplementary note 14. Generational time tg: A time specific re-optimized constant to calibrate 58 

generational time for m respective g-hitchhikers. This is a very important twist of our method, 59 

allowing to localize the effect timewise without considering past events including copy number 60 

variations or other VAF perturbations.  61 

Supplementary note 15. Growth vector: For each mutation i >m in the tumor sample, we 62 

estimated growth ri-1. 63 

Supplementary note 16. Effect vector: For each mutation i>m in the tumor sample, we estimated 64 

its fitness effect ki.  65 

Supplementary note 17. Peak vector: Local peaks for a vector that correspond to fitness 66 

mutations with highest growth effect ki × ri-1. 67 

Supplementary note 18. Optimizing function: For m g-hitchhikers occurring before mutation i, 68 

we used a nonlinear least square fitting to calculate effect ki and generational time tg.  69 
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Supplementary note 19. Vogelstein cancer genes2: Our Vogelstein list consists of 71 tumor 70 

suppressor genes and 54 oncogenes. 71 

Supplementary note 20. Tumor Suppressor Genes from Vogelstein list: ACVR1B, APC, ARID1A, 72 

ARID1B, ARID2, ASXL1, ATM, ATRX, AXIN1, B2M, BAP1, BCOR, BRCA1, BRCA2, CASP8, 73 

CDC73, CDH1, CDKN2A, CEBPA, CIC, CREBBP, CYLD, DAXX, EP300, FAM123B, FBXW7, 74 

FUBP1, GATA1, GATA3, HNF1A, KDM5C, KDM6A, MAP3K1, MEN1, MLH1, MLL2, MLL3, 75 

MSH2, MSH6, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NPM1, PAX5, PBRM1, PHF6, 76 

PIK3R1, PRDM1, PTCH1, PTEN, RB1, RNF43, RUNX1, SETD2, SMAD2, SMAD4, SMARCA4, 77 

SMARCB1, SOCS1, SOX9, STAG2, STK11, TET2, TNFAIP3, TRAF7, TP53, TSC1, VHL, WT1 78 

Supplementary note 21. Oncogenes from Vogelstein list: ABL1, AKT1, ALK, AR, BCL2, BRAF, 79 

CARD11, CBL, CRLF2, CSF1R, CTNNB1, DNMT1, DNMT3A, EGFR, RBB2, EZH2, FGFR2, 80 

FGFR3, FLT3, FOXL2, GATA2, GNA11, GNAQ, GNAS, H3F3A, HIST1H3B, HRAS, IDH1, 81 

IDH2, JAK1, JAK2, JAK3, KIT, KLF4, KRAS, MAP2K1, MED12, MET, MPL, MYD88, NFE2L2, 82 

NRAS, PDGFRA, PIK3CA, PPP2R1A, PTPN11, RET, SETBP1, SF3B1, SMO, SPOP, SRSF2, 83 

TSHR, U2AF1 84 

Supplementary note 22. Random gene list, comparable to Vogelstein gene list. To create a 85 

‘random gene list’ comparable to the Vogelstein gene list, we randomly selected non-Vogelstein 86 

genes that had a similar number of mutations in the PCAWG database. SLCO1B1, PDZD4, 87 

OPA1, ABCC9, FRAS1, PSME4, MYCBP2, DCAF4L2, GRID2, OR2G6, NALCN, MYLK, 88 

ITGA10, ASAP3, ZNF844, CNTNAP4, WDR90, ADAMTS20, CDH17, TRPM3, FLT1, LY9, 89 

GJA8, MAT1A, SLCO1A2, RBP3, GOLGA7, FANCM, DYSF, GNAO1, ADAMTS8, MXRA5, 90 

APBA1, RNF214, NHSL1, SYT7, MYC, NBEAL2, DDI1, GPR116, CNTN1, PASD1, PHLPP2, 91 

FAM47B, MAGEF1, PLOD1, KDM4E, RXRB, KIAA1211L, HSD3B7, C12orf54, ERBB4, 92 
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ADIPOQ, GFAP, SLC5A7, BAIAP2L1, KIF7, ATHL1, BEST3, PLXNC1, MROH7, KCNH8, 93 

SYCP2, CYFIP2, ARHGEF16, FLG, ZFX, ITGA4, CXorf22, BTK, PREX1, PKN2, FILIP1L, 94 

CPXCR1, OSBPL6, KCNH1, COL21A1, ABCB5, NACA, PLCL1, ZNF804A, PLCB1, HMSD, 95 

ARHGEF4, DSG3, PCDHB4, PCDHA4, ARHGDIB, ANK3, ADAMTS10, THBS2, WNK2, EML6, 96 

PIM1, PCSK5, MUC22, MGA, LRRIQ1, FN1, HRNR, MYH13, LPHN2, TNC, PTPRZ1, 97 

PKD1L1, ASPM, KCNQ3, CENPF, KCNT2, VPS13C, VNN3, NWD1, AKAP9, KIAA1549, 98 

C10orf71, MUC16, SGK1, GRM3, HSPG2, ZFHX3, FREM3, CDH10S 99 

Supplementary note 23. On tumor linearity: To minimize subclonal entanglements that could 100 

affect our calculations and to facilitate our sliding window analysis, we selected 993 whole 101 

genome sequenced tumors from PCAWG that were linear, in that no subclone had two children 102 

subclones based on PhyloSub3. PhyloSub provides the clonal branching history, allowing us to 103 

determine of clonal evolution. However, our method could also be applied to early (parent) 104 

subclones. 105 

 106 

Supplementary Methods 107 

Simulation analysis using the Gillespie algorithm. We used a stepwise time-branching process to 108 

model the growth of a single transformed cell into a tumor with a dominant subclone.  The 109 

workhorse of our simulations is the Gillespie algorithm4, which has frequently been used to 110 

simulate stochastically dividing cells.  In the simulations of our main analyses, there are two 111 

kinds of cells: clonal cells and driver subclone cells, where driver subclone cells carry an 112 

additional driver not present in the original tumor cell of a simulation. Each run of a simulation 113 

proceeds as a series of events until the stop condition is met. Each event has an associated event 114 

type, parental cell, and duration, and each of these three attributes of the event are drawn 115 
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randomly. In the simulations of our main analyses, there are 5 possible event types: 1) one clonal 116 

cell divides into two clonal cells; 2) one clonal cell divides into a clonal cell and a subclonal cell; 117 

3) one subclonal cell divides into two subclonal cells; 4) a clonal cell dies; and 5) a subclonal cell 118 

dies. To determine which event type is associated with a given event, one of the event types is 119 

sampled at random, according to weights that reflect the state of the tumor.  120 

The weight for event type 1 (one clonal cell becoming two clonal cells) is the sum of the birth 121 

rates of all clonal cells, which is in turn typically 1; hence, the weight for event type 1 is 122 

typically equal to the number of clonal cells in the tumor at a given time. Similarly, the weight 123 

for event type 3 (one subclonal cell becoming two subclonal cells) is the sum of the birth rates of 124 

all subclonal cells, which is in turn typically k; hence, the weight for event type 3 is typically k 125 

times the number of subclonal cells in the tumor at a given time. The weight for event type 4 (the 126 

death of a clonal cell) in the main analyses follows a logistic paradigm: the total number of cells 127 

in the tumor, divided by the tumor’s carrying capacity, (which gives the death rate of a single 128 

cell) and then multiplied by the number of clonal cells in the tumor (which gives the total death 129 

rate across all clonal cells). The weight for event type 5 (the death of a subclonal cell) is identical 130 

except that the number of subclonal cells is used in place of the number of clonal cells. Event 131 

type 2 (one clonal cell becomes one clonal cell and one subclonal cell) is special and occurs only 132 

once per simulation when some threshold minimum number of mutations per cell has been 133 

achieved. This ensures good mutation accumulation. Once this threshold is reached, event type 2 134 

has a 10% chance of occurring per turn. Event type 2 has also a weight of 0 once the subclonal 135 

driver has appeared. If the last surviving cell of the subclone would be killed by a sampled event 136 

type, the event type is re-rolled. Event types 1, 2, and 3 involve the splitting of a cell into two 137 
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cells. These two cells inherit all the mutations of the parental cell and, in the main analysis, 138 

acquire one new mutation as well. 139 

Each event type is associated with one parental cell type, with some redundancy. Event types 1, 140 

2, and 4 involve a clonal parental cell type. Event types 3 and 5 involve a subclonal parental cell 141 

type. The parent cell for the event is randomly drawn from all cells that match the involved 142 

parental cell type, with uniform weights assigned to the various instances of that cell type. The 143 

duration of the event (or rather, the time elapse between the preceding event and the current 144 

event) is sampled from the exponential decay function with a mean equal to the reciprocal of the 145 

sum of the weights of all event types, in accordance with the Gillespie algorithm. Effectively, 146 

this method samples time frequently when the tumor is large and subject to high rates of birth 147 

and death, and samples time infrequently when the tumor is small or slow. The simulation ends 148 

after the driver subclone reaches a critical prevalence. 149 

Neutral and non-neutral simulations based on Williams et al. 2016, 20185,6. To benchmark our 150 

model on an independent simulation dataset, we applied our method on a) 140 neutral 151 

simulations of tumor progression and b) 360 non-neutral simulations for various growth 152 

scenarios, generated from the validated simulation software for neutral tumors from Williams et 153 

al. 2016 and for non-neutral tumors from Williams et al. 2018. These scripts have the advantage 154 

of being existing, validated tools, but the limitation of being constrained by the models used by 155 

their authors. In both the neutral and non-neutral tumors, the tumor starts as a single transformed 156 

cell, which as with its descendants, divides stochastically to form a growing tumor. Each cell 157 

division was set to produce an average of 10 mutations per haploid genome, and read depth of 158 

simulated sequencing was 1000x. For the non-neutral tumors, the probability of division a cell in 159 

the fitter subclone is modified by a selection coefficient drawn from a complex distribution 160 
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determined by the package. Subclones were grown to either low, medium, or high prevalence 161 

corresponding to prevalence ranges 0.1 to 0.2, 0.2 to 0.3, and 0.3 to 0.4 VAFs, respectively. For 162 

non-neutral growth we used CancerSeqSim, while for neutral growth we used ‘neutral-tumor-163 

evolution’ packages. For neutral and non-neutral growth, we used mutations with min true VAF 164 

0.01 and 0.05 respectively. In these analyses, simulated drivers correspond to a pre-chosen 1+s 165 

selection coefficient, while scalar k represents our method’s predictions. We also used population 166 

projections to increased cell-population sizes up to 1 billion cells. Coefficients s* and scalars k* 167 

represent projected values to higher populations sizes. For calculating s* we used population 168 

genetic models (see below), while for k* we modified the population size in our method’s code. 169 

However, when running our code, the user can provide their own population size estimate, either 170 

using the number of mutations as proxy, or by an intelligent guess. Varying population sizes did 171 

not burden our method’s detectability, but do provide a decreased s* and k* as expected. Our 172 

default analysis included a population size of 10,000 cells, medium VAFs, a range of selection 173 

coefficients between 0 < s < 34, a sequencing coverage of 1000x and an optimal hitchhiker 174 

sliding window size of 150 mutations. The hitchhiker window size was optimized using our 175 

neutral simulations and a range of window sizes until their median effect peaks has a median of 176 

1, for the corresponding population size and sequencing coverage. A sliding window size of 100 177 

hitchhiker mutations provided higher predicted scalar effects k for both neutral and non-neutral 178 

simulations, without burdening our method’s ability to detect drivers.   179 

 180 

Supplementary Figures 181 
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 184 
Supplementary figure 1. Predicting driver position and scalar effect k using simulations. To test our 185 

model, we used various types of simulations with sampling noise including exponential stochastic growth, 186 

exponential growth with biological restrictions in replication timing and birth and death (BnD) Gillespie 187 

stochastic model. For every simulation, we introduced a driver mutation with a true/known fitness effect. 188 

Further, we “sequenced” the population assigning each mutation with a population frequency. Then, 189 

based on mutational frequencies we estimated the predicted driver’s position and effect (across the 190 

ordered mutations). By ‘distance from true driver’ we denote the number of mutations between the true 191 

and the predicted driver position. In a) we show the predicted growth and effect peak (simulated effect 192 

k=3) for one simulation, where mutations are ordered based on their frequency and the predicted peak 193 

corresponds to the exact position of the true driver. In b) We show the median predicted value across a 194 

range of k effect sizes using three different growth models. c) To test if we can significantly predict the 195 

driver’s position/timing, we measured the median and d) the absolute median distance (as in number of 196 

mutations) between predicted and true driver. We were able to successfully approximate the driver’s 197 

position (in black) compared to random (in grey) for various effect sizes. In e) Using Julie software from 198 

Williams et al 2016, we generated 140 neutral simulations of tumor progression for a population of 10000 199 
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cells. Neutral peaks using an optimal window size of m=150 hitchhikers had a median scalar effect k of 200 

1.03, 2×σ=0.18 (dotted lines) and median standard error equal to 0.01 (capped bars). In f) we show the 201 

overlap between neutral and non-neutral simulations. Scalar effect predictions for neutral (red dots) and 202 

non-neutral (green dots) simulations showed a small overlap. Neutral effect peaks have a median 𝑘H  equal 203 

to 1.03. In g) we show that stronger drivers result in accurate detection of driver’s position (within effect 204 

range). By implementing the Williams et al 2018 algorithm for stochastic tumor progression we simulated 205 

360 tumor progressions with a populations size of 10000 cells. We estimated the absolute median 206 

distance (and 95% deviation) between the simulated and predicted driver using bins of various scalar k 207 

effect sizes. Dotted lines represent a 2×sigma deviation (95%). When our method predicted a higher than 208 

1.29 scalar k for the specific population size, driver detection became highly accurate. For random 209 

mutations selected from the same samples the absolute median distance is 444.5, with a standard error of 210 

the median ±24.5. In h) after ranking simulations based on the predicted scalar effect k for every 211 

simulation (from smallest to highest effect) we used a sliding window of size 20 to estimate the absolute 212 

median distance (and 95% deviation) between the simulated and predicted driver per bin of 20. Dotted 213 

lines represent a 2×sigma deviation (95%). When our predicted scalar effect k was higher than 1.29 our 214 

driver detection was highly accurate. Blue line represents our random absolute median distance (444.5), 215 

while black lines represent the standard error of the median for these expectation (±24.5). In i) Each dot 216 

represents a single simulation. We plot the absolute distance between simulated and predicted driver in 217 

association with the predicted effect k*. A large effect denotes the presence of a driver with great 218 

accuracy (small |D| ).   In j) we show the predicted driver effect across various population projections. By 219 

implementing the Williams et al 2018 algorithm for stochastic tumor progression we simulated 360 tumor 220 

progressions with a populations size of 10000 cells. By directly modifying the total population size in 221 

equation [1] in our algorithm, we then predicted the drivers’ median effect by projecting onto larger 222 

population sizes. Capped error bars represent the standard error of the median, while dotted lines 223 

represent a 2×σ deviation (95%). Adjusting our model for larger population sizes decreased the scalar 224 
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effect prediction. In k) similarly to (j) we also predicted the driver position in larger population sizes. 225 

Green line represents the absolute median distance (as in number of ranked mutations) between predicted 226 

and simulated drivers. Blue line represents the absolute median distance between each simulation’s 227 

random prediction and the simulated driver. Capped error bars represent the median standard error, while 228 

dotted lines represent a 2×σ deviation (95%). Adjusting our model for larger population sizes did not 229 

burden our method. In contrast, our result showed a slight improvement in driver detections. Finally, in l) 230 

we predicted the driver position for simulated drivers with high, medium or low VAF. Green line 231 

represents the absolute median distance between predicted and simulated drivers. Blue line represents the 232 

absolute median distance between each simulation’s random prediction and the simulated driver. 233 

Simulated drivers with smaller allele frequencies showed a lower potential in predicting the driver’s effect 234 

(lower correlation between simulated and predicted effect). Interestingly, they also provided driver 235 

detections with higher accuracy (absolute median distance between simulated and predicted driver equal 236 

to 46 ranked mutations, compared to 60 and 59.5 for higher and medium VAFs). 237 

 238 
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 239 

Supplementary figure 2. Using Kingman’s coalescent theory, for a length of time 𝑇J  with	n	lineages, 240 

we show that the growth 𝑟̂ estimator remains qualitatively unchanged (positive or negative) even for non 241 

g-hitchhikers. By approximation, the mutational density 𝛿X  within windows [1/n			1/(n − 1)), whose 242 

lengths are 𝐿J	is equal to 𝛿X =
]^
_^
∝ 2𝜇𝑛. As mutational density 𝛿X  increases with n, and hence with 243 

time, 𝑟̂ estimator is predicted to take positive values for both constant and varying size populations. 244 

Similarly, for negative growth values, density 𝛿J decreases with time. A small positive bias is observed in 245 
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cases of growth r=0, as the pattern reverses.  Using a population model 𝑁E?d = α𝑁E, we let (A) α > 1 246 

corresponding to a decreasing population (time is indexed in reverse) and (B) α < 1 corresponding to an 247 

increasing population. 248 

 249 

 250 

 251 

Supplementary figure 3. Both MET and CTNNB1 genomic regions appear to be slightly depleted during 252 

periods of positive growth, whereas nonsynonymous mutations show positive associations for specific 253 

cancers. The x-axis represents growth enrichment, while the y-axis shows the level of significance as the 254 

negative logarithm of a two tailed t-test P value (-log(p-value). 255 

  256 
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257 

Supplementary figure 4. Mapping of missense, nonsynonymous, promoter, synonymous and intronic 258 

mutations from 993 tumor samples across the BCL2’s genomic region. Interestingly, synonymous 259 
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mutations placed at an early mutational hotspot was associated with periods of positive growth. Genomic 260 

profile for BCL2 was obtained from ENSEMBL (http://www.ensembl.org). 261 

 262 

  263 

 264 

 Supplementary figure 5. Using 993 tumor samples, we identified candidate genes that were associated 265 

with positive growth from an AML ultra-deep sequenced tumor that showed an overall positive 266 

association with positive growth for enrichment different effect bins. Dark boxes denote significance for 267 

the specific effect range/bin using a two tailed t-test and P<0.00001.  268 
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