
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The paper introduces a novel computational tool, SVclone, for inferring cancer-cell fraction of 

structural variants from DNA sequencing data. Despite the fact that problem being considered is 

very important, most of the existing studies and tools for reconstructing tumour subclonal 

composition are based on the use of SNVs and/or CNAs, with many of them inferring trees of 

tumour evolution. In this work, through the in silico modeling of heterogeneous tumours consisting 

of 2 subclonal populations (derived as a linear combination from two homogenous tumour samples 

of real sequencing data of the same patient), the authors demonstrate the potential use of SVclone 

on real sequencing data, although with moderately accurate results (for example, the average 

mean absolute error in estimating CCF was over 10%) which can, in part, be contributed to the 

sequencing coverage. SVclone is also applied on data from PCAWG project where the goal was 

binary classification of SVs and SNVs as clonal or subclonal. Some interesting, although not verifed 

(which is probably impossible considering the available data), findings were obtained. Discussion 

of the coverage of data in PCAWG cohort is missing, as well as the overall impact of coverage on 

the performance of the tool. I am also sceptical about parameter setting in BIC and their effect of 

tool performance on data of different sequencing characteristics. The last, together with the tool's 

performance in the cases where tumour is composed of >3 clusters and considering different read 

depths, should be more thoroughly analyzed via simulated data. 

Before being able to proceed to more detailed judgement of methodological contribution of the tool 

and testing its software, in addition to the above comments, I would also like that the following are 

addressed (comments are not classified as minor or major): 

1. Sentence "The mutations belonging to each clone in a tumour can be interrogated using bulk 

whole-genome sequencing, with mutation detection subject to sequencing depth, tumour 

cellularity, clonality and mutation copy-number" should be made less explicit as there are other 

factors affecting mutation calling (for example, sequencing quality). 

2. Description in Figure 1B is unclear. What do different colors (red, green, blue, grey) represent? 

The meaning of the last column in this figure ("adjust normal reads" etc.) isn't it obvious. 

3. While presenting the error in inferring clonal frequencies in results section, it would be more 

convenient for the reader to interpret results if mean absolute error (MAE) is presented rather than 

mean squared error difference. 

4. In the sentence "Both SVclone and PyClone had little difficulty in identifying minor subclonal 

clusters in the mixtures due to the lack of overlapping CCFs from clonal or major subclonal 

clusters." the second part of the sentence ("due to the lack ...") is not very clear. Could you please 

clarify. 

5. How does the performance of SVclone compare to Pyclone in terms of number of inferred 

clusters and MAE if it is run in coclustering mode (i.e. using both SVs and SNVs) on in-silico 

mixtures of real tumour data presented in Figure 1D and Figure 1E? 

6. What tumour purity values were supplied to SVclone and (if any) Pyclone while analyzing 

abovementioned in-silico mixtures? 

7. In the model selection part in the supplementary, the authors state "In selecting the best run, 

we also do not consider any runs where there is a single non-clonal cluster". What is the fraction of 

times (on, say, 100 different runs of the tool) where SVclone reports only 1 subclonal cluster in the 



analysis of in-silico mixture? Was this one of the reasons that tool correctly identified number of 

clusters? Note that this is also correlated to the above critics of testing the tool and its 

performance in the presence of more than 2 subclonal clusters since at this point it is unclear 

whether SVclone is under-clustering. 

8. In "with >10 SVs and SNVs" please make it very clear whether "SNV + SV > 10" or "SNV>10 

and SV>10" 

9. In Figures 2E and 2F why there is no clear "border" between the right end of subclonal CCFs 

(Figure 2E) and left end of CCFs of clonal SV events (Figure 2F)? Is this a consequence of applied 

methodology or something else? 

10. Recently, a tool for inferring trees of tumour evolution by the use of SVs was made available 

and accompanying method description presented in the manuscript that can be found at 

https://www.biorxiv.org/content/early/2018/01/30/257014. While I am aware that this is still not 

the peer-reviewed publication, considering the lack of methods for the particular problem, I would 

appreciate if the authors can compare against this method or justify if they are unable or unwilling 

to compare for whatever reason(s). 

Reviewer #2 (Remarks to the Author): 

This paper tackles the problem of inferring cancer cell fraction of structural variations in cancer 

genomes through development of a computational approach. The authors apply their approach to 

the PCAWG dataset - likely the largest collection of bulk whole genome cancer genomes sequenced 

in the world. The authors should be commended for completing an analysis of such a large 

dataset. The main conclusions of the paper are: the method works effectively demonstrated by 

simulated and real data-based validation; and through application of the method to PCAWG, 

identification of sub-clonal copy-neutral rearrangements as associated with inferior survival across 

three cancer types. The main strength of the paper is the application of SV CCF to the PCAWG 

dataset. 

Unfortunately the remainder of the paper lacks depth and suffers from superficial treatment of the 

topic. Notably, the approach underlying the method itself is fundamentally not novel and includes 

repurposing of a previously published statistical model, albeit on SVs (which is the new part). In 

addition, the authors fail to adequately compare their method to previous approaches and the 

benchmarking they do lacks key quantitative metrics. Finally, the association of sub-clonal 

balanced rearrangements with survival is only superficially treated, lacks validation and lacks 

appropriate assessment of possible confounding co-variates. As such, the paper represents neither 

a convincing computational methods paper, nor a convincing biological discovery paper. My 

recommendation to the authors is to rework the paper considerably to either present a convincing 

computational methods paper with rigorous and thorough benchmarking to published methods in 

the field, or to undertake the appropriate scientific diligence to further substantiate the sub-clonal 

balanced rearrangements prognostic association. The latter should include external cohort 

validation, and some insight into mechanism. 

Specific critique: 

Proper benchmarking needs to be undertaken, comparing to other methods in the field. In 

particular THetA2, TITAN, Battenberg (compared to by authors in supplement), ReMixT and 

CloneHD are available methods that represent state of the art of copy number CCF. None of these 

methods tackle the specific problem of balanced rearrangement CCF, however they all quantify 

CCFs of other SVs. How does SVClone compare to these methods on the classes of SVs considered 

by all methods? If equivalency of performance can be shown, then it would be far more convincing 

that SVClone provides a meaningful advance to the field. 



The benchmarks themselves would benefit from both calculating error on CCF as presented but 

also on the clustering of events. This is quite straightforward to do on both simulated and the in 

silico mixtures and must constitute a part of the benchmarking since clustering is a fundamental 

component of the method. Estimating the means of the clustering is not equivalent to ascertaining 

whether events are correctly co-clustered. 

The statement ‘One major advantage of using SVclone is that it can also be used in co-clustering 

mode, where CCF estimates can be given for SVs and SNVs simultaneously’. This is not 

substantiated with any data or analysis. The authors should show quantitatively the benefit of co-

clustering in order to include such a statement, perhaps through exposing the increase in accuracy 

as a function of incremental inclusion of SNVs. 

The authors present a finding related to breast, liver and ovarian cancer. All three tumor types 

have had recently described genome-based subtypes. The authors must account for these 

covariates in their analysis. It is well-established that the poor-outcome basal subtype of breast 

cancer harbours increased genomic instability. The Nik-Zainal paper describing 560 breast cancers 

(doi:10.1038/nature17676) has accompanying hormone receptor status so at the very least, the 

authors should be able to determine if their finding is independent of ER negativity, basal gene 

expression subtype and/or global metrics of genome instability. For ovarian cancers the Wang et al 

study (doi:10.1038/ng.3849) shows an enrichment of fold-back inversions in a poor prognostic 

group. They validate on the ICGC dataset and identify cases with fold-back inversion enrichment. 

Is the finding of sub-clonal balanced rearrangements independent of this? 

What is the relationship of #s of SVs to the tumor content of the sample? How does this impact 

the ascertainment of subclonal CCF? How does tumor content influence the outcome associations 

as a co-variate? 

What is the impact of sequencing depth on sensitivity to low CCF SVs? This and the preceding 

question are essential analyses to be presented to the readers. 

The statement ‘clonality of balanced genome rearrangements reveals functionally important and 

clinically relevant observations.’ is not corroborated with data. The authors fail to identify any 

functional data or experiments to support this statement. 

The statement ‘Importantly, considering only the clonality of SNVs and/or SCNAs would have failed 

to reveal this information.’ is unsupported by any analysis. It is entirely possible that SCNAs at 

similar CCF represent clones that are the latent cause for poor outcome. SCNRs might simply be 

part of the genomic landscape of the clone that has a phenotype. The authors would have to 

demonstrate the the SCNRs are actually independent of SCNAs at similar CCF to substantiate this 

claim. 

The authors somehow seem to miss an opportunity to associate their findings with driver 

mutations in these genomes as a route to indicating mechanism for SCNRs. Are there significant 

associations to the prevalence of driver mutations in the cases harboring SCNRs? 

The method itself relies heavily on the PyClone probabilistic model (doi:10.1038/nmeth.2883), 

repurposed for clustering SVs. This is not properly acknowledged in the main text anywhere and 

represents a major oversight/omission. (I note it is referenced in the supplementary info). Also the 

graphical model (very similar to PyClone) is never referenced in the main, nor supplementary text. 

If the authors are claiming novelty, they should establish how their method differs from the 

PyClone approach. 

The authors rely on a linear scaling of the SV supporting reads dependent on the SV type. The 

authors test on a prostate sample which are known to harbour primarily blunt end joined DNA 

breaks. Have the authors tested the robustness of their scaling method when either 



microhomology or non-templated inserted sequence is present at the breakpoint? What is the 

effect of read length? 

Do the authors observe multi-modality in the posterior distributions of CCF for individual events? 

This is likely going to be the case in many situations where the relative combination of ploidy, 

tumor content and CCF is unidentifiable? How, in turn does this impact the distribution over 

clusterings of the events. The authors should show co-clustering distributions computed over the 

25,000 MCMC samples. 

‘Clusters which have no variants assigned are discarded’. How is it possible in a DP to have an 

empty cluster? 

There is a comparison to Battenberg CCFs presented only in the supplementary information. In 

Supplementary Fig 7, the authors present correlations. The data appear substantially uncorrelated 

across all size categories. This raises a serious concern to this reviewer and suggests quite 

unexpected behaviour from SVClone. Which method is correct? Why? Under what circumstances 

should a user trust SVClone vs Battenberg (or for that matter, TITAN, THetA2, ReMixT once those 

comparisons have been made)? This needs appropriate treatment using established comparison 

methods fitting of a computational methods paper. 

The authors justification of the binomial distribution is convoluted and unconvincing. First the 

authors remove VAF outliers before testing for goodness of fit which surely improves the goodness 

of fit to a distribution with constrained variance such as the Binomial. The authors us a chi squared 

test which is only appropriate for categorical data, confusingly with two Poisson distributions 

instead of a Binomial. The authors should fit the data to both a Binomial and Beta Binomial (the 

distribution used by PyClone) or other distribution and use a likelihood ratio test. 

The modified BIC has no theoretical justification. The main motivation for using a DP is to obviate 

model selection. 

Minor comments 

Overall the paper is quite short and contains a lot of relevant material in the supplementary info 

that would be of interest to the reader if presented in the main text. 

There are supplementary figures not referenced in the main text.



Dear Reviewers, 
 
We would like to thank you for your effort and time. The insightful reviews of our manuscript                 
have vastly improved our method and manuscript.  
 
The feedback provided raised a number of important methodological issues which prompted us             
to rethink our clustering approach. In the revised manuscript we present an improved clustering              
algorithm based on variational Bayesian inference which addresses the shortcomings of our            
original approach. As such, many of the initial issues raised are no longer applicable and are                
indicated as such in our response below. One clear methodological advance is that the new               
model now uses both break ends of a structural variant rather than picking a single end,                
improving novelty and performance. 
 
We have also improved our benchmarking by adding new, more suitable performance criteria,             
testing of 4 and 5 cluster in silico mixtures, and thorough comparisons of SVclone to both                
PyClone and Battenberg.  
 
Please find below our point by point response to the all reviewer comments.  
 
Reviewer 1 
 

1. Discussion of the coverage of data in PCAWG cohort is missing, as well as the overall                
impact of coverage on the performance of the tool. 

 
Information on samples coming from the PCAWG cohort can be found in the main marker               
papers for the consortium (​https://doi.org/10.1101/162784​, ​https://doi.org/10.1101/161562 ​). Our        
related manuscript on tumour heterogeneity (​https://doi.org/10.1101/312041​) presents an        
extensive analysis on the power to detect subclonal clusters/mutations, taking into consideration            
sequencing depth/coverage, tumour purity and copy number for SNVs. As we compute variant             
allele frequency in a similar way to SNVs, these analyses are equally applicable to SVs. We                
have more clearly articulated these challenges and referenced our related manuscript in the             
discussion (page 9). It is important to note that we now use the “number of reads per                 
chromosome copy” (NRPCC) to determine which PCAWG samples have sufficient power to            
detect subclonal mutation clusters and only retain these for further analysis.  
 

2. I am also sceptical about parameter setting in BIC and their effect of tool performance on                
data of different sequencing characteristics. 

 
This is no longer applicable in our new model. We now run our clustering multiple times and                 
select the solution with the best evidence lower bound (ELBO), see Supplementary Material             
Section 1.7 for details. With regard to different sequencing characteristics, please see point 1              
above, where we articulate how we have addressed the impact of general data characteristics,              
such as sequencing depth, tumour purity and copy-number, on the tool. 

 

https://doi.org/10.1101/162784
https://doi.org/10.1101/161562
https://doi.org/10.1101/312041


 
3. The last [points], together with the tool's performance in the cases where tumour is              

composed of >3 clusters and considering different read depths, should be more            
thoroughly analyzed via simulated data. 

 
Pure simulation of structural variants is extremely difficult and requires a large number of              
assumptions which generates potentially artificial data that does not reflect real world sequence             
characteristics. For this reason, we explicitly designed a performance assessment strategy           
which did not require purely simulated data. Instead, we sampled and mixed reads from              
previously sequenced human tumours to generate data with known subclonal structure while            
retaining real world sequence characteristics. These data have a fixed sequencing depth,            
unfortunately preventing us from exploring the effects of sequencing depth on performance.            
Despite this limitation, the simulated subclonal mixes generated from two prostate cancer            
metastases, rather than purely simulated data, better represents the noise present in real             
tumour sequence data and the challenge in identifying separable clusters of subclonal            
mutations. We believe assessing performance in the presence of real noise is preferable to              
assessing performance relative to depth. To offset this limitation we rely on the extensive              
discussion found in our manuscript (​https://doi.org/10.1101/312041​) on the effects of          
sequencing depth, tumour purity and copy number appear.  
 
Furthermore, to better express the difficulty in identifying subclonal clusters of mutations in the              
presence of real noise, we have updated our performance assessment to highlight both the              
“ground” truth, plus the “obtainable” truth (the best possible separation of mutations into             
clusters). Please see Figure 2 and page 5 for a description.  
 
In our updated manuscript we have also created two further ​in silico mixtures of real prostate                
metastases composed of 4 and 5 clusters each (a description of how clusters were generated               
and new performance results can be found in Figure 2, text on pages 13-14).  
 

4. Sentence "The mutations belonging to each clone in a tumour can be interrogated using              
bulk whole-genome sequencing, with mutation detection subject to sequencing depth,          
tumour cellularity, clonality and mutation copy-number" should be made less explicit as            
there are other factors affecting mutation calling (for example, sequencing quality). 

 
We have reworded this sentence to clarify that clonal analysis is subject to a greater number of                 
factors (see page 2). 
 

5. Description in Figure 1B is unclear. What do different colors (red, green, blue, grey)              
represent? The meaning of the last column in this figure ("adjust normal reads" etc.) isn't               
it obvious. 

 

 

https://doi.org/10.1101/312041


Figure 1b has been streamlined. Reads are now displayed all in blue, with red representing               
soft-clipped reads (which has been added to the figure legend). ‘Adjust normal reads’ has been               
changed to ‘downscale normal read counts’ to clarify meaning.  
 

6. While presenting the error in inferring clonal frequencies in results section, it would be              
more convenient for the reader to interpret results if mean absolute error (MAE) is              
presented rather than mean squared error difference. 

 
We thank the reviewer for this point which prompted us to rethink which metrics we use to                 
assess performance. As our method is chiefly designed to determine the clonality of single              
tumour samples, we chose a number of metrics which reflect the ability of SVclone to provide                
useful information for downstream analysis in such a setting (motivated by the analyses             
appearing in our related paper (​https://doi.org/10.1101/312041​), among others). Our new          
benchmark metrics include: cluster number error, mean cluster CCF error, mean variant CCF             
error, mean multiplicity error and subclonal classification sensitivity and specificity (whether a            
variant is subclonal or not). A description of these metrics can be found on pages 6-7 and                 
results are presented in Figures 2 and 3. 
 

7. In the sentence "Both SVclone and PyClone had little difficulty in identifying minor             
subclonal clusters in the mixtures due to the lack of overlapping CCFs from clonal or               
major subclonal clusters." the second part of the sentence ("due to the lack ...") is not                
very clear. Could you please clarify. 

 
The revised paper no longer contains this sentence. 
 

8. How does the performance of SVclone compare to Pyclone in terms of number of              
inferred clusters and MAE if it is run in coclustering mode (i.e. using both SVs and SNVs)                 
on in-silico mixtures of real tumour data presented in Figure 1D and Figure 1E? 

 
As our new model clusters both breakpoint ends of each structural variant, it is no longer                
compatible with co-clustering SNVs. However, the method can be used to cluster SNVs             
independently, then the results can be combined to infer a single clustering result. SNVs and               
SVs can be post-assigned to clusters derived from this joint model. We have reported results               
from this approach in the updated manuscript which shows a slight performance improvement             
when tested on our ​in silico​ mixes (Supplementary Figure 7).  
 

9. What tumour purity values were supplied to SVclone and (if any) Pyclone while             
analyzing abovementioned in-silico mixtures? 

 
Both SVclone and PyClone utilised purity estimates obtained from Battenberg. We have clarified             
this in the methods section, page 14, and in Supplementary Information Section 3. 
 

 

https://doi.org/10.1101/312041


10. In the model selection part in the supplementary, the authors state "In selecting the best               
run, we also do not consider any runs where there is a single non-clonal cluster". What is                 
the fraction of times (on, say, 100 different runs of the tool) where SVclone reports only 1                 
subclonal cluster in the analysis of in-silico mixture? Was this one of the reasons that               
tool correctly identified number of clusters? Note that this is also correlated to the above               
critics of testing the tool and its performance in the presence of more than 2 subclonal                
clusters since at this point it is unclear whether SVclone is under-clustering. 

 
Our revised clustering model no longer discards runs with single non-clonal clusters. Using the              
updated model, we observed no instances of a single non-clonal cluster in the ​in silico ​mixtures.                
To estimate the proportion of times where only a single non-clonal cluster may be called across                
a representative set of samples, we considered the PCAWG results. We have added the              
following to the PCWAG methods section (page 14) to address this point: “We also tested the                
rate at which SVclone called single non-clonal clusters in PCAWG samples. Using a cutoff of <                
0.7 cluster CCF, the SV clustering reported 9 samples with single non-clonal clusters across              
1,220 PCAWG samples with (0.74%) with at least 10 SVs, and the SNV clustering reported 4                
samples across 1637 (0.24%) samples with >10 SNVs. These results indicated that rates of              
under-clustering were low, and were similar across the SV and SNV clustering models.” 
 

11. In "with >10 SVs and SNVs" please make it very clear whether "SNV + SV > 10" or                  
"SNV>10 and SV>10" 

 
We have clarified that this refers to SNV >10 and SV >10 in the revised text, page 7.  
 

12. In Figures 2E and 2F why there is no clear "border" between the right end of subclonal                 
CCFs (Figure 2E) and left end of CCFs of clonal SV events (Figure 2F)? Is this a                 
consequence of applied methodology or something else? 

 
In the original version of the paper our analysis was performed on clusters of SVs rather than                 
individual SVs. In the revised version, we use a structural variant-level CCF cutoff, informed by               
the optimal sensitivity and specificity derived from the ​in silico mixtures. A clear cutoff between               
the clonal and subclonal CCFs can now be observed in e and f of the revised Figure 5. 
 

13. Recently, a tool for inferring trees of tumour evolution by the use of SVs was made                
available and accompanying method description presented in the manuscript that can be            
found at https://www.biorxiv.org/content/early/2018/01/30/257014. While I am aware that        
this is still not the peer-reviewed publication, considering the lack of methods for the              
particular problem, I would appreciate if the authors can compare against this method or              
justify if they are unable or unwilling to compare for whatever reason(s). 

 
We would like to thank the reviewer for drawing our attention to this work. This method, now                 
published in Bioinformatics, addresses an important aspect of estimating the clonality of tumour             
samples using SVs that is wholly complementary to SVclone’s. The TUSV method relies on              

 



mixtures of copy number states, presence/absence of breakpoints, and phylogenetic constraints           
to estimate tumour clonality. Whereas, SVclone is based on cancer cell fraction estimation of              
individual SVs. Comparing the performance of these algorithms would be limited to the number              
of clonal populations and their frequency. As the algorithm requires that the SVs be called using                
Weaver, the significant work required in performing this comparison outweighs the benefit.            
Therefore, we have elected not to compare to this method. Rather, we have mentioned this               
work in our discussion and suggested that both approaches could be run on a tumour sample to                 
provide the most comprehensive view of SV clonality in a sample (page 9). 
 
 
Reviewer 2 
 

14. Notably, the approach underlying the method itself is fundamentally not novel and            
includes repurposing of a previously published statistical model, albeit on SVs (which is             
the new part). 

 
In this re-submission we have fundamentally overhauled our clustering methodology by           
extending a variational Bayes approach we recently developed (​https://doi.org/10.1101/484402​)         
to specifically work with SV data. This novel approach takes advantage of one of the key                
differences between SNVs and SVs in that SVs have two breakpoint locations, with two VAFs,               
rather than a single VAF for SNVs. As the reviewer points out, we previously adapted a SNV                 
clustering method by choosing only one of the two breakpoints. In our revised manuscript, our               
new method uses VAFs from both breakpoints simultaneously in the clustering, thus providing a              
novel methodology specifically designed for SVs. Furthermore, we explicitly handle subclonal           
background copy-number variants for both SNVs and SVs. This is particularly important for SVs              
so as to maintain as many variants as possible for clustering (see the revised Figure 3). This                 
new approach, in combination with our VAF counting methodology for SVs, is fundamentally             
novel, and no longer relies heavily on PyClone’s statistical model. 
 

15. the association of sub-clonal balanced rearrangements with survival is only superficially           
treated, lacks validation and lacks appropriate assessment of possible confounding          
co-variates 

 
In our revised manuscript we have taken into consideration further covariates in our survival              
analysis including stratification by age, number of SVs and histology. Where sufficient data was              
available, we have also considered association of the SCNR genotype with other genotypes             
(see point 18). We also demonstrate that SCNR samples are found across numerous cancer              
types (Supplementary Figure 6). In considering further validation, the unique scale and depth of              
the data generated from the PCAWG project has allowed us to consider survival of a previously                
unconsidered trait (prevalence of subclonal balanced rearrangements) and its relationship with           
patient survival. Similar data sets of this magnitude are not available making orthogonal             
validation difficult. Given our focus on the methods component of the manuscript, we consider              
any further biological validation out of scope for this work. 

 

https://doi.org/10.1101/484402


 
16. Proper benchmarking needs to be undertaken, comparing to other methods in the field.             

In particular THetA2, TITAN, Battenberg (compared to by authors in supplement),           
ReMixT and CloneHD are available methods that represent state of the art of copy              
number CCF. 

 
In response to this request we began running some of the algorithms outlined above on our                
benchmark data. However, using these approaches “out of the box” did not necessarily reflect              
the optimal performance of each method. Indeed, our experience running multiple methods as             
part of PCAWG showed that when the methods were run by “experts” (the authors of each                
method) performance was much better than simply running the method with default parameters.             
In light of this observation, we believe a separate, more extensive benchmarking manuscript is              
required, rather than performing a wide benchmarking in this manuscript. Indeed, a number of              
benchmarking efforts are underway in this area (https://doi.org/10.1101/310425,        
https://doi.org/10.1101/418780), including efforts to get authors to run their own methods           
(https://www.synapse.org/#!Synapse:syn2813581). Rather than include more comparison      
methods in the revised manuscript, we have opted to explore in more depth the benchmarking               
against a Pyclone and Battenberg, extending the number of performance metrics and the             
number of clusters in our​ in silico​ mixture ground truth dataset (see Figure 3 and 4, pages 5-7).  
 

17. The statement ‘One major advantage of using SVclone is that it can also be used in                
co-clustering mode, where CCF estimates can be given for SVs and SNVs            
simultaneously’. This is not substantiated with any data or analysis. The authors should             
show quantitatively the benefit of co-clustering in order to include such a statement,             
perhaps through exposing the increase in accuracy as a function of incremental            
inclusion of SNVs. 

 
As referenced in the response to Reviewer 1’s comment (point 8), we no longer co-custer SVs                
and SNVs, opting to cluster both separately. We do provide an option for combining these data                
by assigning SVs to SNV clusters. A quantitative comparison of the performance of this              
approach can be found in Supplementary Figure 7). 
 

18. The authors present a finding related to breast, liver and ovarian cancer. All three tumor               
types have had recently described genome-based subtypes. The authors must account           
for these covariates in their analysis. It is well-established that the poor-outcome basal             
subtype of breast cancer harbours increased genomic instability. The Nik-Zainal paper           
describing 560 breast cancers (doi:10.1038/nature17676) has accompanying hormone        
receptor status so at the very least, the authors should be able to determine if their                
finding is independent of ER negativity, basal gene expression subtype and/or global            
metrics of genome instability. For ovarian cancers the Wang et al study            
(doi:10.1038/ng.3849) shows an enrichment of fold-back inversions in a poor prognostic           
group. They validate on the ICGC dataset and identify cases with fold-back inversion             
enrichment. Is the finding of sub-clonal balanced rearrangements independent of this? 

 



 
To account for as many covariates as possible, we stratified the survival analysis on detailed               
(tier 4) tumour histology, age at diagnosis and number of SVs. In the PCAWG data, breast                
cancers comprise only 10 of the 171 SCNR samples (5.8%), making stratifying on ER status               
difficult, and suggesting that ER status is unlikely to play a critical role to the observed                
genotype. To aid in the interpretation of the genotype across the PCAWG data, we have added                
Supplementary Figure 5 to illustrate SCNR samples across the 38 cancer types, where breast              
cancer can be seen to be ranked 4th in absolute number. Ovarian cancers were most prevalent                
in terms of absolute number of SCNR-positive samples. To address the point of fold-back              
inversion enrichment, we quantified amplification associated fold back inversions as previously           
described (https://www.nature.com/articles/s41588-018-0179-8) and performed an association      
analysis which showed no correlation between FBI rates and the SCNR phenotype (page 16              
and Supplementary Figure 6).  
 

19. What is the relationship of #s of SVs to the tumor content of the sample? How does this                  
impact the ascertainment of subclonal CCF? How does tumor content influence the            
outcome associations as a co-variate? 

 
We have added Supplementary Figure 4 to address this point. As can be seen in the figure, the                  
SV number and purity show no correlation and has an R​2 coefficient of 0.0001. See response to                 
point 1, where we address the remaining points. 
 

20. What is the impact of sequencing depth on sensitivity to low CCF SVs? This and the                
preceding question are essential analyses to be presented to the readers. 

 
See response to point 1. 
 

21. The statement ‘clonality of balanced genome rearrangements reveals functionally         
important and clinically relevant observations.’ is not corroborated with data. The authors            
fail to identify any functional data or experiments to support this statement. 

 
See response to point 15. 
 

22. The statement ‘Importantly, considering only the clonality of SNVs and/or SCNAs would            
have failed to reveal this information.’ is unsupported by any analysis. It is entirely              
possible that SCNAs at similar CCF represent clones that are the latent cause for poor               
outcome. SCNRs might simply be part of the genomic landscape of the clone that has a                
phenotype. The authors would have to demonstrate the the SCNRs are actually            
independent of SCNAs at similar CCF to substantiate this claim. 

 
We agree with the reviewer that strictly, this statement would require us to demonstrate that               
SCNAs could not be used as a proxy to identify clones with the SCNR phenotype. As our                 

 



analysis is not done at a clone level, rather, it is performed based on whether an event is clonal                   
or subclonal, this analysis is not possible. Therefore, we have removed this statement. 
 

23. The authors somehow seem to miss an opportunity to associate their findings with driver              
mutations in these genomes as a route to indicating mechanism for SCNRs. Are there              
significant associations to the prevalence of driver mutations in the cases harboring            
SCNRs? 
 

We have now performed an analysis on the potential functional effects on driver mutations by 
the SCNRs (page 8). 
 

24. The method itself relies heavily on the PyClone probabilistic model          
(doi:10.1038/nmeth.2883), repurposed for clustering SVs. This is not properly         
acknowledged in the main text anywhere and represents a major oversight/omission. (I            
note it is referenced in the supplementary info). Also the graphical model (very similar to               
PyClone) is never referenced in the main, nor supplementary text. If the authors are              
claiming novelty, they should establish how their method differs from the PyClone            
approach. 

 
SVclone no longer relies on the PyClone probabilistic model.  

 
25. The authors rely on a linear scaling of the SV supporting reads dependent on the SV                

type. The authors test on a prostate sample which are known to harbour primarily blunt               
end joined DNA breaks. Have the authors tested the robustness of their scaling method              
when either microhomology or non-templated inserted sequence is present at the           
breakpoint? What is the effect of read length? 

 
We thank the reviewer for this insightful comment which prompted us to look more closely at                
breaks with microhomology. We identified that due to the imprecise genomic location of breaks              
with microhomology our method double counted a small number of normal reads, which ended              
up being the cause of the systematic bias observed in the simulated VAF data. We have now                 
implemented a procedure which accurately estimates the VAF for breaks with microhomology            
up to 6bp. As such, we no longer require the linear scaling of all events and this has been                   
removed from the manuscript. We have also added the following to the Supplementary             
Information Section 1.4.1: “In order to determine whether micro-homology was likely to play a              
large role in the read counting process, we analysed the distribution of breaks containing              
micro-homologies across the PCAWG samples used in the paper analysis (using PCAWG's            
consensus SVs v1.6). We found that the mean and median micro-homology lengths were 1 and               
2.4 respectively. Micro-homologies ≤ 6bp in length are handled by the variable threshold used              
by our read counting step. 6.17% of SVs had micro-homologies greater than 6bp and <1% of                
SVs had micro-homologies greater than 20bp. Although small in number, these events may             
have noisy VAF estimates and such it is recommended they be filtered out.” 
 

 



26. Do the authors observe multi-modality in the posterior distributions of CCF for individual             
events? This is likely going to be the case in many situations where the relative               
combination of ploidy, tumor content and CCF is unidentifiable? How, in turn does this              
impact the distribution over clusterings of the events. The authors should show            
co-clustering distributions computed over the 25,000 MCMC samples. 

 
The CCF posterior is naturally multi-modal even if there is no uncertainty relating copy number               
and tumour content. It arises from any Bayesian treatment of mixture models, as cluster labels               
are interchangeable in the marginal likelihood of the model, i.e. label switching problem. Our              
updated variational inference method is less prone to this problem as it optimises a fixed-form               
distribution. In our case, it is Gaussian, hence no multi-modality. We agree that the identifiability               
of CCF is low. In our model, CCF and multiplicity are both unknown. They participate in the                 
model in a co-linear relationship. Unfortunately, in theory, there could be an infinite number of               
solutions. Our model addresses this fundamental lack of information by assuming many variants             
share the same CCF (clustering), and aim for a conditional posterior (Gaussian) of CCFs given               
point estimates of multiplicities. The identifiability is further strengthened by only searching            
within sets of finite possible multiplicities. To explore this empirically, we have considered the              
“mean multiplicity error” as one of the standard six metrics we have used to evaluate the                
clustering performance. Mean multiplicity error measures optimal multiplicity assignment (given          
true cluster means) minus the estimated multiplicity from inferred cluster means. As can be seen               
in Figure 4, mean multiplicity error of SVs is similar to multiplicity error in SNVs, indicating that                 
our clustering methodology performs comparably in minimising error from multi-modal          
distributions. 
 

27. ‘Clusters which have no variants assigned are discarded’. How is it possible in a DP to                
have an empty cluster? 

 
To the best of our knowledge, empty clusters arise in several inference methods for DP and its                 
variants. Radford Neal’s classic review on MCMCs for DP suggests removing empty clusters at              
every iteration to improve the mixing properties of the samples (DOI: 10.2307/1390653). In the              
finite mixture (truncated DP) model employed in the previous version of the manuscript, empty              
clusters arose from the Dirichlet distribution over mixing weights. The Dirichlet distribution is             
known to have a shrinkage effect when its concentration parameter is small. Our variational              
inference in the updated manuscript also removes empty clusters in its QC steps. The posterior               
inference model for determining cluster assignments is described in Supplementary Information           
Section 1.7.  
 

28. There is a comparison to Battenberg CCFs presented only in the supplementary            
information. In Supplementary Fig 7, the authors present correlations. The data appear            
substantially uncorrelated across all size categories. This raises a serious concern to this             
reviewer and suggests quite unexpected behaviour from SVClone. Which method is           
correct? Why? Under what circumstances should a user trust SVClone vs Battenberg (or             
for that matter, TITAN, THetA2, ReMixT once those comparisons have been made)?            

 



This needs appropriate treatment using established comparison methods fitting of a           
computational methods paper. 

 
We agree that the initial comparison between Battenberg and SVclone did not show ​strong              
correlation, however, the comparison did yield significant correlation coefficients ranging from           
0.28 to 0.54. In our experience we would not expect ​strong correlation between individual              
events. Therefore, in the revised manuscript we have updated our comparison, moving away             
from correlation between individual events to metrics which look at multiple events: mean             
variant CCF error, subclonal classification specificity, and sensitivity. As we have noted in point              
16, SVclone’s variant CCF estimation performs similarly to Battenberg, with Battenberg           
performing better in low-cluster mixtures (3 clusters), and SVclone performing better in            
high-cluster mixtures (4 and 5 clusters) page 6. This makes sense as Battenberg is restricted to                
a 2-clone model. 
 

29. The authors justification of the binomial distribution is convoluted and unconvincing. First            
the authors remove VAF outliers before testing for goodness of fit which surely improves              
the goodness of fit to a distribution with constrained variance such as the Binomial. The               
authors us a chi squared test which is only appropriate for categorical data, confusingly              
with two Poisson distributions instead of a Binomial. The authors should fit the data to               
both a Binomial and Beta Binomial (the distribution used by PyClone) or other             
distribution and use a likelihood ratio test. 
 

We have reworked the justification for the binomial distribution (described in Section 2.2 of the               
Supplementary Information). We now use a likelihood ratio test on the clonal SVs using the               
patient metastasis samples we used for the in silico mixtures. At these coverage and purity               
levels (common for WGS data), we found that 89% of SVs were consistent with the binomial                
distribution, indicating that the distribution is an appropriate choice at the moderate purity and              
coverage levels. In addition, our variational formulation produces a similar effect to a             
Beta-Binomial model as the assignment probability is computed as an expectation of the             
Binomial distribution with respect to the posterior CCF distribution. Therefore, the uncertainty            
within the probability of success is integrated out when making assignments. The difference is              
that the uncertainty is a Gaussian in our model, and the uncertainty is Beta-distributed in the                
Beta-Binomial distribution. The benefit of our choice is a fully tractable variational approximation             
in which all its parameters can be efficiently estimated. Whereas in the Beta-Binomial case, its               
key overdispersion parameter is difficult to estimate with 50x depth. The difficulty is evident in               
the high variance and lack of clear convergence observed in PyClone’s MCMC traces of its               
overdispersion parameter (Supplementary Figure 8).  

 
30. The modified BIC has no theoretical justification. The main motivation for using a DP is               

to obviate model selection. 
 

 



As referenced in point 2, we no longer use the BIC for model selection, instead we use the best                   
evidence lower bound which is a direct approximation to the ideal model selection criteria,              
marginal likelihood. 
 

31. Overall the paper is quite short and contains a lot of relevant material in the               
supplementary info that would be of interest to the reader if presented in the main text. 

 
We have substantially rewritten the paper and moved much of the Supplementary material to              
the main text.  
 

32. There are supplementary figures not referenced in the main text. 
 
We have ensured that all Supplementary Figures are now referenced in the main text. 
 

 



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors have made considerable changes in the method and added additional analysis. Some 

of my previous criticism is alleviated by changes in the method. SVclone has been used as one of 

the important tools in PCAWG project for analysis of heterogeneity with results available in 2 

bioRxiv preprints. 

In addition to difference in the methodology used, one of the important claims of novelty against 

SNV based methods (e.g. PyClone), which use read counts from only a single genomic position, is 

the consideration of read counts at the ends of an SV (i.e. multiple pairs of (reference, variant) 

read counts), under the assumption that they share CCF, but have possible difference in copy 

number. While this is in principle methodologically novel in comparison to PyClone and other SNV-

clustering based methods, what is the evidence that in the practical applications this will yield 

some advantage to SVclone? For what percentage of SVs it is important to consider endpoints 

separately (i.e. what percentage has different copy numbers at the ends)? Also, such SVs are 

likely residing in regions having increased genomic instability and complex patterns of overlapping 

copy number changes are not unlikely. Such CNAs imply the existence of multiple (healthy + 

multiple cancerous) populations of cells with respect to copy number state of these regions and 

estimating these numbers is very hard (even detecting and estimating allelic copy numbers of non-

clonal CNAs is known to be very arduous task). SVclone relies on estimates of copy numbers that 

are in many cases inaccurate or incomplete. How inaccurate copy-number estimates and 

incomplete picture of overlapping CNA events (e.g. one occurring before SV event, one after) 

affect the performance of SVclone? In other words, I agree that considering the endpoints 

separately differs in terms of the methodology in comparison to the previously published methods, 

but am currently sceptical about the practical advantage and benefit of this over the simpler 

approach. 

I also did not understand why comparison against TUSV is omitted? In addition to the comparisons 

or arguments why it is impossible to compare the two methods, some more comprehensive 

discussion of the difference between SVclone and TUSV is required, especially considering the fact 

that TUSV was published before re-submission of SVclone and presented at ISMB conference last 

year. 

Reviewer #3 (Remarks to the Author): Replacement for Reviewer #2 

Cmero and co-authors present a new tool for inferring cancer cell fraction of structural variants. 

Unlike previous approaches that use SNV and copy-number information, SVclone relies on 

quantification of reads that overlap SV breakpoints and ‘unaffected’ regions to quantify CCF. This 

allows to extend the scope of the CCF calculation embrace both – copy number and copy neutral 

structural variants. The quantification and modeling approaches taken in this paper is new and 

sound. 

Cmero et al performed in silico mixing simulation using prostate cancer datasets. I consider this 

type of benchmarking to be better than simulation of reads, as the former uses real data with 

characteristic noise profile that is difficult to represent in read-base simulations. 

The authors compare the performance of their tool with approach using SNV information using five 

different metrics and found them to be comparable (which is good news given the smaller number 

of SVs compared to SNVs). 

Further paper illustrates the utility of the new analysis approach by analyzing PCAWG dataset of 



1705 tumor genomes. They find interesting observation that subclonal copy neutral 

rearrangements might be linked to survival of cancer patients. As the ability to analyse copy-

neutral SVs is a characteristic feature that distinguishes SVclone from other tools, this a very good 

illustration of application of their tool to real world problem. This is clearly an advantage for a 

paper primarily aimed at describing a new method for CCF inference. 

It is evident that paper was substantially reworked during revision and most of the points raised 

earlier were addressed. Overall, I find this to be interesting paper that describes a new tool, that 

will be very useful for cancer genomics community.



Dear Reviewers, 
 
We would like to thank the reviewers for taking the time and effort to reconsider the manuscript 
and the associated changes.  
 
We have carried out a series of performance assessment analyses which address the reviewer 
concerns: 

1. As suggested we have compared our new dual-end SV clustering model to a standard 
single-end model (as employed when clustering SNVs).  

2. To further demonstrate the advantages of the dual-end model, as well as consider the 
effects of inaccurate copy-number estimation on SVclone’s results, we have also 
performed a series of copy-number perturbation experiments, modifying the major allele 
copy-number, as well as subclonal copy-number fractions.  

3. Additionally, we demonstrate that the dual-end model is more robust to copy-number 
perturbation than the single-end model.  

4. Lastly, we have considered the TUSV method and have provided a more detailed 
discussion.  

 
Please find our point-by-point analysis below: 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
 

1. In addition to differences in the methodology used, one of the important claims of novelty 
against SNV based methods (e.g. PyClone), which uses read counts from only a single 
genomic position, is the consideration of read counts at the ends of an SV (i.e. multiple 
pairs of (reference, variant) read counts), under the assumption that they share CCF, but 
have possible difference in copy number. While this is in principle methodologically novel 
in comparison to PyClone and other SNV-clustering based methods, what is the 
evidence that in the practical applications this will yield some advantage to SVclone?  

 
To address this point, we compared SVclone’s dual end model to (SVclone’s) single-end model 
(a similar statistical model to PyClone), using our 3-cluster ​in silico​ mixing dataset. To reduce 
the SV data to single-end, we ran both ends of each mixture separately through the SVclone’s 
SNV model, which only considers one background copy-number state and one normal read 
count. The revised results section discusses the results: 
 
“Figure 4 shows that dual-end model outperforms the single end model across mean variant 
CCF error, mean multiplicity error, and mean cluster CCF error across almost all mixes. Only 
the cluster number of the 50-50 mix was incorrectly inferred, compared to the single-end model 
which was correct, However, we would expect only two clusters given the 50-50 mixture split 

 



and thus the dual-end model’s result is likely more parsimonious with the data. Interestingly, the 
single-end model showed a higher subclonal classification sensitivity, but a lower specificity 
than the dual-end model. Given that this metric represents a trade-off of sensitivity and 
specificity, we generated an ROC curve (Supplementary Figure 10). Considering the AUC 
indicates that the dual-end model is preferable (AUC of 0.8234 versus 0.8095 for the dual and 
single-end models respectively).” 
 
 

2. For what percentage of SVs it is important to consider endpoints separately (i.e. what 
percentage has different copy numbers at the ends)?  

 
We have quantified the percent of SVs with heterogeneous background copy-numbers in the 
PCAWG (Supplementary Table 4 in the revised manuscript). We observe a range of 
background copy-number heterogeneity across the cohort, with a minimum of 34% in 
non-Hodgkin lymphoma and a maximum of 74% in colorectal adenoma. The median across all 
cancer types was 53%. 
 

3. Also, such [​background copy-number heterogenous​] SVs are likely residing in regions 
having increased genomic instability and complex patterns of overlapping copy number 
changes are not unlikely. Such CNAs imply the existence of multiple (healthy + multiple 
cancerous) populations of cells with respect to copy number state of these regions and 
estimating these numbers is very hard (even detecting and estimating allelic copy 
numbers of non-clonal CNAs is known to be very arduous task). SVclone relies on 
estimates of copy numbers that are in many cases inaccurate or incomplete. How 
inaccurate copy-number estimates and incomplete picture of overlapping CNA events 
(e.g. one occurring before SV event, one after) affect the performance of SVclone? In 
other words, I agree that considering the endpoints separately differs in terms of the 
methodology in comparison to the previously published methods, but am currently 
sceptical about the practical advantage and benefit of this over the simpler approach. 

 
To address this point, we performed a series of experiments where we introduced copy-number 
noise into the 3-cluster ​in silico ​mixtures. We selected the 70-30 mixture to perform these 
experiments, given that it had the lowest variant CCF error. The 001bM and 001gM samples 
used in the ​in silico ​mixtures have 30% and 37% background SCNA heterogeneity 
(copy-number states are different between an SV’s ends) respectively, while the mixtures have 
24-27% heterogeneity (Supplementary Table 3), indicating there may be some ‘averaging’ of 
copy-number states occurring due to the mixing. In order to correct for this, given the PCAWG 
copy-number heterogeneity statistics (see response to point 2), we randomly discarded SVs 
until 50% of total SVs had heterogenous background copy-number states. This resulted in 90 
total SVs. The experiment is outlined in the results of the revised paper: 
 
“[We] ​perturbed copy-number in the following ways: i) major allele copy-number - 1, ii) major 
allele copy-number + 1, and iii) subclonal copy-number fraction + 0.3, where, if the resulting 

 



copy-number fraction would be >0.9, we instead subtract 0.3 (see methods for further details). 
We performed these experiments for the dual-end model, perturbing one side and both sides in 
separate runs. As expected, we found that the CN-perturbed runs showed slightly worse 
performance across the measured metrics compared to the unperturbed runs (Supplementary 
Figure 11). In general, variant-level metrics were more severely affected than cluster-level 
metrics. All perturbations performed similarly, with CN - 1 (experiment i) on both sides being 
the most affected scenario. Mean variant CCF was most significantly affected with a 0.27 error 
in the CN - 1 scenario on both sides (compared with 0.07 in the unperturbed model). Mean 
cluster CCF error was only mildly affected, but was also most significant for the CN - 1 on both 
sides scenario (0.16 versus 0.11 ME in the unperturbed data). The CN - 1 experiments were the 
only ones that caused an error in the cluster number. Supplementary Figure 12 shows the effects 
of the perturbation experiments on the single-end model versus the dual-end model (where only 
one side is perturbed). The dual-end model was more robust to perturbation across all metrics for 
all perturbations except for cluster number with the CN - 1 experiment (where one extra cluster 
was called), subclonal classification sensitivity in the CN - 1 experiment and a slightly worse 
mean multiplicity error in the CN + 1 scenario. Interestingly, mean cluster CCF error was still 
lower in the over-clustered case. Importantly, the mean variant CCF error and mean cluster CCF 
error were lower in all cases when considering the perturbed dual-end model versus the 
perturbed single-end. In summary, these data show that the dual end model is more robust to 
copy number noise than the single end. Copy number addition errors were better tolerated than 
subtraction errors, and a mis-estimation of copy-number fraction resulted in errors somewhere 
between the two. However, mean cluster CCF error and cluster number were minimally affected, 
suggesting that poor CN estimation effects are largely restricted to errors in variant-level 
estimates.​” 
 

4. Why [is] comparison against TUSV is omitted? In addition to the comparisons or 
arguments why it is impossible to compare the two methods, some more comprehensive 
discussion of the difference between SVclone and TUSV is required, especially 
considering the fact that TUSV was published before re-submission of SVclone and 
presented at ISMB conference last year. 

 
We chose not to compare the performance of SVclone to TUSV in the manuscript for three                
reasons: 1) TUSV is primarily designed to work with multiple samples, whereas SVclone is              
designed to work with single samples; 2) There are serious technical hurdles that make a               
rigorous and fair comparison very time consuming; and 3) The algorithms tackle different             
aspects of the SV evolution inference problem and are therefore only comparable on a subset of                
outputs. Please find below more detailed explanations of each of these reasons and how we               
have modified the manuscript to clarify these points.  
 
 

 



1) Single sample versus multi-sample inference. ​SVclone is designed to work with single            
tumour biopsy samples sequenced to a depth of approximately 50X. The goal of             
SVclone is to infer cancer cell fractions (CCF) of SVs, which are crucial summary              
statistics of the phylogenetic tree that can answer many important questions in cancer             
biology, for example which SVs are early evolving and which are late.  

Building the full phylogenetic tree is a far more difficult and challenging problem.             
To attain reasonable performance, WGS data at sequencing depths in excess of 100X             
and multiple samples from the same patient are required. TUSV aims to tackle             
phylogenetic tree building using a matrix factorisation-based deconvolution model, which          
inherently performs best when it can draw information from multiple samples.  

This clear difference in the goals of SVclone and TUSV also shows when             
comparing their runtimes. As the TUSV authors reported, when testing with 28 out of 59               
WGS TCGA single-samples, TUSV ran more than 2 days or required more than 128 Gb               
of RAM. With the same amount of time and 16GB of RAM, SVclone can analyse > 2000                 
WGS single-samples from the PCAWG cohort. This demonstrates that SVclone is more            
suitable to single-sample WGS, which is a much more prevalent data type to date.  

 
2) Technical hurdles for fair method comparison. ​The differences between SVclone and           

TUSV also show on a technical level: ​SVclone takes as input, SV calls, copy-number              
calls, and an associated bam file. In contrast, TUSV takes as input, SV clonal multiplicity               
mapped to copy number calls. The initial multiplicity estimates input into TUSV are             
calculated by an independent program called WEAVER. To perform a robust and fair             
comparison between the approaches it would be necessary to disentangle the           
multiplicity estimation of SVclone (which is a core part of the model and not an               
independent step), compare it to WEAVER, and then find a way to fix multiplicity              
between the algorithms to compare other outputs. This would be a significant            
undertaking and is best suited to a separate benchmarking manuscript. 
 

3) SVclone, TUSV, and other approaches address different aspects of tumour evolution.           
We compared the capabilities of TUSV (and WEAVER) along with Fan et al.’s SV VAF               
calculation approach, and another recently published method in the area: Meltos           
(Ricketts 2019). This revealed that each of these methods, along with SVclone, tackle             
different subtasks of the problem of inferring the evolutionary history of SVs from WGS              
data.  

The subtasks we identified were the inference of: variant allele frequencies of SV             
breakpoints, number of DNA copies harbouring SV breakpoints (also known as           
multiplicity), the cancer cell fraction of SVs, mixing proportions of clones/clusters, clone            
copy number and a clone phylogeny.  

The following table shows how different methods tackle different subset of these            
challenges. In particular, TUSV is the only method that computes copy number profiles             
for individual clones, while SVclone is the only method that computes the CCF for each               
SV (although an estimate of CCF can be obtained by further processing of TUSVs              
output). 

 



 

 Fan et al WEAVER TUSV MELTOS SVclone 

VAF of SV X X  X X 

Clonal 
Multiplicity 

 X   X 

Subclonal 
Multiplicity 

  X  X 

CCF of SVs     X 

Clone CCF   X  X 

Clone CN   X   

Clone 
Phylogeny 

  X X  

 
 
In light of these results we have added a section to the discussion (see below) highlighting                
these differences.  
 
“Inferring the evolutionary history of SVs from whole-genome sequence data is a challenging             
problem. One of the key goals in the field is to derive a clone tree which depicts the acquisition                   
of SVs over time and their relationship to clonal expansions during tumour evolution. To achieve               
this, a number of key variables must be inferred from the data: variant allele frequencies of SV                 
breakpoints; number of DNA copies harbouring SV breakpoints (also known as multiplicity); the             
cancer cell fraction of SVs; cancer cell fraction of clones; and a clone phylogeny. No one                
method exists that can simultaneously infer all variables, but rather existing methods tackle             
subsets: Fan, et al.: VAF​31​; WEAVER: VAF + clonal multiplicity​32​; TUSV: subclonal multiplicity +              
clone CCF + phylogeny + (additionally) clone copy number​33​; Meltos: VAF + phylogeny​34​; and              
SVclone: VAF + subclonal multiplicity + approximate clone CCF + SV CCF. At present these               
methods need to be combined to achieve a more complete picture of the evolution of SVs (e.g.                 
WEAVER + TUSV​33 or SVclone + Meltos​34​). Thus there remains an opportunity for future              
development of an algorithm which can simultaneously infer all variables.”  
 
 
 

 

https://paperpile.com/c/GdL11U/AeiB
https://paperpile.com/c/GdL11U/xc3c
https://paperpile.com/c/GdL11U/xXRw
https://paperpile.com/c/GdL11U/gAHY
https://paperpile.com/c/GdL11U/xXRw
https://paperpile.com/c/GdL11U/gAHY


REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

My main concerns regarding comparisons to the available alternative have been addressed in the 

Response Letter. 

I recommend that content added between revisions is colored.


