Supplementary Materials for

Identification and characterization of novel filament-forming proteins in cyanobacteria

Benjamin L. Springstein*, Christian Woehle, Julia Weissenbach, Andreas O. Helbig,

Tal Dagan, Karina Stucken*

*Corresponding authors: BLS: benjamin_springstein@hms.harvard.edu KS: kstucken@userena.cl

1 Supplementary Information

3 Supplementary Fig. 1: Expression of candidate CCRPs and heterologous expression in *E. coli*

4 (A) RT-PCR of reverse transcribed whole RNA from young Fischerella WT cultures grown in BG11 or BG110 from 5 two independent biological replicates. Gene transcripts were verified using internal fm7001 gene primers (#1/#2) or 6 internal ftsZ gene primers (#3/#4) as a control. (B) RT-PCR of reverse transcribed whole RNA from Synechocystis 7 WT (OD750 0.7, 1.2 or 2.0) grown in BG11 using internal slr7083 gene primers (#5/#6) or internal hmpFsyn gene 8 primers (#9/#10). Internal rnpB gene primers (#7/#8) were included as a control. (C, top) Schematic representation 9 of the genomic context of all4981. The 3' end of all4983 overlaps with 4 bp with the 5' region of all4982, which has 10 the same overlap with the 5' end of all4981. Both overlaps are comprised of the same four nucleotides (ATGA). (C, 11 bottom) RT-PCR of reverse transcribed whole RNA from Anabaena WT cultures grown in BG11 (OD750 1.8) from 12 three independent biological replicates. all4981 gene transcript was internal gene primers (#15/#16). For operon 13 structure of all4983-all4981 or all4982-all4981, primer pairs #17/#16 or #18/#16 were used, respectively. Only one 14 replicate showed a common transcript for an all4983-all4981 operon, which is likely is the result of the long fragment 15 (about 1800 bp). The employed cDNA synthesis kit is optimized for fragments up to 1000 bp, thus making longer 16 reverse transcriptions unlikely. (D) RT-PCR of reverse transcribed whole RNA from Synechococcus WT (OD750 0.6, 17 1.2 or 1.5) grown in BG11 from two independent biological replicates. Gene transcripts were verified using internal 18 syc2039 gene primers (#11/#12) and internal hmpFsyc gene primers (#13/#14). (B,D) RNA was either reverse 19 transcribed in the reaction buffer containing reverse transcriptase (with RT) or without reverse transcriptase (w/o 20 RT) as a control for residual genomic DNA contamination. (A-D) Genomic DNA of the respective species was 21 included as positive control for the different reactions. Full gel pictures as shown in Extended Data Supplementary 22 Fig. 1. (E) GFP fluorescence and bright field micrographs of E. coli BL21 (DE3) cells expressing SIr7083-GFP, 23 HmpFsyn-GFP, HmpFsyc-GFP, Syc2039-GFP or Fm7001-GFP. Cells were grown at 20 °C or (Fm7001-GFP) 16 °C 24 and protein expression was induced with 0.05 mM IPTG for 24 h. Scale bars: 2.5 µm.

25

26 Supplementary Fig. 2: In vitro polymerization is dependent on monovalent ions

27 (A-C) NHS-fluorescein fluorescence micrographs of in vitro structures formed by purified and renatured 28 Fm6009ATMD-His6 (lacking the transmembrane domain, i.e. the first 91 aa), Tlr0420-His6 or Slr6096-His6 29 (1 mg ml-1 each), Crescentin-His6 (0.7 mg ml-1), MBP-His6 (1 mg ml-1), GroEL1.2 (0.7 mg ml-1) or UMP kinase (0.5 30 mg ml-1), in HLB or Crescentin-His6 (0.7 mg ml-1) renatured in 25 mM Hepes, pH 7.4. Note: Crescentin-His6 in vitro 31 polymerization into smooth filaments is strictly dependent of the presence of salt in the renaturation buffer as 32 Crescentin-Hise without salt assembles into filamentous aggregates only. (A) Proteins were dialyzed in a stepwise 33 urea-decreasing manner and stained with an excess of NHS-Fluorescein. (D) Bright field micrograph of a sheet-34 like flat object floating on top of the dialysate (red arrow) formed upon dialysis of Fm7001-His₆ (0.7 mg ml-1) into 2 35 mM Tris-HCI, 4.5 M urea, pH 7.5. (E,F) Epifluorescence micrographs of filament-like structures formed by (E) 36 denatured cell-free extracts of E. coli BL21 (DE3) expressing Fm7001-GFP (0.7 mg ml-1 whole protein) dialyzed 37 into 2 mM Tris-HCl, 3 M urea, pH 7.5 or by (F) natively purified MBP-Fm7001-Hise (0.8 mg ml-1) stained with NHS-38 fluorescein in HLB. Scale bars: 10 µm.

39

40 Supplementary Fig. 3: BACTH analysis of cyanobacterial CCRPs

(A) Beta-galactosidase assays (BACTH) of *E. coli* BTH101 cells co-expressing indicated T25 and T18 translational
 fusions of all possible pair-wise combinations from three independent colonies grown for 1 d at 30 °C or 2 d at
 20 °C. Quantity values are given in Miller Units per milligram LacZ of the mean results from three independent

44 colonies. Negative: N-terminal T25 fusion construct of the respective protein co-transformed with empty pUT18C.

45 Positive: Zip/Zip control. Error bars indicate standard deviations (n=3). Values indicated with * are significantly 46 different from the negative control. *: P < 0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 (one-way ANOVA using 47 Dunnett's multiple comparison test). (B) Multiple sequence alignment of selected cyanobacterial homologous 48 CCRPs using MULTALIGN 1. Alr0931, SIr1301 (HmpFsyn; Synechocystis) and Synpcc7942_1139 (HmpFsyc; 49 Synechococcus) are identified by their designated cyanobase locus tag. Other proteins are given as NCBI 50 accession numbers. WP_012412193.1 (Nostoc punctiforme PCC 73102), WP_009454477.1 (Fischerella thermalis 51 PCC 7521), WP_016865706.1 (Fischerella), WP_016876359.1 (C. fritschii PCC 9212), WP_015199016.1 52 (Calothrix sp. PCC 6303), WP_009634512.1 (Synechocystis sp. PCC 7509), and WP_015954997.1 (Cyanothece 53 sp. PCC 7424). Amino acids from 1-130 and 334-441 are depicted. Red highlighted amino acid residues are 54 conserved among all listed species, blue amino acids are mostly conserved, and black amino acids are not 55 conserved. Characteristic for this group of conserved cyanobacterial CCRPs is a highly conserved N-terminus with 56 a M-L-Y-L-A-E-V sequence motif present in nearly all homologs, followed by a moderately conserved N-terminal 57 region of the first 120 amino acids. Two other highly conserved domains are present in this group, one located 58 around the centre of the proteins (between the 340th and 370th amino acid), and another one shortly thereafter 59 between the 400th and 420th amino acid.

60

61 Supplementary Fig. 4: Expression of candidate CCRPs in different cyanobacterial species

62 GFP fluorescence, chlorophyll autofluorescence (red) and bright field micrographs of Synechocystis, PCC-M, 63 Anabaena or Fischerella cells expressing (A) Crescentin-GFP, (B) Fm7001-GFP, (C) HmpFsyn-YFP, (D) SIr7083-64 GFP, (E) YFP-SIr7083, (F) All4981-GFP or (G) YFP-All4981 ATPR3-4 or YFP-All4981 from PpetE, Ptrc, or Pcpc560. (B) 65 Unlike N-terminal fusion with a YFP tag, no in vivo filament-like structures can be observed upon C-terminal fusion 66 of Fm7001 with a GFP-tag in any tested cyanobacterium. (C) White triangles mark crescent-like localizations. White 67 arrows show HmpFsyn-YFP accumulations. (D) Anabaena cells were grown on BG110 plates. White arrows indicate 68 heterocysts. (E) Anabaena cells expressing YFP-SIr7083 from PpetE grown in liquid BG11 or liquid BG11 without 69 copper and induced with 5 µM CuSO4 for 2 and 9 d. White triangles point to multiseriate Anabaena trichome growth 70 upon protein overexpression. (F) Anabaena cells expressing All4981-GFP from PpetE grown in BG11 supplemented 71 with 0.5 µM CuSO4 for 2 d. Extended period of overexpression of All4981-GFP led to cell rupture. Protein released 72 from the Anabaena trichome are shown in the left image while the right image shows extracellular (ex vivo) filament-73 like structures observed in the growth medium. (G) Anabaena cells were grown in BG110 supplemented with 0.5 74 µM CuSO₄. White triangles indicate selected filamentous strings traversing through the cells. White arrows point to 75 spindle-like YFP-All4981 ATPR3-4 structures. White stars mark septal localizations. Scale bars: (A-D,G) 5 µm, (F, left) 76 10 µm or (F, right) 20 µm.

Supplementary Fig. 5: Synechocystis mutant phenotype and lack of PilB-GFP expression in Synechocystis and PCC-M mutant strains

80 (A) Measurement of cell area of *Synechocystis* WT, $\Delta hmpF_{Syn}$ and $\Delta slr7083$ mutants as determined by microbeJ.

81 (B) GFP fluorescence, chlorophyll autofluorescence (red) and bright field micrographs of Synechocystis or PCC-M

82 $\Delta hmpF_{Syn}$ or $\Delta slr7083$ mutant strains expressing PilB-GFP from Ptrc. Cells were picked from mating filters directly

83 as no exconjugant re-streaked on fresh selecting plates or transferred to liquid medium every survived, suggesting

84 that these cells are possibly false-positives. Also, please note that the bright GFP spots in the micrographs are not

85 from expression of PilB-GFP in the *Synechocystis* and PCC-M mutants but from expression of PilB-GFP in the *E*.

86 $\,$ $\,$ coli used for mating that are still present on the mating filter. Scale bars: 5 $\mu m.$

87

88 Supplementary Fig. 6: Verification of Synechococcus CCRP mutants

89 (A) Colony PCR of six Δ syc2039 mutant clones using syc2039 gene primers (#149/#147) and hmpFsyc gene primers 90 (#161/#162) as a control. (B) Colony PCRs of four non-segregated $\Delta hmpF_{syc}$ mutant clones using $hmpF_{syc}$ gene 91 primers (#174/#175) or syc2039 gene primers (#159/#160) as a control. (C) Colony PCR of twelve non-segregated 92 $\Delta hmpF_{syc}$ mutant clones using primers encompassing the homologous flanking regions used for homologous 93 recombination (#238/#239). Upper red arrow indicates WT allele PCR product. Lower red arrow indicates $\Delta hmpF_{Syc}$ 94 mutant PCR product. As a positive control, Synechococcus genomic DNA was included. (A-C) Full gel pictures as 95 shown in Extended Data Supplementary Fig. 2. (D) Growth of $\Delta hmpF_{Syc}$ mutant on non-selective plates leads to a 96 reversal to WT phenotype. (E) Merged DAPI fluorescence and chlorophyll autofluorescence (red) and merged GFP 97 fluorescence and bright field micrographs of Synechococcus WT, Asyc2039 mutant and Asyc2039 mutant 98 complemented with Psyc2039::syc2039 or Ptrc::syc2039-gfp inserted into the neutral NS1 locus. Cells were grown in 99 BG11 or BG11 supplemented with 0.001 mM IPTG (for strain carrying Ptrc::syc2039-gfp) and stained with 100 10 μg ml-1 DAPI. (F) Cell length of Synechococcus WT (n=505), Δsyc2039 mutant (n=517), Δsyc2039 mutant 101 carrying Ptrc::syc2039-gfp (n=547) and Δsyc2039 mutant carrying Psyc2039::syc2039 (n=529) cells.

102

103 Supplementary Fig. 7: Phenotypic characterization of Synechococcus mutant strains

104 (A) Synechococcus WT (upper lane, after 6 days) and non-segregated $\Delta hmpF_{Syc}$ mutant (middle lane: after 6 days 105 and lower lane after 16 days) strains were grown on BG11 plates or BG11 plates supplemented with 50 µg ml-1 Km. 106 Cells were resuspended in BG11, adjusted to an OD₇₅₀ of 0.4 and spotted in triplicates of serial 10-fold dilutions on 107 BG11 plates or BG11 plates supplemented with 100 µg ml-1 Lysozyme or 50 µg ml-1 Proteinase K. Cells were grown 108 until no further colonies arose in the highest dilution. (B) Synechococcus WT and Asyc2039 mutant strains were 109 grown in liquid culture at standard growth conditions until an OD750 of about 2.0, diluted in BG11 to an OD750 of 0.4 110 and spotted in triplicates of serial 10-fold dilutions on BG11 plates or BG11 plates supplemented with 100 µg ml-1 111 Lysozyme or 50 µg ml-1 Proteinase K. Cells were grown until no further colonies arose in the highest dilution. 112 (C) Merged Alexa Flour-488 fluorescence and chlorophyll autofluorescence (red) and merged bright field and DAPI 113 fluorescence micrographs of Synechococcus WT, Asyc2039 or non-segregated AhmpFsyc mutant strains grown on 114 BG11 plates and subjected to immunofluorescence staining using an anti-FtsZ primary antibody (Agrisera, raised 115 against Anabaena FtsZ) and an Alexa Fluor-488 coated secondary antibody. Cells were mounted in Prolong 116 Diamond antifade mountant with DAPI (Thermo Fischer Scientific). Scale bars: 5 µm. (D) Growth curve of 117 Synechocystis WT and Δ syc2039 mutant strain. Cells were grown in BG11, adjusted to an OD₇₅₀ of 0.1 and then 118 grown in triplicates at standard growth conditions. OD750 values were recorded once a day for 9 d. Error bars show 119 the standard deviation (n=3).

120 Extended Data Supplementary

122 Extended Data Supplementary Fig. 1: Full images of gel pictures used in Supplementary Fig 1.

123 Regions shown in the gel pictures of Supplementary Fig. 1 are indicated by red boxes.

125 Extended Data Supplementary Fig. 2: Full images of gels shown in Supplementary Fig. 6

126 Regions shown in the gel pictures of Supplementary Fig. 6 are indicated by red boxes.

127 Supplementary Table 1: Properties of cyanobacterial CCRPs

Gene /Locus tag	Genus	Subsection	Homologs distribution	Predicted proteins of similar structure (I-TASSER)	Homolog similarities	Conserved domains	Others
crescentin	C. crescentus	n/a	n/a	Cytoplasmic domain of bacterial cell division protein EzrA		SMC, CCDC158	IF-like CCRP
filP	S. coelicolor	n/a	n/a	Dynein tail; α -Actinin; Tropomyosin		DUF3552, SMC, RNase_Y	IF-like CCRP
desmin	Homo sapiens	n/a	n/a	PI4KIIIa lipid kinase		Filament (pfam00038), SMC, Spc7, MscS_TM	IF protein
vimentin	Homo sapiens	n/a	n/a	PI4KIIIa lipid kinase		Filament (pfam00038), SMC, Spc7	IF protein
syc2039	Synechococcus	I	I	Tropomyosin		SMC, MukB, CALCOCO1	N-terminal TMD; only in <i>Synechococcus</i> sp.
syc1139	Synechococcus	I	I, II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	39%	SMC, MukB, Spc7	Homolog to <i>slr1301</i> and HmpF
slr6096	Synechocystis	Ι	I, III, IV	Cytoplasmic domain of bacterial cell division protein EzrA		SMC	
slr7083	Synechocystis	I	I	Plectin		SMC, MscS_TM	Encoded on pSYSA plasmid, only in <i>Synechocysti</i> s sp.
slr1301	Synechocystis	I	I, II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	39%	SMC, SbcC, APG6, DUF3552	Homolog to s <i>yc1139</i> and HmpF
tlr0420	BP-1	I	I, III	Plectin		SMC, MscS_TM	
fm7001	Fischerella	V	IV, V	α-catenin or vinculin; similarity to acyl-CoA dehydrogenase	63%	Acetyl-CoA carboxylase carboxyl transferase (PLN0322)	Highly expressed; 3' end 9 bp overlap to <i>fm7000</i>
fm6009	Fischerella	V	V	Structure of β -catenin and HTCF-4		COG0610	
all4981	Anabaena	IV	III, IV, V	TTC7B/Hyccin Complex, Clathrin	47%	TPR	5' with a 4 bp overlap to <i>all4982</i>

128 The first column indicates the respective gene name or locus tags of each protein candidate. The second and third column indicate the respective subsection of the corresponding 129 cyanobacterial genus. Column four lists the subsections that contain homologous proteins to the respective CCRP. Column five indicates structural similarities of the candidate to 130 proteins in the Protein Data Bank (PDB) based on I-TASSER2.3, The sixth column lists predicted sub-domains of protein candidates identified by BLAST Conserved Domain Search. 131 Column seven names other features of interest. Abbreviations: (TMH) Transmembrane helix; (DUF) Domain of unknown function; (CCDC158) Coiled-coil domain-containing protein 132 158; (SMC) Structural maintenance of chromosomes; (MukB) The hinge domain of chromosome partition protein MukB; (APG6) Autophagy protein Apg6, (SbcC) DNA repair 133 exonuclease SbcCD ATPase; (CALCOCO1) Calcium binding and coiled-coil domain; (Spc7) Spc7 kinetochore protein; (Filament) Intermediate filament protein; (TPR): 134 Tetratricopeptide repeat; (PLN0322) Acetyl-CoA carboxylase carboxyl transferase; (COG0610) Type I site-specific restriction-modification system. n/a: not applicable. The employed 135 identifiers correspond to respective RefSeq accession numbers listed in the brackets: Synpcc7942_2039 (ABB58069); Synpcc7942_1139 (ABB57169); Slr6096 (BAD02153.1); 136 SIr7083 (BAD01985.1); SIr1301 (BAA16854.1); TIr0420 (NP_681210.1); Fm7001 (WP_016868005.1); Fm6009 (WP_020476706); All4981 (BAB76680.1).

137 Supplementary Table 2: Bacterial strains

Strain	Genotype	Resistance	Reference
<i>E. coli</i> XL1 blue	<i>endA1 gyrA</i> 96(nalʀ) thi-1 <i>recA1 relA1</i> <i>lac gln</i> V44 F'[::Tn10 <i>proAB</i> + <i>lacl</i> _q Δ(<i>lacZ</i>)M15] <i>hsd</i> R17(rκ- mκ+)	Tet	Stratagene
<i>E. coli</i> HB101	F- mcrB mrr hsdS20(rв- mв-) recA13 leuB6 ara-14 proA2 lacY1 galK2 xyl-5 mtl-1 rpsL20(Sm _R) glnV44 λ-	Sm	4
<i>E. coli</i> DH5α	F– Φ80 <i>lacZ</i> ΔM15 Δ(<i>lacZ</i> YA- <i>arg</i> F) U169 <i>recA</i> 1 <i>endA</i> 1 <i>hsdR17</i> (rK–, mK+) <i>phoA supE</i> 44 λ– <i>thi</i> -1 <i>gyrA</i> 96 <i>relA</i> 1		5
<i>E. coli</i> DH5αMCR	F- endA1 supE44 thi-1 λ - recA1 gyrA96 relA1 deoR Δ (lacZYA-argF)U169 Φ 80dlacZ Δ M15 mcrA Δ (mrr hsdRMS mcrBC)		6
<i>E. coli</i> BL21 (DE3)	F- ompT gal dcm lon hsdS _B (r _B -m _B -) λ(DE3 [lacl lacUV5-T7p07 ind1 sam7 nin5]) [malB+]κ-12(λs)		7
E. coli BTH101	F-, cya-99, araD139, galE15, galK16, rpsL1 (Str), hsdR2, mcrA, mcrB1	Sm	Euromedex
Fischerella muscicola PCC 7414	WT		PCC, France
Synechocystis sp. PCC 6803	Glucose tolerant Kazusa substrain WT		PCC, France
BLS4	ΔhmpFsyn::CS.3	Sm,Sp	This study
BLS5	Δslr7083::CS.3	Sm,Sp	This study
Synechocystis sp. PCC-M 6803	Glucose tolerant and motile Moscow PCC-M substrain WT		A gift from Annegret Wilde (University Freiburg)
BLS6	ΔhmpFsyn::CS.3	Sm,Sp	This study
BLS7	Δslr7083::CS.3	Sm,Sp	This study
Synechococcus elongatus PCC 7942	WT		A gift from Martin Hagemann (University Rostock)
BLS8	Non-segregated \(\Delta\)hmpFsyc::nptII	Km	This study
BLS9	Δsyc2039::nptll	Km	This study
<i>Anabaena</i> sp. PCC 7120	WT		PCC, France

139 Supplementary Table 3: Oligonucleotides and Plasmids

#	Given name	Sequence 5' -> 3'	Purpose
1	Fm7001_intern_A	AGCGGGAAGATGGCTACTATC	RT-PCR
2	7001_northern	TCTGCGGCTTGACTTGATAC	RT-PCR
3	qftsZ7414_fwd	TGGAACTAAAGCTGCCGAGG	RT-PCR
4	qftsZ7414_rev	CTGTACCAGTTCCACCACCC	RT-PCR
5	Syn017_intern_A	TGCAACAGCAAACGGAACAG	RT-PCR
6	Syn017_intern_B	TTGGGAGCTAACTTGCCCAC	RT-PCR
7	rnpb 6803 primer fwd	GGAGTTGCGGATTCCTGTCA	RT-PCR
8	rnpb 6803 primer rev	AAGACCAACCTTTGCCCCTC	RT-PCR
9	Syn708_intern_A	TGGAGTGCCCTGCCTAACG	RT-PCR
10	Syn708_intern_B	CCCTTCTAACCTTTGTCGGGC	RT-PCR
11	Syc484_intern_A	CTACCATTCTTGGTGTGGCGG	RT-PCR
12	Syc484_intern_B	GAAATCCTGCGATCGCTGTTG	RT-PCR
13	Syc879_intern_A	CCTGTGACTTCTCTCCAGGG	RT-PCR
14	Syc879_intern_B	CTTTTAACTCGCGATCGCGGC	RT-PCR
15	Nos389_intern_A	ATCACCTGAATTAGCTGCGG	RT-PCR
16	Nos389_intern_B	CTAATAATGCCGCAATCAGCG	RT-PCR
17	All4982_intern_A	ATCAGATGGTGGAGGGAAGC	RT-PCR
18	All4983_intern_A	AGTAGCTGCATTTATCGGTGC	RT-PCR
19	pET19bmod-Fwd	GGAATTGTGAGCGGATAACAATT	Sequencing of pET21a(+) inserts
20	T7R	CTAATACGACTCACTATAGGGA	Sequencing of pET21a(+) inserts
21	pAM2991_Seq_A	GCGCCGACATCATAACGGTTC	Sequencing of pAM2991 inserts
22	pAM2991_Seq_B	GCTGAAAATCTTCTCTCATCCGCC	Sequencing of pAM2991 inserts
23	pRL153_Seq_Rev	AGGAGATTAACCCGCCCAAG	Sequencing of pRL153 inserts
24	CS3_Seq_Fwd	CGCGCAGATCAGTTGGAAG	Sequencing of gene replacement plasmids
25	CS3_Seq_Rev	AACGTCGGTTCGAGATGGC	Sequencing of gene replacement plasmids
26	GFP_Seq_Rev	TTGTGCCCATTAACATCACCATC	Sequencing of GFP containing plasmids
27	pJET1.2 forward sequencing primer	CGACTCACTATAGGGAGAGCGGC	Sequencing of pJET1.2 inserts
28	pJET1.2 reverse sequencing primer	AAGAACATCGATTTTCCATGGCAG	Sequencing of pJET1.2 inserts
29	pKO_Seq_Fwd	GCCTTTTTACGGTTCCTGGC	Sequencing pTHS121

30	pKO_Seq_Rev	TCTTTTCTACGGGGTCTGACG	Sequencing pTHS121
31	pIGA_Seq_Fwd	TGCGCATAGAAATTGCATCA	Sequencing of pIGA inserts
32	pIGA_Seq_Rev	GTCAGCAACACCTTCTTCA	Sequencing of pIGA inserts
33	pRL271_Seq_Fwd	GCCTGGTGCTACGCCTGAATA	Sequencing of pRL271 inserts
34	pRL271_Seq_Rev	CCAGTTAATAGTTTGCGCAACGTTG	Sequencing of pRL271 inserts
35	pRL278_Seq_Fwd	GGGGCGTAATTTTTTTAAGGCAGTTATTG	Sequencing of pRL278 inserts
36	pSL2680_Seq_A	CAAGAGGGCAAAAAACTCAATTTG	Sequencing of pSL2680 inserts
37	cpf1_1A	TTGGTCATGAGATTATCAAAAAGGATCCT GGAAAACGTTCTTCGGGGC	Amplification of <i>cpf1</i> for pTHS123
38	pRL25c_CRISPR_2 B	AGGCCCTTTCGTCTTCAAGAATTCTTTAC ACTGATGAATGTTCCGTTGCG	Amplification of <i>cpf1</i> for pTHS123
39	cpf1-1	CTCCAGAAGCTATAAACTATGAAC	Sequencing of cpf1
40	cpf1-2	CTACTTCAAGCTAGTGCGGAA	Sequencing of cpf1
41	cpf1-3	GTTGAAAATCAAGGCTACAAACTAAC	Sequencing of cpf1
42	cpf1-4	CGTTTCAAGGTAGAGAAGCAGG	Sequencing of cpf1
43	pRL25c_Seq_Fwd	CTTTGATCTTTTCTACGGGGTCT	Sequencing of pRL25C inserts
44	pRL25c_Seq_Rev	TTGAGGTGAGGGATGAGCG	Sequencing of pRL25C inserts
45	pMAL_Seq_Fwd	AGAAAGGTGAAATCATGCCG	Sequencing of pMAL-c2x inserts
46	pMAL_Seq_Rev	CTGCAAGGCGATTAAGTTGG	Sequencing of pMAL-c2x inserts
47	MB_Seq_A	GGCTCGTATGTTGTGTGG	Sequencing of pKNT25, pKT25 and pUT18 inserts
48	MB_Seq_B	GGCTTAACTATGCGGCATC	Sequencing of pKNT25, pUT18 and pUT18C inserts
49	MB_Seq_C	TAACGCCAGGGTTTTCCCA	Sequencing of pKT25 inserts
50	pKNT25_Seq_Rev	CGTTTGCGTAACCAGCC	Sequencing of pKNT25 inserts
51	pKT25_Seq_Fwd	GATTCGGTGACCGATTACCTG	Sequencing of pKT25 inserts
52	pUT18_Seq_Rev	GATGCGTTCGCGATCCAG	Sequencing of pUT18 inserts

53	pUT18C_Seq_Fwd	TCGCCGGATGTACTGGAAAC	Sequencing of pUT18C inserts
54	N-term_1A	GAGGATCCCCGGGTACC	Amplification of pKNT25 and pUT18
55	N-term_1B	TAGAGTCGACCTGCAGGCA	Amplification of pKNT25 and pUT18
56	pKT25_1A	CCCCGGGTACCTAAGTAAGTAAG	Amplification of pKT25
57	pKT25_1B	ATCCTCTAGAGTCGACCCTGC	Amplification of pKT25
58	pUT18C_1A	CCGAGCTCGAATTCATCGAT	Amplification of pUT18C
59	pUT18C_1B	TACCCGGGGATCCTCTAGAGT	Amplification of pUT18C
60	pET21a_1A	CACCACCACCACCAC	Amplification of pET21a(+) for gfp fusions
61	pET21a_1B	ATGTATATCTCCTTCTTAAAGTTAAACAAA ATTATTTCTAGAGG	Amplification of pET21a(+) for gfp fusions
62	pRL271_Fwd	GAGCTCGCGAAAGCTTGCATG	Amplification of pRL271 and pRL278
63	pRL271_Rev	CTCGAGATCTAGATATCGAATTTCTGCCA T	Amplification of pRL271
64	pRL278_Rev	CCGCTTATTATCACTTATTCAGGCG	Amplification of pRL278
65	pETM22_Vec_R	ATGTTTTTCGTATTTTCCCTACCAGAAGAA TGATGATGATGATGG	Amplificaiton of pETM22
66	pETM22_Vec_F	TGGATGAACTATACAAATAAATCCGGCTG CTAACAAAGC	Amplificaiton of pETM22
67	Vector.FOR	TGATGTTCAACTTCGACAGCGAATTCCTC GACCTGCAGGG	Amplification of pIGA
68	Vector.REV	AGGGACTCTTCTCTACAGGTGGTACCCC GGGTTCGAAATCG	Amplification of pIGA
69	YFP_pcpc560_2A	CATAAAGTCAAGTAGGAGATTAATTCAAT GCTGAGCAAGGGCGA	Amplification of YFP with overhang to P _{cpc560}
70	YFP_2A	TACAGGTTAGGAGAACGCCATGCTGAGC AAGGGCG	Amplification of YFP
71	YFP-Myc_2B	CAGATCCTCTTCAGAGATGAGTTTCTGCT CCTTGTACAGCTCGTCCATGC	Amplification of YFP with C- terminal <i>myc</i>
72	Myc+Linker_2B	TCCTGAACCCGATCCAGAGCCCAGATCC TCTTCAGAGATGAGTTTC	Amplification of YFP with C- terminal <i>myc</i> and a GSGSGSG linker

73	XIII-GFP_1A	GCTAGCGACTCGACCGGTTC	Amplification of pRL153
74	XIII-GFP_1B	GCTTAATTTCTCCTCTTTAATTCTAGGTAC CCG	Amplification of pRL153
75	eYFP_MYC_3A	GAGCAGAAACTCATCTCTGAAGAGGATCT GATGCTGAGCAAGGGCGAG	<i>yfp</i> for pTHS82
76	eYFP_3B	AACCGGTCGAGTCGCTAGCTTACTTGTAC AGCTCGTCCATGC	<i>yfp</i> for pTHS82
77	GFP_pAM2991_2B	GCCTGCAGGTCGACTCTAGATTATTTGTA TAGTTCATCCATGCCATG	<i>hmpF_{syc}-gfp</i> for pTHS74
78	His_pAM2991_2B	GCCTGCAGGTCGACTCTAGATCAGTGGT GGTGGTGGTG	syc2039-gfp-his for pTHS75
79	CS.3_Fwd	GATCCGTGCACAGCACCTTG	Amplification of CS.3 cassette
80	CS.3_Rev	TTATTTGCCGACTACCTTGGTGATCT	Amplification of CS.3 cassette
81	nptII_Fwd	ATGATTGAACAAGATGGATTGCACG	Amplification of nptII
82	nptII_Rev	TCAGAAGAACTCGTCAAGAAGGCG	Amplification of nptII
83	pUC_ori_Fwd	TTGAGATCCTTTTTTTCTGCGCGTAATC	Amplification of pUC origin
84	pUC_ori_Rev	TTTCCATAGGCTCCGCCCC	Amplification of pUC origin
85	nptII_A	AAGCTTCACGCTGCCGCAA	Amplification of PnptII::nptII
86	nptII_B	TCAGAAGAACTCGTCAAGAAGGCG	Amplification of PnptII::nptII
87	GFP_pET21a_2B	AGTGGTGGTGGTGGTGGTGTTTGTATAG TTCATCCATGCCATG	Amplification of <i>gfp</i> -fusions for insertion into pET21a(+)
88	7001_EcoRI_Fwd	GCAT <u>GAATTC</u> AGGGAAAATACGAAAAACA TTG	<i>fm7001</i> for pTHS73
89	7001_His_PstI_R	GCTA <u>CTGCAG</u> TCAGTGGTGATGGTGATG ATGGACTAAGGCAGTCATTAAATAGT	<i>fm7001</i> for pTHS73
90	Fragment 1.FOR	GATTTCGAACCCGGGGTACCACCTGTAG AGAAGAGTCCCTGAATATCAA	P _{cpc560} for pTHS60
91	Fragment 1.REV	TTTTTCGTATTTTCCCTCATTGAATTAATC TCCTACTTGACTTTATGAGTTGGGA	P _{cpc560} for pTHS60
92	Fragment 2.FOR	TCAAGTAGGAGATTAATTCAATGAGGGAA AATACGAAAAACATTGGAGT	f <i>m7001</i> for pTHS60
93	Fragment 2.REV	GCACTAGCAGATGCACTAGCGACTAAGG CAGTCATTAAATAGTGAAGTAAGTAATTAA AGTAAC	<i>fm7001</i> for pTHS60
94	Fragment 3.FOR	ATTTAATGACTGCCTTAGTCGCTAGTGCA TCTGCTAGTGCTAGT	<i>gfp</i> -tagged genes for pTHS60
95	Fragment 3.REV	CCGACAATCCAAACACCGGTTTATTTGTA TAGTTCATCCATGCCATG	<i>gfp</i> -tagged genes for pTHS60

96	Fragment 4.FOR	TGGATGAACTATACAAATAAACCGGTGTT TGGATTGTCGG	TrbcL for pTHS60
97	Fragment 4.REV	CCCTGCAGGTCGAGGAATTCGCTGTCGA AGTTGAACATCAGTAAGC	TrbcL for pTHS60
98	TrbcL_A	ACCGGTGTTTGGATTGTCGG	Amplification of pIGA containing Pcpc560 and TrbcL for pTH76
99	pIGA_Pcpc560_1B	TGAATTAATCTCCTACTTGACTTTATGAGT TGGG	Amplification of pIGA containing P _{cpc560} and T _{rbcL} for pTH76
100	YFP_pcpc560_2A	CATAAAGTCAAGTAGGAGATTAATTCAAT GCTGAGCAAGGGCGA	<i>yfp-fm7001</i> for pTHS76
101	7001_TrbcL_2B	CCGACAATCCAAACACCGGTTCAGACTAA GGCAGTCATTAAATAGTGAAG	<i>yfp-fm7001</i> for pTHS76
102	7001F_BamHI	ACT <u>GGATCC</u> AGGGAAAATACGAAAAACAT TGGA	<i>fm7001</i> for pTHS63
103	7001R_NotI	A <u>GCGGCCGC</u> TCAGACTAAGGCAGTCATT AAATAGTG	<i>fm7001</i> for pTHS63
104	7001F_BamHI	<u>GGATCC</u> TATGAGGGAAAATACGAAAAAC	<i>fm7001</i> for pTHS95, pTHS96, pTHS97 and pTHS98
105	7001R_EcoRI	AGC <u>GAATTC</u> TCAGACTAAGGCAGTCAT	<i>fm7001</i> for pTHS96 and pTHS98
106	7001R_Sacl	GAGCTCCTGACTAAGGCAGTCATTA	<i>fm7001</i> for pTHS95 and pTHS97
107	7120petER_7001ol	GTATTTTCCCTCATACCTGTAGTTTTATTT TTCTTATTTC	<i>petE</i> for pTHS83 (overlap PCR)
108	7001F_petEol	AAAACTACAGGTATGAGGGAAAATACGAA AAAC	<i>fm7001</i> for pTHS83 (overlap PCR)
109	7001R_Sacl_C	AGCGAGCTCTAAGGCAGTCATTAAATAGT G	<i>fm7001</i> for pTHS83
110	7001F_Nhel	AACTGCTAGCAGGGAAAATACGAAAAAC	<i>fm7001</i> for pTHS83
111	7001_3A	CTCTGGATCGGGTTCAGGAATGAGGGAA AATACGAAAAACATTGG	<i>fm7001</i> for pTHS84
112	7001_3B	CCTTTCGTCTTCAAGAATTCTTCAGACTAA GGCAGTCATTAAATAGTG	<i>fm7001</i> for pTHS84
113	pRL271_7up_F	AGAAATTCGATATCTAGATCTCGAGAGCA ATGTGAGTGAGTTCGTGAGC	Upstream homology for pTHS126
114	7001KO_1B	GTGCTTGCGGCAGCGTGAAGCTTGGGGT TATCCTTAATAGAAGAAGAGTGC	Upstream homology for pTHS126
115	7001KO_2A	CGCCTTCTTGACGAGTTCTTCTGAATCAA GAGCATTCTTGATTTCTGTCTCA	Downstream homology for pTHS126

116	pRL271_7down_R	CAGGCATGCAAGCTTTCGCGAGCTCTGC TACCAAGACGATGCGTTTCATGTC	Downstream homology for pTHS126
117	7001KO_2A2	AATTCGATATCTAGATCTCGAGTTGCGTT TCAAAACACTACAAATTAGTACAAAC	Upstream homology for pTHS127
118	7001KO_2B2	AAGGTGCTGTGCACGGATCGGGGTTATC CTTAATAGAAGAAGAGTGC	Upstream homology for pTHS127
119	7001KO_4A2	CAAGGTAGTCGGCAAATAAATCAAGAGCA TTCTTGATTTCTGTCTC	Downstream homology for pTHS127
120	7001KO_4B2	TGCAAGCTTTCGCGAGCTCCTGAAGACA AAGATGAAGTTTCGATATTACC	Downstream homology for pTHS127
121	trunc7001_2A	CTGAATAAGTGATAATAAGCGGTTGCGTT TCAAAACACTACAAATTAGTACAAA	Truncated <i>fm7001</i> for pTHS128
122	trunc7001_2B	TGCAAGCTTTCGCGAGCTCGTATTGATAC TGGGTTGAGAATACTGC	Truncated <i>fm7001</i> for pTHS128
123	7001_gRNA_A	AGATGAGTTTTGCACAAAGTTGGA	fm7001 gRNA for pTHS121 and pTHS123
124	7001_gRNA_B	AGACTCCAACTTTGTGCAAAACTC	fm7001 gRNA for pTHS121 and pTHS123
125	Fm7001_HL1A	TTGTCTAGCTTTAATGCGGTAGTTGGTAC CAGGAACATCGCGTCTCTACC	Downstream homology repair template for pTHS121 and pTHS123
126	Fm7001_HL1B	AAGAATGCTCTTGATGGGGTTATCCTTAA TAGAAGAAGAGTGC	Upstream homology repair template for pTHS121 and pTHS123
127	Fm7001_HL2A	TATTAAGGATAACCCCATCAAGAGCATTC TTGATTTCTGTCTC	Upstream homology repair template for pTHS121 and pTHS123
128	Fm7001_HL2B	GATTACAGATCCTCTAGAGTCGACGGTAC CTAAGGCAGCAACGTTTTCCG	Downstream homology repair template for pTHS121 and pTHS123
129	Syn017_Ndel_fwd	GCTA <u>CATATG</u> ACAAGTCAAAATTTTGTTTC TGAT	<i>slr70</i> 83 for pTHS61
130	Syn017_Xhol_wo_re v	GCTA <u>CTCGAG</u> TGGTAAATAAGGGGGAGT GG	<i>slr7083</i> for pTHS61
131	pIGA_V_017_R	ACAAAATTTTGACTTGTCATTGAATTAATC TCCTACTTGACTTTATGAGTTGG	Amplification of pIGA with Pcpc560 and TrbcL for pTHS77

132	pIGA_V_017_F	CCACTCCCCCTTATTTACCAGCTAGTGCA TCTGCTAGTGCT	Amplification of pIGA with Pcpc560 and TrbcL for pTHS77
133	pIGA_Syn017_F	TCAAGTAGGAGATTAATTCAATGACAAGT CAAAATTTTGTTTCTGATCAAG	s <i>lr70</i> 83 for pTHS77
134	pIGA_Syn017_R	GCACTAGCAGATGCACTAGCTGGTAAATA AGGGGGAGTGGGAC	<i>slr70</i> 83 for pTHS77
135	Syn017_pRL25c_F	TAAAACTACAGGTTAGGAGAACGCCATGA CAAGTCAAAATTTTGTTTCTGATCAAGATA CC	<i>slr7083</i> for pTHS86
136	Syn017_pRL25c_R	CACTAGCACTAGCAGATGCACTAGCTGG TAAATAAGGGGGAGTGGGACG	<i>slr70</i> 83 for pTHS86
137	017_up_Fwd	GTCAGGGGGGGGGGGGGCCTATGGAAATTT CCCAACAAATTAGTGAATGGCAGG	Upstream homology for pTHS120
138	017_up_Rev	CGTGCAATCCATCTTGTTCAATCATTGTTT TACCAGATTAAAATTAATGATTGAGACAG AATTGAAAAG	Upstream homology for pTHS120
139	017_down_Fwd	TCGCCTTCTTGACGAGTTCTTCTGAGATT TCCAGTCACTTCCGTTTTTTTACTATTAGG	Downstream homology for pTHS120
140	017_down_Rev	TACGCGCAGAAAAAAAGGATCTCAAAATC CTAAAATTCGTGGTTCATCTTTCTTTGT	Downstream homology for pTHS120
141	Syn017_3A	CTCTGGATCGGGTTCAGGAATGACAAGT CAAAATTTTGTTTCTGATC	<i>slr70</i> 83 for pTHS85
142	Syn017_3B	CCTTTCGTCTTCAAGAATTCTCTATGGTAA ATAAGGGGGAGTGGG	<i>slr70</i> 83 for pTHS85
143	Syn017_pET_2A	GTTTAACTTTAAGAAGGAGATATACATAT GACAAGTCAAAATTTTGTTTCTGATCAAG	<i>slr70</i> 83 for pTHS69
144	017_Seq_A	CCACAGCGGAAACCTTTTTAGATC	Sequencing of Δ <i>slr7083</i> plasmids
145	017_Seq_B	AAACGAACAGAGTGGAACTTTGC	Sequencing of $\Delta s lr7083$ plasmids
146	Syc484_2A	GTTTAACTTTAAGAAGGAGATATACATAT GAACTACGCTCTTACCCAAG	<i>syc2039</i> for pTHS87
147	Syc484_2B	AGTGGTGGTGGTGGTGGTGAGACCCTAA CCAGCGGC	<i>syc2039</i> for pTHS87
148	Syc484_pIGA_2A	TAAAGTCAAGTAGGAGATTAATTCAATGA ACTACGCTCTTACCCAAGC	s <i>yc2039</i> for pTHS80
149	Syc484_2A2	TACAGGTTAGGAGAACGCCATGAACTAC GCTCTTACCCAAG	syc2039 for pTHS62
150	Syc484_2B2	CACTAGCAGATGCACTAGCAGACCCTAA CCAGCGGC	<i>syc2039</i> for pTHS62
151	Syc484_pAM2991_2 A	CACACAGGAAACAGACCATGAACTACGC TCTTACCCAAGC	<i>syc2039</i> for pTHS75
152	Syc484_KO_2A	TGTAGGAGATCTTCTAGAAAGATGTAGGC ATCAAAGGCAGGC	Upstream homology for pTHS119

153	Syc484_KO_2B	CTTGCGGCAGCGTGAAGCTTAGCAAAGC AAAAGAAGCGATCG	Upstream homology for pTHS119
154	Syc484_KO_4A	TTCTTGACGAGTTCTTCTGATTCTGCTGC GATGCGTTAGG	Downstream homology for pTHS119
155	Syc484_KO_4B	CTCGAGTTTTTCAGCAAGATCAAGTAAGA CTGGCTGCCATG	Downstream homology for pTHS119
156	Syc484_Seq_A	GATGCCACCGAGCAGAATTAG	Verification of Δ <i>syc</i> 2039
157	Syc484_Seq_B	GGCAGATCAATCAGCAGCTC	Verification of Δsyc2039
158	Syc879_pET_2A	GTTTAACTTTAAGAAGGAGATATACATAT GCTCTATCTGGCTGAAGTCG	<i>hmpF_{syc}</i> for pTHS66
159	Syc879_pET_2B	CAGTGGTGGTGGTGGTGGGCTGCAA TCAGTTGATGACT	<i>hmpF_{syc}</i> for pTHS66
160	Syc879_pIGA_2A	TAAAGTCAAGTAGGAGATTAATTCAGTGC TCTATCTGGCTGAAGTCGG	<i>hmpF_{syc}</i> for pTHS81
161	Syc879_2A	TACAGGTTAGGAGAACGCCATGCTCTATC TGGCTGAAGTCG	<i>hmpF_{Syc}</i> for pTHS93
162	Syc879_2B	CACTAGCAGATGCACTAGCGGCTGCAAT CAGTTGATGACTG	<i>hmpF_{syc}</i> for pTHS93
163	Syc879_pAM2991_2 A	CACACAGGAAACAGACCATGCTCTATCTG GCTGAAGTCGG	<i>hmpFsyc</i> for pTHS74
164	Syc879_KO_2A	TGTAGGAGATCTTCTAGAAAGATCTGGAG CGATCGCTATGG	Upstream homology for pTHS133
165	Syc879_KO_2B	CTTGCGGCAGCGTGAAGCTTTATCGATG CCTCGCCTTAATCAATC	Upstream homology for pTHS133
166	Syc879_KO_4A	CCTTCTTGACGAGTTCTTCTGAGCCAGTC CCCCGCGACTA	Downstream homology for pTHS133
167	Syc879_KO_4B	CTCGAGTTTTTCAGCAAGATGGCAAGCG CAACTGAATTCTTAC	Downstream homology for pTHS133
168	Syn708_Ndel_F	GCTA <u>CATATG</u> CTCTATCTGGCTGAAATTA AGAAA	<i>slr1301</i> for pTHS65
169	Syn708_Xhol_R_w/o	GCTA <u>CTCGAG</u> ACCGCCAAACAATAGGGT C	<i>slr1301</i> for pTHS65
170	Syn708_pET_2A	GTTTAACTTTAAGAAGGAGATATACATAT GCTCTATCTGGCTGAAATTAAGAAAC	<i>slr1301</i> for pTHS67
171	Syn708_pRL25c_Fw d	TAAAACTACAGGTTAGGAGAACGCCATGC TCTATCTGGCTGAAATTAAGAAACAAAC	s <i>lr1301</i> for pTHS91
172	Syn708_pRL25c_Re v	CACTAGCACTAGCAGATGCACTAGCACC GCCAAACAATAGGGTCT	<i>slr1301</i> for pTHS91
173	Syn708_3A	CTCTGGATCGGGTTCAGGAGTGCTCTAT CTGGCTGAAATTAAG	s <i>lr1301</i> for pTHS92
174	Syn708_3B	CCTTTCGTCTTCAAGAATTCTCTAACCGC CAAACAATAGGGTC	s <i>lr1301</i> for pTHS92

175	153Syn708_2A	AGAATTAAAGAGGAGAAATTAAGCATGCT CTATCTGGCTGAAATTAAGAAAC	<i>slr1301</i> for pTHS82
176	153Syn708_2B	TCAGAGATGAGTTTCTGCTCACCGCCAAA CAATAGGGTC	<i>slr1301</i> for pTHS82
177	pJET708_2A	TGTAGGAGATCTTCTAGAAAGATAATAGA CTGCAATGTCAAAAAACTCAG	Upstream homology for pTHS131
178	708KO_CS3_2B	CAAGGTGCTGTGCACGGATCAAGTCGTT GTCCTGAGCAG	Upstream homology for pTHS131
179	708KO_CS3_4A	CCAAGGTAGTCGGCAAATAATTGGGTTG GTTGCCGAC	Downstream homology for pTHS131
180	pJET708_4B	CTCGAGTTTTTCAGCAAGATTTAGCAAGG TGGGGGGAATG	Downstream homology for pTHS131
181	708KO_1Aa	CCTGATTCTGTGGATAACCGTACGTCAAA ATCGAATTCCCGGTC	Upstream homology for pTHS132
182	708KO_1B	TGCTTGCGGCAGCGTGAAGCTTAAGTCG TTGTCCTGAGCAGTG	Upstream homology for pTHS132
183	708KO_2A	CGCCTTCTTGACGAGTTCTTCTGATTGGG TTGGTTGCCGACTTC	Downstream homology for pTHS132
184	708KO_2B	GATTATCAAAAAGGATCTTCACCTTTAGC AAGGTGGGGGGGAATGC	Downstream homology for pTHS132
185	Nos389_pET_2A	GTTTAACTTTAAGAAGGAGATATACATAT GAATAGTGAGTTGTTCCAGAAGC	<i>all4981</i> for pTHS72
186	Nos389_Ndel_F	GCTA <u>CATATG</u> AATAGTGAGTTGTTCCAGA AG	<i>all4981</i> for pTHS64
187	Nos389_Xhol_wo_R	GCTA <u>CTCGAG</u> GATGTTACTATCACTACTT TGAATTTTT	<i>all4981</i> for pTHS64
188	Nos389_2A	CTACAGGTTAGGAGAACGCCATGAATAGT GAGTTGTTCCAGAAGCTAGC	<i>all4981</i> for pTHS89
189	Nos389_2B	GCACTAGCAGATGCACTAGCGATGTTACT ATCACTACTTTGAATTTTTTTGAGTTTGGC	<i>all4981</i> for pTHS89
190	Nos389_3A	CTCTGGATCGGGTTCAGGAATGAATAGT GAGTTGTTCCAGAAGC	<i>all4981</i> for pTHS88
191	Nos389_3B	CCTTTCGTCTTCAAGAATTCTTTAGATGTT ACTATCACTACTTTGAATTTTTTTGAG	<i>all4981</i> for pTHS88
192	Nos389_pIGA_2A	TAAAGTCAAGTAGGAGATTAATTCAATGA ATAGTGAGTTGTTCCAGAAGC	<i>all4981</i> for pTHS79
193	Nos389_TrbcL_2B	CCGACAATCCAAACACCGGTTTAGATGTT ACTATCACTACTTTGAATTTTTTGAGTTT G	<i>all4981</i> for pTHS78
194	389KO_2A	ATTCGATATCTAGATCTCGAGTGTCAGAT TTAGTACTTTAAATACAAGACTTACACAC	Upstream homology for pTHS129

195	389KO_2B	CAAGGTGCTGTGCACGGATCAGCTGTTC GCTCTTGAGGG	Upstream homology for pTHS129
196	389КО_4А	CCAAGGTAGTCGGCAAATAAAGTAACGC GATGTGCGACT	Downstream homology for pTHS129
197	389KO_4B	ATGCAAGCTTTCGCGAGCTCGATTAATAC CTTTGGTGTTCATGACACTGG	Downstream homology for pTHS129
198	trunc389_2A	CTGAATAAGTGATAATAAGCGGAAGCCAT TTTAGATCGAGAGGCG	Truncated <i>all4981</i> for pTHS130
199	trunc389_2B	TGCAAGCTTTCGCGAGCTCGCTAAATTCC AAAACTCACTGCCTT	Truncated all4981 for pTHS130
200	Nos389_gRNA-A	AGATCAGAAGCTAGCAAAAGCACA	all4981 gRNA for pTHS124 and pTHS125
201	Nos389_gRNA-B	AGACTGTGCTTTTGCTAGCTTCTG	<i>all4981</i> gRNA for pTHS124 and pTHS125
202	Nos389_HL1A	TTTGTCTAGCTTTAATGCGGTAGTTGGTA CCGTGTGGGGGTAATTTGCGGG	Upstream homology for pTHS124 and pTHS125
203	Nos389_HL1B	ATAAGTCGCACATCGCGTTACTTCATAGC TGTTCGCTCTTGAGG	Upstream homology for pTHS124 and pTHS125
204	Nos389_HR2A	CCTCAAGAGCGAACAGCTATGAAGTAAC GCGATGTGCGACTTATTC	Downstream homology for pTHS124 and pTHS125
205	Nos389_HR2B	GGATTACAGATCCTCTAGAGTCGACGGTA CCGGACACCACCAGCCATTTC	Downstream homology for pTHS124 and pTHS125
206	MB_1A	TGCCTGCAGGTCGACTCTAATGAATAGTG AGTTGTTCCAGAAGC	<i>all4981</i> for pTHS107 and pTHS109
207	MB_1B	TCGGTACCCGGGGATCCTCGATGTTACT ATCACTACTTTGAATTTTTTTGAGT	<i>All4981</i> for pTHS107 and pTHS109
208	MB_2A	AGGGTCGACTCTAGAGGATATGAATAGT GAGTTGTTCCAGAAGC	<i>all4981</i> for pTHS108
209	MB_2B	CTTACTTAGGTACCCGGGGGGATGTTACTA TCACTACTTTGAATTTTTTTGAGT	<i>all4981</i> for pTHS108
210	MB_4A	TCTAGAGGATCCCCGGGTAATGAATAGT GAGTTGTTCCAGAAGC	<i>all4981</i> for pTHS110
211	MB_4B	TCGATGAATTCGAGCTCGGGATGTTACTA TCACTACTTTGAATTTTTTTGAGT	<i>all4981</i> for pTHS110
212	MB_9A	TGCCTGCAGGTCGACTCTAATGCTCTATC TGGCTGAAATTAAGAAAC	<i>slr1301</i> for pTHS111 and pTHS113

213	MB_9B	TCGGTACCCGGGGATCCTCACCGCCAAA CAATAGGGT	<i>slr1301</i> for pTHS111 and pTHS113
214	MB_10A	AGGGTCGACTCTAGAGGATATGCTCTATC TGGCTGAAATTAAGAAAC	<i>slr1301</i> for pTHS112
215	MB_10B	CTTACTTAGGTACCCGGGGACCGCCAAA CAATAGGGTC	<i>slr1301</i> for pTHS112
216	MB_12A	TCTAGAGGATCCCCGGGTAATGCTCTATC TGGCTGAAATTAAGAAAC	<i>slr1301</i> for pTHS114
217	MB_12B	TCGATGAATTCGAGCTCGGACCGCCAAA CAATAGGGTC	<i>slr1301</i> for pTHS114
218	MB_13A	TGCCTGCAGGTCGACTCTAATGACAAGTC AAAATTTTGTTTCTGATCAAG	<i>slr7083</i> for pTHS99 and pTHS101
219	MB_13B	TCGGTACCCGGGGATCCTCTGGTAAATA AGGGGGAGTGGGAC	<i>slr7083</i> for pTHS99 and pTHS101
220	MB_14A	AGGGTCGACTCTAGAGGATATGACAAGT CAAAATTTTGTTTCTGATCAAG	<i>slr7083</i> for pTHS100
221	MB_14B	CTTACTTAGGTACCCGGGGTGGTAAATAA GGGGGAGTGGGAC	s <i>lr7083</i> for pTHS100
222	MB_16A	TCTAGAGGATCCCCGGGTAATGACAAGT CAAAATTTTGTTTCTGATCAAG	s <i>lr7083</i> for pTHS102
223	MB_16B	TCGATGAATTCGAGCTCGGTGGTAAATAA GGGGGAGTGGGAC	<i>slr7083</i> for pTHS102
224	MB_33A	TGCCTGCAGGTCGACTCTAATGCTCTATC TGGCTGAAGTCG	<i>hmpF_{Syc}</i> for pTHS115 and pTHS117
225	MB_33B	TCGGTACCCGGGGATCCTCGGCTGCAAT CAGTTGATGACT	<i>hmpF_{Syc}</i> for pTHS115 and pTHS117
226	MB_34A	AGGGTCGACTCTAGAGGATATGCTCTATC TGGCTGAAGTCG	<i>hmpF_{syc}</i> for pTHS116
227	MB_34B	CTTACTTAGGTACCCGGGGGGGCTGCAAT CAGTTGATGACT	<i>hmpF_{Syc}</i> for pTHS116
228	MB_36A	TCTAGAGGATCCCCGGGTAATGCTCTATC TGGCTGAAGTCG	<i>hmpF_{syc}</i> for pTHS118
229	MB_36B	TCGATGAATTCGAGCTCGGGGCTGCAAT CAGTTGATGACT	<i>hmpF_{Syc}</i> for pTHS118
230	MB_45A	TGCCTGCAGGTCGACTCTAATGAACTACG CTCTTACCCAAG	<i>syc2039</i> for pTHS103 and pTHS105
231	MB_45B	TCGGTACCCGGGGATCCTCAGACCCTAA CCAGCGGC	<i>syc2039</i> for pTHS103 and pTHS105
232	MB_46A	AGGGTCGACTCTAGAGGATATGAACTAC GCTCTTACCCAAG	<i>syc2039</i> for pTHS104
233	MB_46B	CTTACTTAGGTACCCGGGGAGACCCTAA CCAGCGGC	<i>syc20</i> 39 for pTHS104
234	MB_48A	TCTAGAGGATCCCCGGGTAATGAACTAC GCTCTTACCCAAG	<i>syc20</i> 39 for pTHS106

235	MB_48B TCGATGAATTCGAGCTCGG CCAGCGGC		GAGACCCTAA	<i>syc2039</i> for pTHS106	
236	708_S	eq_A	CCAACAAACTACCTACCACCAGTC		Verification of ΔhmpFsyn
237	708_S	eq_B	CCGTAGGGATGCCTGATAAACC		Verification of ΔhmpFsyn
238	Syc879_Seq_A		CATCAGGAATGGATGCAGGAGG		Verification of ΔhmpFsyc
239	Syc87	9_Seq_B	GGCCGCTAATCACTTTCAGTG		Verification of ΔhmpFsyc
Plasmids Description		Description		Resistance	Reference
pJET1 blunt	.2/	<i>E. coli</i> subclon	ing vector	Amp	Thermo Fischer Scientific
pMAL-	-c2x	Bacterial vecto MBP-tagged p Xa cleavage s	Bacterial vector for expressing N-terminal MBP-tagged proteins in <i>E. coli</i> with a Factor Xa cleavage site		A gift from Axel Scheidig (University of Kiel)
pet21a(+)		Bacterial vector for expressing C-terminal 6His-tagged proteins in <i>E. coli</i>		Amp	Novagen
pRL25C		Shuttle cosmid vector for cyanobacteria and <i>E. coli</i>		Km, Nm	8
pRL623		Methylation plasmid		Cm	8
pRL443		Conjugation plasmid		Amp	8
pRL271		<i>sacB</i> containing plasmid to select for double homologous recombination in <i>Anabaena</i>		Cm	9
pRL278		<i>sacB</i> containing plasmid to select for double homologous recombination in <i>Anabaena</i>		Km, Nm	9
pSL2680		Cpf1-mediated	I CRISPR editing plasmid	Km, Nm	10
pRL25c- CRISPR		Functional CRISPR cassette from pSL2680 transferred into EcoRI and BamHI digested pRL25c by GIBSON assembly		Km, Nm	This work
pSM2- Pcpc560ter		pMD18-T derivate for insertion into <i>pta</i> , containing P _{cpc560} :: <i>ter</i> ::T _{rbcL} expression cassette		Km, Amp	A gift from Yin Li (Chinese Academy of Science), 11
pIGA		Cyanobacterial vector for insertion into neutral locus (RS1 and RS2) of <i>slr0168</i> in <i>Synechocystis</i>		Amp, Km	A gift from Martin Hagemann (University Rostock), 12
pRL153-GFP		Mobilizable broad host range vector, Ptrc- gfp		Km, Nm	13
pKNT2	25	Plac::- <i>T</i> 25		Km	Euromedex
pKT25	5	Plac:: 725-		Km	Euromedex

pUT18	Plac::- <i>T18</i>	Amp	Euromedex
pUT18C	Plac:: <i>T18-</i>	Amp	Euromedex
pKT25-zip	рКТ25; Р _{lac} :: <i>Т25-zip</i>	Km	Euromedex
pUT18C-zip	pUT18C, Plac:: <i>T18-zip</i>	Amp	Euromedex
pAM2991	Cyanobacterial vector for expression of proteins under the control of Ptrc that inserts into the NS1 site of <i>Synechococcus</i>	Sm, Sp	A gift from Susan Golden (Addgene plasmid # 40248)
pTHS1	pRL25C, P _{petE} ::alr4504-gfp	Km, Nm	This study
pTHS33	pKNT25, Plac:: <i>sepJ-T25</i>	Km, Nm	This study
pTHS34	pKT25, Plac:: <i>T25-sepJ</i>	Km, Nm	This study
pTHS35	pUT18, Plac::s <i>epJ-T18</i>	Amp	This study
pTHS36	pUT18C, Plac:: <i>T18-sepJ</i>	Amp	This study
pTHS37	pKNT25, Plac:: <i>ftsZ-T</i> 25	Km, Nm	This study
pTHS38	pKT25, Plac:: <i>T25-ftsZ</i>	Km, Nm	This study
pTHS39	pUT18, Plac:: <i>ftsZ-T18</i>	Amp	This study
pTHS40	pUT18C, Plac:: <i>T18-ftsZ</i>	Amp	This study
pTHS41	pKNT25, Plac:: <i>mreB-T25</i>	Km, Nm	This study
pTHS42	pKT25, Plac:: <i>T25-mreB</i>	Km, Nm	This study
pTHS43	pUT18, Plac:: <i>mreB-T18</i>	Amp	This study
pTHS44	pUT18C, Plac:: <i>T18-mreB</i>	Amp	This study
pTHS60	pIGA, Pcpc560:: <i>fm7001-gfp</i> ::TrbcL	Amp, Km	This study
pTHS61	pET21a(+), P⊤7∷ <i>sIr7083-hi</i> s	Amp	This study
pTHS62	pET21a(+), PT7:: <i>syc2039-his</i>	Amp	This study
pTHS63	pET21a(+), P⊤7∷ <i>fm7001-hi</i> s	Amp	This study
pTHS64	pET21a(+), P⊤7∷ <i>all4981-his</i>	Amp	This study
pTHS65	pET21a(+), PT7:: <i>hmpF</i> syn-his	Amp	This study
pTHS66	pET21a(+), PT7:: <i>hmpF</i> syc-his	Amp	This study
pTHS67	pET21a(+); PT7:: <i>hmpF</i> syn-gfp	Amp	This study
pTHS68	pET21a(+), PT7:: <i>hmpF</i> syc-gfp	Amp	This study
pTHS69	pET21a(+), P⊤7::s <i>lr7083-gfp</i>	Amp	This study
pTHS70	pET21a(+), Pт7:: <i>fm7001-gfp</i>	Amp	This study
pTHS71	pET21a(+), PT7:: <i>syc2039-gfp</i>	Amp	This study
pTHS72	pET21a(+), PT7:: <i>all4981-gfp</i>	Amp	This study

pTHS73	pMAL-c2x; Ptac:: <i>mbp-fm7001-his</i>	Amp	This study
pTHS74	pAM2991, Ptrc::hmpFsyc-gfp	Sm, Sp	This study
pTHS75	pAM2991, Ptrc::syc2039-gfp-his	Sm, Sp	This study
pTHS76	pIGA, Pcpc560:: <i>yfp-fm7001</i> ::TrbcL	Amp, Km	This study
pTHS77	pIGA, Pcpc560:: <i>slr7083-gfp</i> ::TrbcL	Amp, Km	This study
pTHS78	pIGA, Pcpc560:: <i>yfp-all4981</i> ::TrbcL	Amp, Km	This study
pTHS79	pIGA, Pcpc560:: <i>all4981-gfp</i> ::TrbcL	Amp, Km	This study
pTHS80	pIGA, Pcpc560:: <i>syc2039-gfp</i> ::TrbcL	Amp, Km	This study
pTHS81	pIGA, Pcpc560:: <i>hmpF</i> syc-gfp::TrbcL	Amp, Km	This study
pTHS82	pRL153, Ptrc::hmpFsyn-yfp	Km, Nm	This study
pTHS83	pRL25C, P _{petE} :: <i>fm7001-gfp</i>	Km, Nm	This study
pTHS84	pRL25C, P _{petE} :: <i>yfp-fm7001</i>	Km, Nm	This study
pTHS85	pRL25C, P _{petE} :: <i>yfp-slr70</i> 83	Km, Nm	This study
pTHS86	pRL25C, P _{petE} :: <i>slr7083-gfp</i>	Km, Nm	This study
pTHS87	pRL25C, PpetE::syc2039-gfp	Km, Nm	This study
pTHS88	pRL25C, P _{petE} :: <i>yfp-all4981</i>	Km, Nm	This study
pTHS89	pRL25C, P _{petE} :: <i>all4981-gfp</i>	Km, Nm	This study
pTHS90	pRL25C, P _{petE} -creS-gfp	Km, Nm	This study
pTHS91	pRL25C, P _{petE} :: <i>slr1303-gfp</i>	Km, Nm	This study
pTHS92	pRL25C, P _{petE} :: <i>yfp-slr1303</i>	Km, Nm	This study
pTHS93	pRL25C, PpetE::hmpFsyc-gfp	Km, Nm	This study
pTHS94	pRL25C, Pall4982:: <i>all4982-ecfp</i>	Km, Nm	This study
pTHS95	pKNT25, Plac:: <i>fm7001-T</i> 25	Km, Nm	This study
pTHS96	pKT25, Plac:: <i>T25-fm7001</i>	Km, Nm	This study
pTHS97	pUT18, Plac:: <i>fm7001-T18</i>	Amp	This study
pTHS98	pUT18C, Plac:: <i>T18-fm7001</i>	Amp	This study
pTHS99	pKNT25, Plac:: <i>slr7083-T</i> 25	Km, Nm	This study
pTHS100	pKT25, Plac:: <i>T25-slr7083</i>	Km, Nm	This study
pTHS101	pUT18, Plac:: <i>slr7083-T18</i>	Amp	This study
pTHS102	pUT18C, Plac:: <i>T18-slr7083</i>	Amp	This study
pTHS103	pKNT25, Plac::syc2039-T25	Km, Nm	This study
pTHS104	pKT25, Plac:: <i>T</i> 25-syc2039	Km, Nm	This study

pTHS105	pUT18, Plac::syc2039-T18	Amp	This study
pTHS106	pUT18C, Plac:: <i>T18-syc2039</i>	Amp	This study
pTHS107	pKNT25, Plac:: <i>all4981-T</i> 25	Km, Nm	This study
pTHS108	pKT25, Plac:: <i>T</i> 25-all4981	Km, Nm	This study
pTHS109	pUT18, Plac:: <i>all4</i> 981-T18	Amp	This study
pTHS110	pUT18C, Plac:: <i>T18-all4981</i>	Amp	This study
pTHS111	pKNT25, Plac:: <i>hmpF</i> syn-T25	Km, Nm	This study
pTHS112	pKT25, Plac:: T25-hmpF _{Syn}	Km, Nm	This study
pTHS113	pUT18, Plac:: <i>hmpF</i> syn-T18	Amp	This study
pTHS114	pUT18C, Plac:: <i>T18-hmpF</i> Syn	Amp	This study
pTHS115	pKNT25, Plac:: <i>hmpF</i> syc-T25	Km, Nm	This study
pTHS116	pKT25, Plac:: <i>T25-hmpF</i> syc	Km, Nm	This study
pTHS117	pUT18, Plac:: <i>hmpF</i> syc-T18	Amp	This study
pTHS118	pUT18C, Plac:: <i>T18-hmpF</i> Syc	Amp	This study
pTHS119	pJET1.2/blunt with ~1000 bp upstream and downstream of <i>syc2039</i> flanking <i>nptll</i>	Amp	This study
pTHS120	Circularized pUC ori with 1000 bp upstream and downstream of <i>slr7083</i> flanking <i>nptll</i> assembled by GIBSON assembly	Km, Nm	This study
pTHS121	pSL2680 with <i>fm7001</i> gRNA and homologous repair templates 1000 bp upstream and downstream of <i>fm7001</i>	Km, Nm	This study
pTHS122	pRL25C containing <i>cpf1</i> , <i>lacZα</i> and pre- crRNA array with tandem spacer-repeat sequences from <i>Francisella novicida</i>	Km, Nm	This study
pTHS123	pTHS122 with <i>fm7001</i> gRNA and homologous repair templates 1000 bp upstream and downstream of <i>fm7001</i>	Km, Nm	This study
pTHS124	pSL2680 with <i>all4981</i> gRNA and homologous repair templates 1000 bp upstream and downstream of <i>all4981</i>	Km, Nm	This study
pTHS125	pTHS122 with <i>all4981</i> gRNA and homologous repair templates 1000 bp upstream and downstream of <i>all4981</i>	Km, Nm	This study
pTHS126	pRL271 containing 1000 bp upstream and downstream of <i>fm7001</i> flanking <i>nptll</i>	Km, Nm, Cm	This study
pTHS127	pRL278 containing 2000 bp upstream and downstream of <i>fm7001</i> flanking CS.3	Km, Nm, Sm, Sp	This study
pTHS128	pRL278 containing 2000 bp upstream of <i>fm7001</i> and the first 398 bp of <i>fm7001</i>	Km, Nm	This study

pTHS129	pRL278 containing 1000 bp upstream and downstream of <i>all4981</i> flanking CS.3	Km, Nm, Sm, Sp	This study
pTHS130	pRL278 containing 151 bp upstream of <i>all4981</i> and the first 449 bp of <i>all4981</i>	Km, Nm	This study
pTHS131	pJET1.2/blunt with ~1000 bp upstream and downstream of <i>slr1303</i> flanking CS.3 inserted by GIBSON assembly	Amp	This study
pTHS132	Circularized pUC ori with 1000 bp upstream and downstream of <i>slr1301</i> (<i>hmpFsyn</i>) flanking <i>nptll</i> assembled by GIBSON assembly	Km, Nm	This study
pTHS133	pJET1.2/blunt with ~1000 bp upstream and downstream of <i>syc1139</i> (<i>hmpFsyc</i>) flanking <i>nptll</i> inserted by GIBSON assembly	Amp	This study

140 Restriction sites or overlapping sites are underlined.

Sm: streptomycin resistance; Sp: spectinomycin resistance; Amp: ampicillin resistance, Km: kanamycin
 resistance, Nm: neomycin resistance; Cm: chloramphenicol resistance.

- 1) The eYFP is C-terminally followed by a myc-tag, which is then followed by a heptapeptide of glycine and serine. Abbreviated: *yfp*.
- 2) Modified *gfpmut3.1* in which the internal Ndel site was removed by replacing CAT by the synonymous CAC codon. The GFP is N-terminally preceded by 12 alanine and serine residues₁₄. Abbreviated: *gfp*.
- 148

149 Supplementary references

- Corpet, F. Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res.* 16, 10881–90 (1988).
- Yang, J. & Zhang, Y. I-TASSER server: New development for protein structure and
 function predictions. *Nucleic Acids Res.* 43, W174–W181 (2015).
- Zhang, Y. I-TASSER: Fully automated protein structure prediction in CASP8. *Proteins Struct. Funct. Bioinforma.* 77, 100–113 (2009).
- Boyer, H. & Roulland-Dessoix, D. A complementation analysis of the restrcition and modification of DNA in Escherichia coli. *J. Mol. Biol.* 41, 459–472 (1969).
- 158 5. Meselson, M. & Yuan, R. DNA restriction enzyme from E. coli. *Nature* 217, 1110–4
 (1968).

Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. Differential plasmid rescue from
 transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. *Proc. Natl. Acad. Sci.* 87, 4645–4649 (1990).

- 163 7. Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct
 164 selective high-level expression of cloned genes. *J. Mol. Biol.* 189, 113–130 (1986).
- Wolk, C. P. *et al.* Isolation and complementation of mutants of Anabaena sp. strain PCC
 7120 unable to grow aerobically on dinitrogen. *J. Bacteriol.* **170**, 1239–1244 (1988).
- Cai, Y. & Wolk, C. P. Use of a conditionally lethal gene in Anabaena sp. strain PCC
 7120 to select for double recombinats and to entrap insertion sequnces. *J. Bacteriol.* **172**, 3138–3145 (1990).
- 170 10. Ungerer, J. & Pakrasi, H. B. Cpf1 Is A Versatile Tool for CRISPR Genome Editing
 171 Across Diverse Species of Cyanobacteria. *Sci. Rep.* 6, 1–9 (2016).
- 172 11. Zhou, J. *et al.* Discovery of a super-strong promoter enables efficient production of
 173 heterologous proteins in cyanobacteria. *Sci. Rep.* 4, 1–6 (2014).
- Kunert, A., Hagemann, M. & Erdmann, N. Construction of promoter probe vectors for
 Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB.
 J. Microbiol. Methods 41, 185–194 (2000).
- 177 13. Tolonen, A. C., Liszt, G. B. & Hess, W. R. Genetic manipulation of Prochlorococcus
 178 strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and
 179 Tn5 transposition. *Appl. Environ. Microbiol.* 72, 7607–7613 (2006).
- 14. Stucken, K., Ilhan, J., Roettger, M., Dagan, T. & Martin, W. F. Transformation and
 conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria
 (subsection V) Fischerella and Chlorogloeopsis. *Curr. Microbiol.* 65, 552–560 (2012).

183