
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Structural chromosomal aberrations can result in DNA copy-number alterations (CNAs) that reduces 
the expression of genes within segments that are deleted, and conversely, increase the expression of 
genes when they are amplified. However, changes in gene expression do not always scale 
proportionally with changes in DNA content, suggesting that the abundance of specific genes may be 
controlled through mechanisms beyond simple gene dosage effects. Bhattacharya et al. developed a 
computational method called “transcriptional adaptation to CNA profiling” (TACNA profiling) to 
accurately infer CNAs from transcriptomic data derived from RNA sequencing and microarrays 
without the need for DNA content information. The authors analyzed a large number of samples 
(34,494) made available from public repositories and identified cohorts of genes whose expression 
patterns failed to correlate with DNA copy-number. The authors propose that these 
“transcriptionally adapted” genes are associated with specific biological processes: for example, low 
adaptation for genes involved in proliferation and high adaptation for immune-related genes. 

 

The manuscript is well written, easy to follow, and the data are nicely presented. Overall, this is an 
impressive study that I recommend for publication in Nature Communications pending minor 
experimental revisions. I only have a few questions/suggestions for improvement. 

 

1) The authors propose that TACNA profiling is platform-independent. The authors should analyze a 
cohort of samples that have been subjected to both RNA sequencing and microarray to determine 
whether there is a clear correlation between the two platforms. Along those lines, a validation 
cohort in which both genomic and transcriptomic information are available should be used to 
confirm that CNAs identified by DNA sequencing or SNP analyses are highly correlative with the 
proposed CNAs identified by TACNA profiling. 

 

2) The authors should determine whether tissue/cells/DNA/RNA are available from some samples to 
confirm their results experimentally, for example, by analyzing samples with predicted CNA/gene 
expression changes by DNA FISH and quantitative PCR, respectively. Additionally, several genes 
exhibiting low and high adaptation should be tested using a similar method. If these reagents are not 
available, the authors could subject RNA sequencing data from human cell lines with known 
karyotypes to TACNA profiling. 

 

3) Experimental systems of aneuploidy show that while the expression of most genes follows a 
general pattern across the extra trisomic chromosome, some genes clearly do not follow this trend 



(PMID: 15466185 and 22968442 to name a few). The authors should investigate whether these 
genes fall within their subgroups for transcriptional adaptation. Along those lines, do genes that 
exhibit high adaptation encode components of protein complexes whose function, activity, or 
stability could be dysregulated by the stoichiometric imbalances of individual subunits? 

 

5) Is the degree of adaptation related to the position or locus of the gene? For example, genes 
harbored within euchromatin vs. heterochromatin? How do adaptation profiles change with 
tissue/cancer type? 

 

6) Line 126: The authors propose that a proportion of CNAs colocalized within common fragile sites, 
yet the location of most common fragile sites have only been mapped using low resolution methods. 
This should be further addressed or discussed. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Overview 

-------- 

Tumor pathogenesis and continued oncogenesis is thought to be largely driven by perturbed 
regulatory pathways at key genes. 

CNAs are known to dramatically alter the abundance of nearby genes, and thus make prime 
candidates for studying the effects on 

tumor development. Characterizing the effect of CNAs on tumor expression requires genetic + 
expression assays in large numbers 

of individuals in order to have enough statistical power to overcome experimental design artifacts 
(tissue heterogeneity) and 

technical artifacts (sequencing/library bias). Bhattacharya and Bense et al describe TACNAS, an 
approach to profile the effects 

of CNA on gene expression using a single gene expression profile. 

 

Main Comments 



------------- 

1. The ICA and TACNAS approaches are described in detail in the supplementary note with an 
accompanying figure. However it would be very 

helpful to give an exposition of the approach and a high-level overview at the start of the main 
text/results. Considering this 

represents the major advancement, along with its findings, it would set the tone for the rest of the 
article as well as place 

things in a more interpretable context. 

 

2. The authors demonstrate that the identified CNAs predicted from the TACNAS approach are highly 
correlated on average with actual CNA 

measured within the same dataset. Could the authors also show that this finding is robust to a cross-
validation approach? I suggest this 

be done in two ways. 

 

The first would be to perform k-fold cross-validation within a dataset. That is, hold out a fold, fit the 
ICA model to compute weights and 

predict on the held out set. Repeat for the remaining folds and then compute correlation with actual 
CNAs. It should be noted that the 

matrix whitening here should not include the held-out set. 

 

Similarly, while the authors showed that -weights- are correlated for some genes across studies, it 
would be very convincing if the authors 

could also perform a cross-study cross-validation. For example, take the weights inferred from TCGA 
and apply to CCLE mixing matrix and then 

compute the correlation with actual CNAs. Repeating this for all possible pairs would help get a 
strong sense of the generalizability of 

this approach. 

 

3. The authors take care to clean and prepare the data as much as possible, but it is not clear how 
various relevant covariates that should 



drive large heterogeneity into account. For example, biological sex, individual's age, tumor tissue 
type, etc. 

 

4. For genes identified using TACNAS where correspond data have actual CNA or imputed CNA from 
genotype, can the authors perform a QTL analysis 

while controlling for relevant variables? There was some work showing that CNAs exist in more 
extreme regions, but it would be informative 

to see that actual CNA variation is statistically linked with expression values at these regions. 



 

Referee #1 

We are delighted that the referee finds our manuscript is well-written, easy to follow and 
that our data are nicely presented. The following suggestions for improvement were made: 

Remark 1: “The authors should analyze a cohort of samples that have been subjected to 
both RNA sequencing and microarray to determine whether there is a clear correlation 
between the two platforms.” 

To address this remark, we collected a set of samples (n = 570) from The Cancer Genome Atlas 
(TCGA) for which an expression profile was generated with both RNA sequencing and 
microarray profiling (Affymetrix HG-U133A). These samples represent 295 serous ovarian 
cancers, 130 lung squamous cell cancers and 145 glioblastoma multiforme tumors. Next, we 
independently applied TACNA profiling on both the RNA sequencing and microarray 
profiles. Although the two techniques used to generate these profiles differ substantially, we 
observed a high correlation (distribution mode r = 0.66) between the paired TACNA profiles 
(see panel a of figure below). The correlations between these RNA sequencing and microarray 
derived TACNA 



profiles and their paired CNA profiles (derived from SNP arrays) had a distribution mode with r 
= 0.62 and r = 0.54, respectively (see panels b and c of figure below). The lower correlations 
between CNA profiles and TACNA profiles observed in this set of 570 samples could be 
explained by the fact that 2 out of the 3 tumor types (lung squamous cell cancer and 
glioblastoma multiforme) belong to the more ‘point mutation-driven’ tumor types which 
contain a limited number of CNAs (see panel d of figure below). Moreover, the genes used for 
calculating the correlations in this analysis were limited to those shared by the RNA sequencing 
and microarray platforms. In addition to the results already provided in the previous version of 
the manuscript, this analysis further supports our claim that TACNA profiling can be performed 
on both platforms and is able to extract similar patterns from their gene expression profiles. To 
highlight these results, we added the following graphs as a new supplementary figure 5. 

Supplementary Fig. 5. a Pearson correlations between paired TACNA profiles derived from RNA sequencing and 
microarray profiles (n = 570). b Distribution of Pearson correlations between TACNA profiles derived from RNA 
sequencing data and paired CNA profiles. c Distribution of Pearson correlations between TACNA profiles derived 
from microarray data and paired CNA profiles. d Variance observed in CNA profiles versus Pearson correlations 
between TACNA profiles derived from RNA sequencing data and microarray data. 



 
The following text was added to the results section of our manuscript (page 9, lines 174-176): 
 
“Moreover, we performed TACNA profiling using 570 samples from the TCGA that were 
subjected to both RNA sequencing and microarray profiling (Affymetrix HG-U133A). Paired 
TACNA profiles generated with RNA-seq and microarray data were highly correlated 
(Supplementary Fig. 5, mode of distribution r = 0.66).” 
 
Remark 2: “A validation cohort in which both genomic and transcriptomic information are 
available should be used to confirm that CNAs identified by DNA sequencing or SNP analyses are 
highly correlative with the proposed CNAs identified by TACNA profiling.” 
 
We absolutely agree with the referee that CNAs identified in genomic profiles are expected to 
be highly correlated with patterns observed in paired TACNA profiles. In line with this notion, 
we demonstrated that TACNA profiles strongly correlate with their paired, independently 
generated genomic profiles. These findings are described in the results paragraph “TACNA 
profiles highly correlate with SNP-derived profiles”. Specifically, in Fig. 2a we show per dataset 
examples of how patterns in TACNA profiles match those in paired CNA profiles. In Fig. 2b, we 
show the distribution of correlations between TACNA profiles and their paired genomic profiles 
for samples from the TCGA (n = 10,620), CCLE (n = 1,011), and GDSC (n = 962) datasets. We 
believe these results are already fully in line with the suggestion made by the referee. 
 
Remark 3: “The authors should determine whether tissue/cells/DNA/RNA are available from 
some samples to confirm their results experimentally, for example, by analyzing samples with 
predicted CNA/gene expression changes by DNA FISH and quantitative PCR, respectively. 
Additionally, several genes exhibiting low and high adaptation should be tested using a similar 
method. If these reagents are not available, the authors could subject RNA sequencing data 
from human cell lines with known karyotypes to TACNA profiling.” 
 
As described in the answer to remark 2, our previous manuscript already contained an analysis 
confirming high correlations between TACNA profiles and paired CNA profiles (independently 
generated with a SNP array) for a total of 12,593 samples, some of which originate from cell 
lines. However, as this analysis was only performed using samples from the TCGA, CCLE and 
GDSC datasets, we therefore explored patient-derived acute myeloid leukemia samples in the 
GEO dataset for which patient karyotype information was provided online by the original 
authors (n = 189). As observed with the other datasets, we also observed in these GEO samples 
clearly matching patterns between TACNA profiles and the expected karyotype.  



In addition, we performed expression quantitative trait loci (eQTL) analyses (see 
response to remark 13) using the mRNA expression profiles, TACNA profiles and CNA profiles 
(derived from SNP arrays) from the TCGA dataset (n = 10,620). From this analysis we observed a 
clear association between the degree of TACNA and the correlation between CNAs and regular 
mRNA levels (Spearman r = -0.83). For genes with a high degree of transcriptional adaptation 
we observed low correlation. In contrast, for genes with a low degree of transcriptional 
adaptation we observed higher correlations between CNAs and regular mRNA levels.   
 
We added the following supplementary figure to our manuscript to highlight several examples 
of the TACNA profiles of these acute myeloid leukemia samples: 
 

 
 
Supplementary Fig. 2 Examples of matching patterns between TACNA profiles and the expected karyotype in acute 
myeloid leukemia samples in the GEO dataset. 

 
The following text was added to the manuscript (page 7, lines 129-132): 
 
“In a subset of patient-derived acute myeloid leukemia samples in the GEO dataset for which 
karyotype information was provided online (n = 189) we also observed clearly matching 



patterns between TACNA profiles and the expected karyotype in these samples (Supplementary 
Fig. 2).” 
 
Remark 4: “Experimental systems of aneuploidy show that while the expression of most genes 
follows a general pattern across the extra trisomic chromosome, some genes clearly do not 
follow this trend (PMID: 15466185 and 22968442 to name a few). The authors should 
investigate whether these genes fall within their subgroups for transcriptional adaptation.” 
 
To address this remark, we downloaded expression profiles of an experimental HCT116 cell line 
model of aneuploidy as reported by Stingele et al.1 Differences between the mRNA levels of 
parental HCT116 cell lines (replicates = 3) and an isogenic model with chromosome 5 tetrasomy 
(replicates = 3) were calculated (see panel a of figure below). The same differences were 
calculated using TACNA profiles generated for these 6 samples with CNA-CESs identified within 
the TCGA data (see panel b of figure below and Cross-study cross-validation section in 
Supplementary Note for methods). For genes located on chromosome 5, we observed a larger 
signal-to-noise ratio in differences of TACNA expression levels compared to regular mRNA 
expression levels (see panel c of figure below). We would like to point the referee to our 
response to remark 13 for which we performed this type of analysis on a larger scale by eQTL 
analyses using the mRNA expression profiles, TACNA profiles and CNA profiles (derived from 
SNP arrays) from the TCGA dataset (n = 10,620). Both analyses indicate that TACNA profiling 
increases the statistical power to detect eQTLs, i.e. associations between CNAs and mRNA 
expression levels. 

We did not observe a significant correlation between the differences in TACNA 
expression levels and differences in regular mRNA expression levels of individual genes on 
chromosome 5. We previously have shown that the effects of CNAs on gene expression levels 
are often overshadowed by experimental and other non-genetic factors.2 Therefore, the effect 
of the induced chromosome 5 tetrasomy on mRNA expression levels may be small and 
overshadowed by other (non-genetic) effects that are not associated with specific single CNAs. 
For example, Stingele et al. showed that aneuploidy invokes a general cellular mRNA response 
which is not the result of any specific CNAs but only the presence of aneuploidy. This response 
is not captured as a CNA-CES because it is not the effect of any specific CNA and therefore is not 
present in the TACNA profile. Another possibility is that the small number of samples used in 
the experimental model of aneuploidy results in large confidence intervals of the observed log2 
fold change in mRNA expression. Finally, we obtained the degree of transcriptional adaptation 
of genes to CNAs from patient-derived tumor gene expression profiles. In vivo, tumors cells 
develop transcriptional adaptive mechanisms under selective pressure to survive, whereas this 
selective pressure might be absent in in vitro models as used by Stingele et al. 
 



Given these results, we added the following supplementary figure to our manuscript: 
 

 



 
Supplementary Fig. 3 a Differences in expression levels between average TACNA profiles of three aneuploid 
samples and average TACNA profiles of three diploid samples. b Differences in expression levels between average 
standardized mRNA expression profiles of three aneuploid samples and average standardized mRNA expression 
profiles of three diploid samples. c Left: distribution of the differences in expression levels between average 
standardized mRNA expression of aneuploid and diploid samples on gene-level separately for chromosome 5 and 
other chromosomes. Middle: distribution of the differences in expression levels between average TACNA 
expression of aneuploid and diploid samples on gene-level separately for chromosome 5 and other chromosomes. 
Right: comparison between average differences in TACNA expression levels and average differences in 
standardized mRNA expression levels for chromosome 5. 
 
We added the following text to the manuscript (pages 7-8, lines 133-146): 
 
“We obtained gene expression profiles of an experimental model of aneuploidy introduced in 
HCT116 cells14. Differences on the mRNA level and TACNA level were calculated between the 
parental HCT116 cells (n = 3) and an isogenic model with chromosome 5 tetrasomy (n = 3) 
(Supplementary Fig. 3a and 3b). For genes located on chromosome 5, we observed larger signal 
to noise ratio in differences of TACNA expression levels compared to regular mRNA expression 
levels (Supplementary Fig. 3c). We did not observe a correlation between the log2 fold change 
in mRNA expression of individual genes and changes in TACNA expression levels (r = 0.04). We 
have previously shown that the effects of CNAs on gene expression levels are often 
overshadowed by other (non-genetic) effects that are not associated with specific single CNAs9. 
For example, Stingele et al. showed that aneuploidy invokes a general cellular mRNA response 
which is not the result of any specific CNAs but only the presence of aneuploidy14. Additionally, 
tumor cells in vivo may develop transcriptional adaptive mechanisms to survive under selective 
pressure, which may be different from the adaptive mechanisms observed in vitro.” 
 
Based on the above analysis, we added the following paragraph to the Supplementary Note 
(page 46): 
 
“TACNA profile versus mRNA changes upon chromosome 5 transfer 

Expression profiles were downloaded from the Gene Expression Omnibus for samples 
GSM978891-96 belonging to series GSE39768 performed on platform GPL4133. In addition, 
2,949 additional samples were downloaded for other studies performed on the same platform 
which had also Cy3 single label data available. All genes in this joint GPL4133 dataset were then 
median centered and log2 transformed. TACNA profiles were generated for the GPL4133 
dataset using the sources obtained for the TCGA dataset (see Cross-study cross-validation 
section of Supplementary Note). To calculate arithmetic differences between the two 
conditions an average was calculated for the control arm (GSM978891-93) and another for the 



experimental arm (GSM978894-96) of the HCT116 model of chromosome 5 tetrasomy 
performed in GSE39768. Pearson correlations were calculated between the differences in 
mRNA expression and the differences of TACNA profiles using only genes mapping to 
chromosome 5.” 
 
Remark 5: “Do genes that exhibit high adaptation encode components of protein complexes 
whose function, activity, or stability could be dysregulated by the stoichiometric imbalances of 
individual subunits?” 
 
It is reported that the function of protein complexes is dependent on the correct proportional 
levels of protein subunits3. When CNAs occur, cancer cells might transcriptionally adapt the 
mRNA expression of genes that encode protein subunits to maintain their ratios at the protein 
level. To explore the question raised by the referee, we collected gene sets from the CORUM 
gene set collection describing human protein complexes with 5 or more members.4 It could be 
the case that genes belonging to such a protein complex show a higher degree of 
transcriptional adaptation on average. We performed gene set enrichment analysis with the 
CORUM gene sets on the gene list ranked on the degree of transcriptional adaptation to CNAs. 
We observed very little enrichment of genes having a high degree of transcriptional adaptation 
in these protein complexes (Supplementary Table 10). This limited enrichment is in line with 
previous reports that show that dose adjustment of genes encoding protein complexes occurs 
mostly at the post-translational and not at the transcriptional level.1 

It could be that the degree of transcriptional adaptation to CNAs is enough to keep the 
ratio between genes part of a protein complex balanced without restoring the mRNA 
expression to the level observed in the normal diploid state. To explore this hypothesis, we 
created distance matrices (Pearson correlation) between all members of a protein complex 
using the TACNA expression value observed for each gene over all the samples in the TCGA 
dataset. Not taking into account the matrix diagonal, from this matrix we calculated the 
absolute median pairwise correlation as a density metric of the magnitude of internal 
correlation among members of a specific protein complex. A density metric of 1 signifies the 
scenario where all member genes have an identical pattern of mRNA expression levels due to 
underlying CNAs. In this scenario the ratio between TACNA expression levels for all genes part 
of a protein complex are kept consistent. To calculate the significance of the density metrics we 
performed a permutation test with 1,000 permutations. Out of 304 evaluated protein 
complexes 18 had a significant density metric (P < 0.05, Supplementary Table 11). As an 
example, the spliceosome complex, which comprises 130 genes had two subgroups of subunits 
with coordinated TACNA expression values over many samples in the TCGA dataset (see figure 
below). These results suggest that patient-derived cancer cells might coordinately adjust the 



mRNA expression levels of some protein complex subunits in response to the occurrence of 
CNAs. 

 
We added the following supplementary figure to our manuscript: 
 

 
 
Supplementary Fig. 10 a Hierarchical clustering of the correlation distance matrix of genes belonging to the 
Spliceosome complex (CORUM) in the TCGA-dataset. b Hierarchical clustering of the transcriptional effects of CNAs 
in the TCGA dataset for genes belonging to the Spliceosome complex (CORUM) for 10,817 samples. 

 
Given these results, the following text was added to the manuscript (page 11, lines 211-220):  
 
“The function of protein complexes might depend on the correct proportional levels of protein 
subunits19. When CNAs occur, cancer cells might transcriptionally adapt the mRNA expression 
of genes that encode protein subunits to maintain their ratios at the protein level. However, in 
the TCGA dataset we observed very little enrichment of genes having a high degree of 
transcriptional adaptation in 304 protein complexes with 5 or more members as defined by the 
CORUM protein complex definitions (see Supplementary Note and Supplementary Table 10). 
We did observe for 18 out of 304 protein complexes (permutation P value < 0.05) that patient-
derived cancer cells might coordinately adjust the mRNA expression levels of some protein 
complex subunits in response to the occurrence of CNAs (Supplementary Fig. 10 and 
Supplementary Table 11).” 



 
We added the following text to the Supplementary Note (page 45): 
 
“Protein complexes analysis 
CORUM complex gene sets were collected from CORUM website ‘https://mips.helmholtz-
muenchen.de/corum/#download’ (Core complex set). Complexes not mapping to ‘Human’ 
organism were discarded. Genes that had a ‘None’ value in the ‘subunits(Entrez IDs)’ column 
were discarded, which correspond to genes that have a UNIPROTID but no Entrez ID. Finally, 
protein complex gene sets with 4 or less subunits were discarded. Pearson correlation matrices 
for each protein complex (n = 304) were calculated using TACNA50 expression levels from the 
TCGA dataset (n = 10,817). For each correlation matrix, a density metric was defined as the 
median value of the correlation matrix after discarding the diagonal. For each protein complex, 
1,000 similarly sized random groups of genes were generated and their density metric was 
calculated. A P value was assigned to each complex by calculating the fraction of permutations 
with lower density metrics as the real protein complex.” 
 
Remark 6: “Is the degree of adaptation related to the position or locus of the gene? For 
example, genes harbored within euchromatin vs. heterochromatin?” 
 
To explore whether the degree of transcriptional adaptation of genes is related to their 
genomic position, we performed gene set enrichment analysis on the degree of transcriptional 
adaptation using the MSigDB Positional Gene Sets collection.5 We observed that multiple 
genomic regions were enriched for genes having a higher or lower degree of transcriptional 
adaptation (see panel a of figure below). Furthermore, epigenetic mechanisms, including DNA 
methylation, have been shown to be involved in heterochromatin formation and affect gene 
transcription.6,7 We analyzed preprocessed methylation data generated with the Illumina 450 K 
array, which is available for a large subset of samples in the TCGA dataset (n = 9,317). For each 
sample, we obtained the -values of all individual genes. These -values for individual genes 
were calculated using the mean signal values of methylation probes mapping to the same gene. 
In other words, -values resemble the mean methylation level of individual genes in a given 
sample. Next, for each gene, we correlated its TACNA expression level with its mean 
methylation level across all samples. We observed that for a subset of genes, their TACNA 
expression levels correlate with their mean methylation levels (r range = -0.65 to 0.45, see 
panel b of figure below). These results indicate that DNA methylation could be one of the 
underlying mechanisms driving the degree of transcriptional adaptation to CNAs.  
 
To highlight these results, we included the following supplementary figure to our manuscript: 
 



 
 
Supplementary Fig. 9 a Manhattan plot showing the -log10(P value) enrichment value on the y-axis for the degree 
of transcriptional adaptation of genes per cytogenetic band defined according to the MSigDB Positional Gene Sets 
collection. The average degree of transcriptional adaptation was calculated for genes occurring once in a CNA-CES 
in both the GEO and TCGA dataset. The dotted lines represent a significance level of P = 0.05. b Spearman 
correlation between the mean methylation levels of individual genes and their degree of transcriptional adaptation 
in a subset of samples (n = 9,317) from the TCGA dataset. 

 
The following text was added to the manuscript (page 11, lines 203-210): 
 
“We observed that multiple genomic regions were enriched for genes having a higher or lower 
degree of transcriptional adaptation (Supplementary Fig. 9a and Supplementary Table 9). 
Epigenetic mechanisms such as DNA methylation are known to affect transcription levels of 
individual genes17,18. When we explored available DNA methylation data for a subset of samples 
from the TCGA dataset (n = 9,317), we observed that for a subset of genes their TACNA 
expression levels correlated with their mean methylation levels (r range = -0.65 – 0.45, 
Supplementary Fig. 9b). These results indicate that DNA methylation could be one of the 
underlying mechanisms driving the degree of transcriptional adaptation to CNAs.” 
 
We added the following text to the Supplementary Note (page 45): 
 
“Association between DNA methylation and degree of transcriptional adaptation 
For a subset of samples in the TCGA dataset (n = 9,317) available preprocessed methylation 
data generated with the Illumina 450 K array was collected. For each sample, we obtained the 

-values of all individual genes. These -values for individual genes were calculated using the 
mean signal values of methylation probes mapping to the same gene. In other words, -values 
resemble the mean methylation level of individual genes in a given sample. For each gene, we 
correlated its mean methylation levels with TACNA expression levels across all samples.” 
 
Remark 7: “How do adaptation profiles change with tissue/cancer type?” 



 
We observed clear differences between TACNA profiles of different tumor types, which can be 
partially appreciated in the heatmap of the TACNA profiles of the TCGA dataset (Fig. 5c). For 
example, many renal clear cell carcinomas showed a pattern in their TACNA profile consistent 
with a deletion in chromosome 3p and an amplification in 5q, which have been reported as 
common observed genomic alterations in this tumor type.8 Likewise, common patterns 
consistent with a chromosome 10 deletion were observed in TACNA profiles of glioblastoma 
multiforme tumors, and a 1p/19q deletion in low-grade gliomas (see panels a to c of figure 
below).9,10 To facilitate the exploration of tissue specific TACNA profiles we generated 
heatmaps for every tumor type in combination with the tumor type specific average degree of 
TACNA plots and added them as Supplementary Fig. 12-20. 

To explore the differences in the TACNA profile at the individual gene level we created 
the website www.genomicinstability.org (works best on Google Chrome). We apologize if you 
were not able to access this website due to a small error in our previously provided url. In the 
‘TACNA gene distribution’ page a gene can be searched and subsequent the distribution of 
TACNA expression values over all tumor types is visualized. As an example, we provide a 
screenshot of the result of searching for ERBB2 in the TCGA dataset (see panel d of figure 
below). 
 
(While addressing this remark we noticed that figure 5c contained an error, we therefore 
corrected this figure in the manuscript). 
 

We added the following supplementary figure to our manuscript: 



 
 
Supplementary Fig. 11 a TACNA profiles for renal clear cell carcinoma in the TCGA dataset. b TACNA profiles for 
glioblastoma multiforme in the TCGA dataset. c TACNA profiles for low-grade glioma in the TCGA dataset. d 
Example of exploring ERBB2 TACNA values across samples in the TCGA dataset at www.genomicinstability.org. The 
bars represent the interquartile range. 
 
The following text was added to the manuscript (page 13, lines 249-256): 
 
“While exploring the landscape of transcriptional effects of CNAs, we observed common 
patterns consistent with well-known genomic alterations. For instance, many renal clear cell 
carcinomas in the TCGA dataset contained a pattern consistent with a deletion in chromosome 
3p and an irregular amplification in chromosome 5q (Supplementary Fig. 11a)24. Likewise, we 
observed patterns consistent with a chromosome 10 deletion in glioblastoma multiforme, and a 
1p/19q deletion in low-grade gliomas (Supplementary Figs. 11b and 11c)25,26. The landscape of 
transcriptional effects of CNAs can be explored at www.genomicinstability.org (Supplementary 
Fig. 11d).” 



 
Remark 8: “The authors propose that a proportion of CNAs colocalized within common fragile 
sites, yet the location of most common fragile sites have only been mapped using low resolution 
methods. This should be further addressed or discussed.” 
 
According to the remark made by the referee, in our results section we now state that the 
fragile sites were mapped using low resolution methods (page 8, lines 156-159): 
 
“Although the location of most of these common fragile sites have been mapped using low-
resolution methods, these results are compatible with the notion of genomic instability 
underlying structural abnormalities such as CNAs.” 
 
Referee #2 
 
Referee #2 made the following suggestions regarding our manuscript: 
 
Remark 9: “The ICA and TACNAS approaches are described in detail in the supplementary note 
with an accompanying figure. However, it would be very helpful to give an exposition of the 
approach and a high-level overview at the start of the main text/results. Considering this 
represents the major advancement, along with its findings, it would set the tone for the rest of 
the article as well as place things in a more interpretable context.” 
 
To provide a better overview of our approach, we now included Supplementary Fig. 1 as a panel 
in Fig. 1. 
 

 
 
Fig. 1 c Identification of underlying regulatory factors of the mRNA transcriptome. We hypothesized that the 
observed gene expression in a gene expression profile is the result of (i) the effect of underlying regulatory factors 
(i.e. source signals) on expression levels of individual genes and (ii) the activity of these underlying regulatory 
factors in a complex biopsy (i.e. mixing matrix). ICA was used to capture the number and nature of these underling 



regulatory factors for all four datasets separately. This resulted in estimated sources, representing the effects of 
independent underlying regulatory factors on the expression levels of individual genes, and a mixing matrix 
reflecting the activity of each estimated source in each gene expression profile. ICA was run 25 times with random 
initialization, followed by consensus sources estimation using a credibility index  50%. 
 
Additionally, we added a figure panel describing our approach to TACNA profiling in more detail 
to Fig. 2: 
 

 
 
Fig 2. a Transcriptional adaptation to CNA (TACNA) profiling. For each dataset, weights of genes mapping to a 
contiguous genomic region in CNA-CESs marked by the detection algorithm were retained in the CES matrix. 
Weights of genes that mapped outside marked genomic regions were instead set to zero. Next, TACNA profiles 
were calculated as the product between this transformed CES matrix and the consensus mixing matrix. 

 
We added the following text to the manuscript (page 6, lines 112-116): 
 
“Weights of genes mapping to a contiguous genomic region in CNA-CESs marked by the 
detection algorithm were retained in the CNA-CES matrix. Weights of genes that mapped 
outside marked genomic regions in a CNA-CES were set to zero. Next, TACNA profiles were 
calculated as the product between this transformed CNA-CES matrix and the consensus mixing 
matrix (Fig. 2a).” 
 
Remark 10: “The authors demonstrate that the identified CNAs predicted from the TACNAS 
approach are highly correlated on average with actual CNA measured within the same dataset. 
Could the authors also show that this finding is robust to a cross-validation approach?” 
 
To address this remark, we conducted a five-fold cross-validation analysis using the TCGA 
dataset and CCLE dataset using the following steps, which we added as a new section to the 
Supplementary Note: 
 

• Samples from the expression datasets were randomly divided into five groups using a 
multinomial distribution simulation. The total number of samples in each of the five 
groups was 2160, 2139, 2204, 2163, and 2151, respectively for the TCGA dataset. The 
total number of samples in each of the five groups was 217, 218, 217, 204, and 211, 
respectively for the CCLE dataset. 



• Gene expression profiles from the mRNA expression dataset were standardized on the 
gene-level to a mean of zero and a standard deviation of one ( ). 

• For the th fold the following steps were conducted (  = 1,2,3,4 and 5): 
o The input dataset ( ) for next steps was obtained by excluding samples 

in the th group from the unstandardized mRNA expression dataset. 
o Gene expression profiles from  were standardized to a mean of zero 

and standard deviation of one. 
o Consensus independent component analysis was applied on the standardized 

 to obtain consensus estimated sources matrix ( ). 
o  and  were used to obtain the consensus mixing 

matrix ( ): 
 

o  with extreme valued contiguous genomic regions ( ) were 
identified using the DEGR algorithm as described in our original Supplementary 
Note section. 

o  and the  were used to obtain TACNA profiles for the samples 
present in  along with the samples in the th group 
( ). 

o Pearson correlation coefficients were calculated between  
and corresponding CNA profiles (derived from SNP arrays). 

 
The correlation coefficients between  and their paired CNA profiles had a 
distribution mode r > 0.54 for TCGA in all four folds and distribution mode r > 0.45 for CCLE in 
all five folds of the cross-validation analysis (see figures below). Due to time constraint, we 
could manage to get results for 4 different folds for TCGA but for CCLE, we managed to conduct 
5 folds of cross-validation analysis. These results show that TACNA-profiling is robust to cross-
validation analysis within one platform. As patient-derived tumor gene expression profiles are 
known to be heterogeneous in CNA occurrence, exclusion of any number of samples is 
expected to create difference in CNA-consensus estimated sources (CNA-CESs). In other words, 
it can happen that the 20% samples left out in one fold of the cross-validation analysis contain a 
CNA that is not present in the 80% of the samples used to find the CNA-CESs. Therefore, when 
constructing the TACNA profiles for the 20% of the left-out samples, the effect of this specific 
CNA on gene expression levels would not be present. As a result, the correlations observed in 
the cross-validation analysis are slightly lower than the correlations we found between TACNA 
profiles and their paired CNA profiles in our previous analysis using all samples from the TCGA 
dataset. 
 
Based on our cross-validation analysis, we added the following supplementary figures: 



 

 
 
Supplementary Fig. 6 Cross-validation analysis in the TCGA dataset. Distributions of Pearson correlation 
coefficients between TACNA profiles of randomly chosen 20% of samples of the TCGA dataset (RNA sequencing) in 
each fold using CNA-CESs derived from the remaining 80% of samples of the TCGA dataset and paired CNA profiles 
(derived from SNP). 
 



 
 
Supplementary Fig. 7 Cross-validation analysis in the CCLE dataset. Distributions of Pearson correlation 
coefficients between TACNA profiles of randomly chosen 20% of samples of the CCLE dataset (microarray) in each 
fold using CNA-CESs derived from the remaining 80% of samples of the CCLE dataset and paired CNA profiles 
(derived from SNP). 

 
Based on our cross-validation analysis, we added the following text to the Supplementary Note 
(page 38): 
 

“Cross-validation analysis within one platform 



A cross-validation analysis of TACNA-profiling was conducted to test the robustness of this 
method within one platform. A five-fold cross-validation analysis an mRNA expression dataset 
was done using the following steps: 

• Samples from the mRNA expression dataset were randomly divided into five groups 
using a multinomial distribution simulation.  

• Gene expression profiles from the mRNA expression dataset were standardized on the 
gene-level to a mean of zero and a standard deviation of one ( ). 

• For the th fold the following steps were conducted (  = 1,2,3,4 and 5): 
o The input dataset ( ) for next steps was obtained by excluding samples 

in the th group from the unstandardized mRNA expression dataset. 
o Gene expression profiles from  were standardized to a mean of zero 

and standard deviation of one. 
o Consensus independent component analysis was applied on the standardized 

  to obtain consensus estimated sources matrix ( ). 
o  and  were used to obtain the consensus mixing 

matrix ( ): 
 

o  with extreme valued contiguous genomic regions ( ) were 
identified using the DEGR algorithm as described in the Supplementary Note. 

o  and the  were used to obtain TACNA profiles for the samples 
present in  along with the samples in the th group 
( ). 

o Pearson correlation coefficients were calculated between  
and corresponding CNA profiles (derived from SNP arrays).” 

 

Remark 11: “While the authors showed that -weights- are correlated for some genes across 
studies, it would be very convincing if the authors could also perform a cross-study cross-
validation.” 
 
To address this remark, we conducted cross-study cross-validation analyses on the TCGA, CCLE, 
and GDSC mRNA expression datasets (3C2 = 6 cross-study cross-validation analysis). These 
datasets were chosen as we also obtained paired CNA profiles (independently generated with 
SNP arrays) of samples from these datasets. Expression data of the CCLE and GDSC datasets 
were transformed from probe-level to gene-level using the ‘jetset’ package in R. Details about 
the ‘jetset’ package are provided in the Supplementary Note. Expression data of TCGA dataset 
was already provided on gene-level. The following steps were conducted (and described in new 
section in the Supplementary Note) for each cross-study cross-validation analysis where 



consensus estimated sources of dataset  were used to obtain TACNA-profiles of dataset  ( ,  = 
TCGA, CCLE & GDSC): 

• Genes not present in both dataset  and  were removed from the analysis. 
• Both dataset  and dataset  were standardized on gene-level separately, which means 

each gene expression was transformed to a mean of zero and standard deviation of one. 
• Both of these standardized datasets were sample-wise merged to obtain a combined 

dataset ( ). 
• Consensus estimated sources matrix of dataset  ( ) and  

were used to obtain consensus mixing matrix ( ). 

 
•  with extreme valued contiguous genomic region ( ) were identified 

using DEGR algorithm. 
• and  enabled us to obtain TACNA-profiles 

for the samples present in dataset  along with the samples in the dataset  
( ). 

• Pearson correlation coefficient between  and corresponding copy 
number profiles (derived from SNP arrays) were obtained. 

 
The correlation coefficients between  and their paired CNA profiles had a 
distribution mode r > 0.5 in all 6 cross-study cross-validation analyses (see figure below). These 
results show that the  of a mRNA expression dataset from one platform (e.g. RNA-
seq) can be used to project on the mRNA expression dataset from another platform (e.g. 
microarray) even when the platform uses different technology. Additionally, these results show 
that the  of a mRNA expression dataset from patient-derived samples can be used 
to project on the mRNA expression dataset from in vitro samples and vice versa. However, 
cross-dataset heterogeneity in CNA occurrence is still a constraint to reconstruct TACNA profiles 
of a dataset using  of any other dataset. 
 
Based on our cross-study cross-validation, we added the following supplementary figure: 
 



 
 
Supplementary Fig. 8 Cross-study cross-validation. Distributions of Pearson correlation coefficients between 
TACNA profiles of dataset i using CNA-CESs derived from dataset j and paired CNA profiles (derived from SNP) of 
dataset i (i by j where i and j are from TCGA, CCLE & GDSC). 

 
Based on our cross-validation and cross-study cross-validation, the following text was added to 
the manuscript (page 9, lines 178-181): 
 



“In addition, TACNA profiling was robust to both cross-validation within one platform 
(Supplementary Figs. 6 and 7, mode of distribution r range = 0.45-0.55) and cross-platform 
cross-validation (Supplementary Fig. 8, mode of distribution r range = 0.50-0.61, see 
Supplementary Note for details).” 
 
Based on our cross-study cross-validation analyses, we added the following text to the 
Supplementary Note (page 39): 
 
“Cross-study cross-validation analysis 
A cross-study cross-validation analysis of TACNA-profiling was conducted to test the robustness 
of this method across different studies or platforms. Following steps were conducted for each 
cross-study cross-validation analysis where consensus estimated sources of dataset  were used 
to obtain TACNA-profiles of dataset : 

• Genes not present in both dataset  and  were removed from the analysis. 
• Both dataset  and dataset  were standardized on gene-level separately, which means 

each gene expression is transformed to a mean of zero and standard deviation of one. 
• Both of these standardized datasets were sample-wise merged to obtain a combined 

dataset ( ). 
• Consensus estimated sources matrix of dataset  ( ) and  

were used to obtain consensus mixing matrix ( ). 

 
•  with extreme valued contiguous genomic region ( ) were identified 

using DEGR algorithm. 
• and  were used to obtain TACNA-profiles for 

the samples present in dataset  along with the samples in the dataset  
( ). 

• Pearson correlation coefficient between  and corresponding copy 
number profiles (derived from SNP arrays) were obtained. 

 
Cross-dataset heterogeneity in CNA occurrence is a constraint to reconstruct TACNA profiles of 
a dataset using  of any other dataset.” 
 
Remark 12: “The authors take care to clean and prepare the data as much as possible, but it is 
not clear how various relevant covariates that should drive large heterogeneity into account.” 
 
We appreciate the point raised by the referee. When performing consensus-ICA on the mRNA 
transcriptome, independent underlying regulatory factors of the transcriptome are identified as 



CESs. These underlying regulatory factors include not only the downstream effect of CNAs, but 
also other relevant covariates that drive large heterogeneity in the mRNA transcriptome such as 
study-specific batch effects, gender etc. For TACNA profiling, we regenerate gene expression 
profiles by using only CESs (i.e. underlying regulatory factors) that were identified by our 
detection algorithm representing downstream effects of CNAs on mRNA levels. By including 
only these CESs, we automatically excluded other non-genetic covariates driving heterogeneity 
in the mRNA from our pipeline for TACNA profiling. For example, in the GEO dataset we 
identified a CES that likely drives heterogeneity in mRNA expression on the X and Y 
chromosomes because of differences in gender (see Supplementary Fig. 1). This demonstrates 
that consensus-ICA can effectively identify these types of covariates and their genomic effects. 
Incidentally, this particular CES influences a contiguous genomic region which makes it a 
candidate CNA-CES. However, for TACNA profiling we excluded the X and Y chromosomes which 
in turn negates the influence of this gender CES. Below, we show the mixing matrix weights (i.e. 
indirect activity measurements) of this underlying regulatory factor in individual samples, 
showing that it clearly discriminates between males and females. 
 

 
Supplementary Fig. 1 Gender CES. A density plot is shown for the mixing matrix weights of CES 471 in the GEO 
dataset. Males (n = 1,074), females (n = 1,300) and unknown biological gender status (19,218) is plotted separately 
depending on the available information provided online by the original authors (GEO). 

 
To emphasize how we dealt with relevant covariates in our analysis, we added the following 
text to our manuscript (page 6, lines 109-112): 
 



“By including only these CNA-CESs, we automatically excluded other CESs that capture non-
genetic factors that can affect gene expression levels from our pipeline for TACNA profiling (see 
Supplementary Fig. 1 and Supplementary Note)”. 
 
We added the following text to the Supplementary Note (page 45): 
 
“Identification of CES capturing gender differences 
Biological gender annotation for a subset of samples from the GEO dataset was collected from 
the GEO portal. A Mann-Whitney U test was performed for every CES comparing the mixing 
matrix weights of samples annotated to be male and samples annotated to be female. CES 471 
had the highest discrimination power between male and female samples (AUC = 0.99).” 
 
Remark 13: “For genes identified using TACNA where correspond data have actual CNA or 
imputed CNA from genotype, can the authors perform a QTL analysis while controlling for 
relevant variables? There was some work showing that CNAs exist in more extreme regions, but 
it would be informative to see that actual CNA variation is statistically linked with expression 
values at these regions.” 
 
In order to address this remark, we conducted expression quantitative trait loci (eQTL) analyses 
using the mRNA expression profiles, the TACNA profiles and the CNA profiles (derived from SNP 
arrays) from the TCGA dataset (n = 10,817). Details are given below: 

• Genes and samples not present in all three of the above-mentioned profiles were 
removed from the analysis. 

• Pearson correlation coefficients were obtained between mRNA expression profiles and 
CNA profiles on the gene-level. 

• Pearson correlation coefficients were obtained between TACNA profiles and CNA 
profiles on the gene-level. 

• Association within the CNA profiles on the gene-level was computed using Pearson 
correlation coefficient. 

• Partial correlation coefficients between TACNA profiles and CNA profiles were 
computed on the gene-level to identify trans effect. Partial correlation analysis was 
conducted to remove false positive trans effects driven by CNA co-occurrence. For 
example, it could happen that with Pearson correlation analysis, we find trans effect 
between CNAx on chromosome 1 and mRNA expression of genez on chromosome 5. 
However, this effect could be explained by the fact that an underlying CNAy on 
chromosome 5 (where genez is mapping to) always co-occurs with the CNAx on 
chromosome 1. The observed trans effect is then actually a cis effect between CNAy and 
genez. 



 
In general, we observed a stronger correlation between TACNA profiles and CNA profiles 
compared to the correlation between mRNA expression profiles and CNA profiles on the gene-
level (see panel a and b of figure below). This indicates that TACNA profiling increases the 
statistical power to detect associations between CNAs and mRNA expression levels.  

In addition, we observed a clear association between the degree of TACNA and the 
correlation between CNAs and regular mRNA levels (Spearman r = -0.83, see panel e of figure 
below). For genes with a high degree of transcriptional adaptation we observed low correlation. 
In contrast, for genes with a low degree of transcriptional adaptation we observed higher 
correlations between CNAs and regular mRNA levels.   
 
Based on our eQTL analyses, we added the following supplementary figure: 
 

 



 
Supplementary Fig. 4 a Correlation between mRNA expression profiles and CNA profiles (derived from SNP) from 
TCGA dataset on the gene-level. b Correlation between TACNA profiles and CNA profiles (derived from SNP) from 
TCGA dataset on the gene-level. c Association within CNA profiles (derived from SNP) from TCGA dataset on the 
gene-level. d Partial correlation coefficients between TACNA profiles and CNA profiles (derived from SNP) from 
TCGA dataset on the gene-level. Insets of each panel represents correlation coefficients for genes mapping to 
chromosome 1. e Scatter plot of the degree of TACNA versus Pearson correlations between mRNA and SNP 
expressions for genes occurring once in an extreme-valued region of a CNA-CES in the TCGA dataset. Only CNA-
CESs with >50 genes in their extreme-valued region were considered. 
 
Based on our eQTL analyses, the following text was added to the manuscript (page 8, lines 147-
153): 
 
“We conducted expression quantitative trait loci (eQTL) analyses using the mRNA expression 
profiles, the TACNA profiles and the CNA profiles (derived from SNP arrays) from the TCGA 
dataset (n = 10,817). In general, we observed a stronger correlation between TACNA profiles 
and CNA profiles compared to the correlation between mRNA expression profiles and CNA 
profiles on the gene-level (Supplementary Fig. 4). This indicates that TACNA profiling increases 
statistical power to detect eQTLs, i.e. associations between CNAs and mRNA expression levels.” 
 
We added the following text to the Supplementary Note (page 46): 
 
“Expression quantitative trait loci (eQTL) analyses 
eQTL analysis was conducted using the mRNA expression profiles, the TACNA profiles and the 
CNA profiles of the TCGA dataset (n = 10,817). Details are given below: 

• Genes and samples not present in all three of the above-mentioned datasets were 
removed from the analysis. 

• Pearson correlation coefficients were obtained between mRNA expression profiles and 
CNA profiles on the gene-level. 

• Pearson correlation coefficients were obtained between TACNA profiles and CNA 
profiles on the gene-level. 

• Association within the CNA profiles on the gene-level was computed using Pearson 
correlation coefficient. 

• Partial correlation coefficients between TACNA profiles and CNA profiles were 
computed on the gene-level to identify trans effect. Partial correlation analysis was 
conducted to remove false positive trans effects driven by CNA co-occurrence.” 
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REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
I commend the authors for addressing my concerns and questions in a very thorough and 
thoughtful manner. I have no additional concerns and highly recommend this manuscript for 
publication in Nature Communications. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have done a considerable amount of work to address all comments and I thank them 
for their effort. I have no further comments. 


