
Supplementary Fig. 1 Gender CES. A density plot is shown for the mixing matrix weights of CES 471 in the 
GEO dataset. Males (n = 1,074), females (n = 1,300) and unknown biological gender status (n = 19,218) is 
plotted separately depending on the available information provided online by the original authors (GEO).
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Supplementary Fig. 2 Examples of matching patterns between TACNA profiles and the expected karyotype in acute myeloid leukemia samples in the GEO 
dataset.
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Supplementary Fig. 3 a Differences in expression levels between average TACNA profiles of three aneuploid 
samples and average TACNA profiles of three diploid samples. b Differences in expression levels between 
average standardized mRNA expression profiles of three aneuploid samples and average standardized mRNA 
expression profiles of three diploid samples. c Left: distribution of the differences in expression levels between 
average standardized mRNA expression of aneuploid and diploid samples on gene-level separately for 
chromosome 5 and other chromosomes. Middle: distribution of the differences in expression levels between 
average TACNA expression of aneuploid and diploid samples on gene-level separately for chromosome 5 and 
other chromosomes. Right: comparison between average differences in TACNA expression levels and average 
differences in standardized mRNA expression levels for chromosome 5.
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Supplementary Fig. 4 a Correlation between mRNA expression profiles and CNA profiles (derived from SNP) 
from TCGA dataset on the gene-level. b Correlation between TACNA profiles and CNA profiles (derived from 
SNP) from TCGA dataset on the gene-level. c Association within CNA profiles (derived from SNP) from TCGA 
dataset on the gene-level. d Partial correlation coefficients between TACNA profiles and CNA profiles (derived 
from SNP) from TCGA dataset on the gene-level. Insets of each panel represents correlation coefficients for 
genes mapping to chromosome 1. e Scatter plot of the degree of TACNA versus Pearson correlations between 
mRNA and SNP expressions for genes occurring once in an extreme-valued region of a CNA-CES in the TCGA 
dataset. Only CNA-CESs with >50 genes in their extreme-valued region were considered.
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Supplementary Fig. 5. a Pearson correlations between paired TACNA profiles derived from RNA sequencing 
and microarray profiles (n = 570). b Distribution of Pearson correlations between TACNA profiles derived 
from RNA sequencing data and paired CNA profiles. c Distribution of Pearson correlations between TACNA 
profiles derived from microarray data and paired CNA profiles. d Variance observed in CNA profiles versus 
Pearson correlations between TACNA profiles derived from RNA sequencing data and microarray data.
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Supplementary Fig. 6 Cross-validation analysis in the TCGA dataset. Distributions of Pearson correlation 
coefficients between TACNA profiles of randomly chosen 20% of samples of the TCGA dataset (RNA 
sequencing) in each fold using CNA-CESs derived from the remaining 80% of samples of the TCGA dataset 
and paired CNA profiles (derived from SNP).
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Supplementary Fig. 7 Cross-validation analysis in the CCLE dataset. Distributions of Pearson correlation 
coefficients between TACNA profiles of randomly chosen 20% of samples of the CCLE dataset (microarray) in 
each fold using CNA-CESs derived from the remaining 80% of samples of the CCLE dataset and paired CNA 
profiles (derived from SNP).
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Supplementary Fig. 8 Cross-study cross-validation. Distributions of Pearson correlation coefficients between 
TACNA profiles of dataset i using CNA-CESs derived from dataset j and paired CNA profiles (derived from SNP) 
of dataset i (i by j where i and j are from TCGA, CCLE & GDSC).
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Supplementary Fig. 9 a Manhattan plot showing the -log10(P value) enrichment value on the y-axis for the degree of transcriptional adaptation of genes per 
cytogenetic band defined according to the MSigDB Positional Gene Sets collection. The average degree of transcriptional adaptation was calculated for genes 
occurring once in a CNA-CES in both the GEO and TCGA dataset. The dotted lines represent a significance level of P = 0.05. b Spearman correlation between the 
mean methylation levels of individual genes and their degree of transcriptional adaptation in a subset of samples (n = 9,317) from the TCGA dataset.
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Supplementary Fig. 10 a Hierarchical clustering of the correlation distance matrix of genes belonging to the Spliceosome complex (CORUM) in the TCGA-dataset. 
b Hierarchical clustering of the transcriptional effects of CNAs in the TCGA dataset for genes belonging to the Spliceosome complex (CORUM) for 10,817 samples.
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Supplementary Fig. 11 a b
dataset. c d Example of exploring ERBB2 TACNA values across samples in the TCGA dataset at www.

The centre line of each bar represents median. The whiskers are defined as 1.5 x interquartile range.
Adrenocortical carcinoma (n = 79), Colorectal adenocarcinoma (n = 573), Ovarian carcinoma (n = 307), ER+/HER2+ breast carcinoma (n = 140), ER+/HER2- breast 
carcinoma (n = 554), ER-/HER2+ breast carcinoma (n = 43), Glioblastoma multiforme (n = 166), Renal papillary cell carcinoma (n = 291), Cholangiocarcinoma (n = 36), 
Hepatocellular carcinoma (n = 373), Cutaneous melanoma (n = 472), Gastric adenocarcinoma (n = 415), Esophageal carcinoma (n = 185), Lung adenocarcinoma
(n = 517), Uveal melanoma (n = 80), Diffuse large B−cell lymphoma (n = 48), Cervical carcinoma (n = 306), Prostate carcinoma (n = 498), Renal clear cell carcinoma 
(n = 534), Renal chromophobe carcinoma (n = 66), Urothelial carcinoma (n = 408), Thyroid carcinoma (n = 509), Pancreatic carcinoma (n = 179), HNSCC (n = 522), 
Lower grade glioma (n = 530), Acute myeloid leukemia (n = 173),  Triple-negative breast carcinoma (n = 146).



Supplementary Fig. 12 Heatmap of TACNA profiles and average TACNA profiles for acute myeloid leukemia, adrenocortical carcinoma and ER-positive/HER2-
negative breast carcinoma in the TCGA dataset.



Supplementary Fig. 13 Heatmap of TACNA profiles and average TACNA profiles for ER-negative/HER2-positive breast carcinoma, ER-positive/HER2-positive 
breast carcinoma and triple-negative breast carcinoma in the TCGA dataset.



Supplementary Fig. 14 Heatmap of TACNA profiles and average TACNA profiles for cervical carcinoma, cholangiocarcinoma and colorectal adenocarcinoma in 
the TCGA dataset.



Supplementary Fig. 15 Heatmap of TACNA profiles and average TACNA profiles for cutaneous melanoma, diffuse large B-cell lymphoma and esophageal 
carcinoma in the TCGA dataset.



Supplementary Fig. 16 Heatmap of TACNA profiles and average TACNA profiles for gastric adenocarcinoma, glioblastoma multiforme and head and neck 
squamous cell carcinoma (HNSCC) in the TCGA dataset.



Supplementary Fig. 17 Heatmap of TACNA profiles and average TACNA profiles for hepatocellular carcinoma, lower grade glioma and lung adenocarcinoma in 
the TCGA dataset.



Supplementary Fig. 18 Heatmap of TACNA profiles and average TACNA profiles for ovarian carcinoma, pancreatic carcinoma and prostate carcinoma in the TCGA 
dataset.



Supplementary Fig. 19 Heatmap of TACNA profiles and average TACNA profiles for renal chromophobe carcinoma, renal clear cell carcinoma and renal papillary 
cell carcinoma in the TCGA dataset.



Supplementary Fig. 20 Heatmap of TACNA profiles and average TACNA profiles for thyroid carcinoma, urothelial carcinoma and uveal melanoma in the TCGA 
dataset.



Supplementary Fig. 21 Hierarchical clustering of the landscape of transcriptional effects of CNAs in the GEO 
dataset for 13,810 samples from tumor types also present in the TCGA dataset.
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Thyroid carcinoma 
n = 509, r = −0.30 P = 4.6 x 10-12

Urothelial carcinoma 
n = 408, r = −0.23 P = 2.4 x 10-6

Uveal melanoma 
n = 80, r = 0.08 P = 0.47

Renal chromophobe carcinoma 
n = 66, r = −0.19 P = 0.13

Renal clear cell carcinoma 
n = 534, r = −0.21 P = 1.6 x 10-6

Renal papillary cell carcinoma 
n = 291, r = −0.02 P = 0.76

Ovarian carcinoma 
n = 307, r = −0.40 P = 2.6 x 10-13

Pancreatic carcinoma 
n = 179, r = −0.49 P = 2.8 x 10-12

Prostate carcinoma 
n = 498, r = −0.08 P = 0.07

HNSCC
n = 522, r = −0.43 P = 1.8 x 10-24

Lower grade glioma 
n = 530, r = 0.02 P = 0.60

Lung adenocarcinoma 
n = 517, r = −0.29 P = 8.1 x 10-12

Gastric adenocarcinoma 
n = 415, r = −0.42 P = 2.5 x 10-19

Glioblastoma multiforme 
n = 166, r = −0.14 P = 0.08

Hepatocellular carcinoma 
n = 373, r = −0.21 P = 4.1 x 10-5

Cutaneous melanoma 
n = 472, r = −0.28 P = 7.6 x 10-10

Diffuse large B−cell lymphoma 
n = 48, r = −0.34 P = 0.018

Esophageal carcinoma 
n = 185, r = −0.41 P = 1.0 x 10-8

Cervical carcinoma 
n = 306, r = −0.12 P = 0.037

Cholangiocarcinoma 
n = 36, r = −0.44 P = 0.008

Colorectal adenocarcinoma 
n = 573, r = −0.35 P = 2.0 x 10-18

ER+/HER2− breast carcinoma 
n = 554, r = −0.16 P = 0.0002

ER+/HER2+ breast carcinoma 
n = 140, r = −0.21 P = 0.013

Triple−negative breast carcinoma 
n = 146, r = −0.46 P = 6.5 x 10-9

Acute myeloid leukemia 
n = 173, r = −0.13 P = 0.09

Adrenocortical carcinoma 
n = 79, r = −0.30 P = 0.007

ER−/HER2+ breast carcinoma 
n = 43, r = −0.48 P = 0.001
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Thyroid carcinoma 
n = 97, r = −0.23 P = 0.026

Urothelial carcinoma 
n = 39, r = 0.00 P = 0.98

Uveal melanoma 
n = 106, r = 0.12 P = 0.23

Renal chromophobe carcinoma 
n = 37, r = 0.17 P = 0.31

Renal clear cell carcinoma 
n = 225, r = −0.06 P = 0.38

Renal papillary cell carcinoma 
n = 37, r = 0.06 P = 0.71

Ovarian carcinoma 
n = 187, r = −0.36 P = 4.5 x10-7

Pancreatic carcinoma 
n = 81, r = −0.40 P = 0.0002

Prostate carcinoma 
n = 308, r = 0.20 P = 0.0006

HNSCC
n = 386, r = −0.20 P = 0.0001

Lower grade glioma 
n = 158, r = −0.08 P = 0.31

Lung adenocarcinoma 
n = 1,019, r = −0.41 P = 2.3 x 10-43

Gastric adenocarcinoma 
n = 332, r = −0.38 P = 5.9 x 10-13

Glioblastoma multiforme 
n = 390, r = −0.04 P = 0.47

Hepatocellular carcinoma 
n = 364, r = −0.28 P = 7.8 x 10-8

Cutaneous melanoma 
n = 398, r = −0.13 P = 0.009

Diffuse large B−cell lymphoma 
n = 752, r = −0.30 P = 6.0 x 10-17

Esophageal carcinoma 
n = 97, r = 0.00 P = 0.99

Cervical carcinoma 
n = 62, r = −0.15 P = 0.25

Cholangiocarcinoma 
n = 4, r = −0.80 P = 0.20

Colorectal adenocarcinoma 
n = 2,710, r = −0.23 P = 3.0 x 10-34

ER+/HER2− breast carcinoma 
n = 1,678, r = −0.14 P = 6.2 x 10-9

ER+/HER2+ breast carcinoma 
n = 506, r = −0.31 P = 5.2 x 10-13

Triple−negative breast carcinoma 
n = 737, r = −0.35 P = 7.7 x 10-23

Acute myeloid leukemia 
n = 2,604, r = 0.04 P = 0.06

Adrenocortical carcinoma 
n = 40, r = −0.14 P = 0.38

ER−/HER2+ breast carcinoma 
n = 456, r = −0.35 P = 2.0 x 10-14
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Supplementary Fig. 22 Per tumor type, Spearman correlations between inferred CNA burden and an 
expression-based metric describing CD8+ T cell activity for each sample in the GEO and TCGA datasets. Both 
inferred CNA burden and metrics were normalized per tumor type.



Supplementary Note 1 

 

Data acquisition 

GEO dataset 

Publicly available microarray expression data generated with Affymetrix HG-U133 Plus 2.0 was 

obtained from GEO (accession number GPL570).1 To select healthy or cancer tissue samples, we 

applied a two-step search strategy – automatic filtering on keywords followed by manual 

curation. This search strategy was applied to the Simple Omnibus Format in Text (SOFT) files 

obtained from GEO for GPL570, which contains metadata for each individual sample, including 

experimental conditions and patient information. In the automatic filtering step, samples were 

retained if one of the keywords could be matched in any of the associated descriptive fields in 

the SOFT file. The keywords used in the automatic filtering were chosen in such a way that the 

chance to miss relevant samples would be minimized (e.g. colon, breast, lung). Because this 

automatic filtering was aimed at sensitivity, not specificity, a manual curation step was necessary 

to obtain a list containing only relevant samples. In the manual curation step, samples were 

retained if they represented healthy or cancer tissue obtained from patients and raw data (CEL 

files) were available. Samples from cell lines, cultured human biopsies and animal-derived tissue 

were excluded. This dataset is referred to as the GEO dataset throughout this manuscript. 

 

TCGA dataset 

From TCGA, we obtained the pre-processed and normalized level 3 RNA-seq (version 2) data for 

34 cancer datasets available at the Broad GDAC Firehose portal (downloaded January 2017 



https://gdac.broadinstitute.org/). For each sample, we downloaded RNA-Seq with Expectation 

Maximization (RSEM) gene normalized data (identifier: illuminahiseq_rnaseqv2-

RSEM_genes_normalized).2 RNA-Seq expression level read counts were normalized using FPKM-

UQ (Fragments per Kilo-base of transcript per Million mapped reads upper quartile 

normalization).3 This dataset is referred to as the TCGA dataset throughout this manuscript. In 

addition, we collected pre-processed segmented somatic CNA data for each of the 34 cancer 

datasets (identifier: genome_wide_snp_6-segmented_scna_minus_germline_cnv_hg19), which 

was generated with the Affymetrix Genome-Wide Human SNP Array 6.0. In short, the copy 

number segmentation pipeline implemented by TCGA and applied to Affymetrix SNP Array 6.0 

uses a fully open-source tool Birdsuite and the DNAcopy R-package to perform a circular binary 

segmentation (CBS) analysis.4,5 CBS translates noisy intensity measurements into chromosomal 

regions of equal copy number. The final output files are segmented into genomic regions with 

the estimated copy number for each region. Next, the copy number values are transformed into 

segment mean values, which are equal to log2(copy number/2).3 

 

CCLE dataset 

Raw gene expression data was obtained from the CCLE project (downloaded February 2017), 

which conducted a detailed genetic characterization of a large panel of human cancer cell lines.6 

Expression data within the CCLE project was generated with Affymetrix HG-U133 Plus 2.0. This 

dataset is referred to as the CCLE dataset throughout this manuscript. In addition, pre-processed 

somatic CNA data was obtained containing segmented normalized log2 copy number ratios at the 

gene level. The CNA data was generated with Affymetrix Genome-Wide Human SNP Array 6.0.6 



In short, CBS was applied to segment the normalized copy number estimates followed by median 

centering per sample. The amount of copy numbers for each gene was defined as the maximum 

absolute segmented copy number between the start and end base pair of that corresponding 

gene. 

 

GDSC dataset 

From the GDSC portal, we obtained raw expression data generated with Affymetrix HG-U219 

(downloaded February 2017).7 The aim of the GDSC project is to identify molecular features of 

cancer that predict response to anti-cancer drugs. This dataset is referred to as the GDSC dataset 

throughout this manuscript. In addition, we obtained the processed segmented somatic CNA 

data at the individual gene level. This data was generated with Affymetrix Genome-Wide Human 

SNP Array 6.0 and subsequently processed with the two-stage procedure ‘Predict integral copy 

numbers in cancer’ (PICNIC). In the first stage of PICNIC, raw Affymetrix genome-wide SNP 6.0 

data are converted into copy number and genotype intensities using previously known genotype 

structures in normal tissues. Next, a Bayesian Hidden Markov model is applied on this pre-

processed data to identify segments of fixed integer allelic copy numbers.8 

 

Preprocessing, normalization and quality control 

Preprocessing and aggregation of raw expression data within the GEO dataset, CCLE dataset and 

GDSC dataset was performed according to the robust multi-array average algorithm with 

RMAExpress (version 1.1.0) using the corresponding latest CDF files provided by Affymetrix.9 

Quality control was performed on the GEO dataset, CCLE dataset and GDSC dataset separately. 



For quality control, principal component analysis (PCA) was applied on the sample Pearson 

product-moment correlation matrix. The first principal component (PCqc) of such an expression 

microarray correlation matrix describes nearly always a constant pattern that dominates the 

data, explaining around 80-90% of the total variance. This pattern can be regarded as probe-

specific or platform-specific variance, independent of the biological sample hybridized to the 

array. The correlation of each individual microarray expression profile with this PCqc (in PCA 

analysis called factor loadings) can be used to detect outliers, as arrays of lesser quality will have 

a lower correlation with the PCqc. We removed samples with a Pearson r < 0.8. Because individual 

samples could be uploaded multiple times to repositories, we checked our datasets for 

duplicates. Duplicate CEL files were removed by generating a message-digest algorithm 5 (MD5) 

hash for each individual CEL file. A MD5 hash acts like a unique fingerprint for each individual file 

and duplicate CEL files will have an identical MD5 hash. Standardization makes expression values 

of probesets or genes comparable to each other by removing differences in experiments or 

platforms to obtain these expression datasets. The expression levels for each probeset (in the 

GEO dataset, CCLE dataset and GDSC dataset) or gene (in the TCGA dataset) were standardized 

to a mean of zero and variance of one to remove probeset-specific or gene-specific variability in 

the datasets. 

 

Independent component analysis 

In the present study, ICA was utilized to identify a regulatory model for the mRNA 

transcriptome.10 One can envision two extreme versions for the regulatory model of the mRNA 

transcriptome. On the one extreme side, a model can be defined where each individual gene has 



its own regulatory factor. On the other extreme side, all genes are regulated by just one 

regulatory factor. Applying ICA on a large mRNA expression dataset with 𝑝 genes and 𝑛 samples 

allows one to gain insight into the dimensionality of the mRNA transcriptome regulation. In 

addition, this model will give insight into how a specific regulatory factor influences the mRNA 

expression levels of individual genes. 

In ICA, a pre-processing technique called whitening is applied on the input dataset to make 

the estimation more time efficient. In the present study, whitening was used to transform the 

input dataset (𝑋$×&) containing mRNA expression profiles of 𝑝 probesets or genes from 𝑛 

samples linearly into a new dataset (𝑋′$×&) where all n transformed samples are orthogonal (i.e. 

uncorrelated and their variance equals one). In other words, whitening transformed 𝑋$×& in such 

a way that the covariance matrix between transformed samples became 𝐼&×& (identity matrix). 

Next, ICA was conducted on the whitened mRNA expression dataset (𝑋′$×&) resulting into 

extraction of 𝑖 independent components (each of dimension 𝑝 × 1 and 𝑖 ≤ 𝑛) and a mixing matrix 

(MM) of dimension 𝑖 × 𝑛. To choose 𝑖, PCA was conducted on the covariance matrix between 

samples of 𝑋′$×&. After that, 𝑖 was chosen as the number of top principal components which 

captured 85% of the total variance seen in 𝑋′$×&. The individual independent components 

resulting from ICA are referred to as estimated sources (ES$×/) and the matrix with all the ESs in 

different columns is referred to as the estimated source matrix (ESM$×0). Each ES is statistically 

independent of any other ES. In other words, information about scalars of one ES does not give 

any information about scalars of any other ES. Also, each ES captures a different part of variation 

observed in the mRNA expression data and scalars of an ES are not correlated with scalars of any 

other ES. We hypothesized that each ES captures the effects of an underlying regulating factor 



on gene expression levels. In the MM each column corresponds to an ES and each row 

corresponds to a sample. Each column of the MM contains the coefficients for samples which can 

be seen as an indirect measurement of ‘activity’ of the underlying regulatory factor in the sample 

under investigation. Each weight in an ES represents how strong the underlying regulatory factor 

influences the expression level of the corresponding probeset or gene. The sign of a weight in an 

ES defines the direction of the change in mRNA expression in relation to the ‘activity’ of the 

underlying regulatory factor in the sample under investigation. The inner product between the 

vector of ‘coefficients’ of an individual sample in the MM and the vector of ES weights per 

individual probeset or gene results in the original mRNA expression level. That is, the following 

equation holds: 

𝑋1$×& = 3ESM$×04 × (MM0×&) 

⟹ (𝑋1$×&) × (𝑊&×0) = ESM$×0                                                     (1) 

where 𝑊 is the inverse of MM. Thus, for every estimated source i a vector 𝑾&×/ has to be 

estimated in such a way that the outputs of the matrix multiplication (𝑋′$×&) × (𝑾&×/) are 

statistically independent of each other. The FastICA algorithm11 is used to estimate these 𝑾&×/’s, 

which consists of the following steps: 

a) Choose an initial random weight vector 𝑾&×/ of which the variance is 1. 

b) Minimization of negentropy. The estimated sources have to be non-gaussian for 

estimation of the ICA model.11 To use non-gaussianity in ICA model estimation, 

negentropy is introduced. Negentropy (𝐽(𝑌)) of a random variable Y is defined using 

entropy function (𝐻(. )) and a random variable following multivariate normal distribution 

(𝑌>?@AA) as: 



𝐽(𝑌) = 𝐻(𝑌>?@AA) − 𝐻(𝑌)                                                    (2) 

If the components are Gaussian, then the negentropy is zero. Non-gaussianity of the 

components increases if their negentropy increases. Therefore, negentropy is maximized 

to find components with maximum non-gaussiantity. Due to computational issues, 

negentropy is approximated as: 

𝐽(𝑌) ≈ D𝐸3𝐺(𝑌)4 − 𝐸3𝐺(𝑣)4HI                                             (3) 

where 𝐸(. ) is expectation function of a random variable, 𝑣 is a standard normal random 

variable and 𝑌 is standardized. For this analysis, the 𝐺 function is chosen as: 

𝐺(𝑢) = log cosh	(𝑢)                                                       (4) 

In the present study, non-gaussianity was measured by the approximation of negentropy 

𝐽(𝑋1𝑾) as described above. 

c) Update 𝑾: 

1. 𝑾R = 𝐸{𝐺1(𝑋1𝑾)𝑋1} −𝑾	𝐸{𝐺′′(𝑋′𝑾)}                                                             (5) 

i. Where 𝐺′ and 𝐺′′ are first and second derivatives of the function 𝐺. 

2. 𝑾 = 𝑾R
//𝑾R//V                                                                                                     (6) 

ii. //𝑾// represents norm of 𝑾 

d) If the norm of the difference between the old and new 𝑾 is more than a tolerance level, 

then restart from step b. In the present study, the tolerance level was fixed at 0.0001. 

e) If the old and new 𝑾 are in the same direction with a fixed tolerance level, then the 

algorithm finds 𝑋′𝑾 as one ES. 

f) To estimate several ESs together, run step a to e with different weight vectors and 

decorrelate the outputs (𝑋′𝑾) after each iteration. 



ICA was conducted using the fastICA function of the package fastICA version 1.2-0 in R version 

3.3.111. 

 

Consensus sources estimation on ICA 

Due to maximization of negentropy in a large dimensional space, the FastICA algorithm can get 

stuck in the local maxima. The resulting ESs can be different for different initializations of the 

initial random weight matrix 𝑊&×0. The Consensus sources estimation (CSE) algorithm can be 

used to get a set of consensus estimated sources (CESs) for which the probability of negentropy 

converging to its local maxima is minimized. The assumption of CSE is that over a large number 

of runs of ICA, negentropy does not converge to any local maxima for most of the runs. In the 

present study, CSE was conducted on 25 different runs of ICA, each with a different random 

initialization of the weight matrix 𝑊&×0.12 The CSE algorithm consists of the following steps: 

a) Combine the ESM$×0’s of all ICA runs together into a single matrix with 𝑝 rows 

and	𝑖 × 	number	of	ICA	runs columns. 

b) Clustering of highly correlated ESs. In the present study, ESs were clustered together 

when the absolute value of the Pearson correlation coefficient between them was > 0.9. 

c) Computing CESs. For a cluster containing 𝑛 𝐸𝑆s (𝐸𝑆/, 𝐸𝑆I,…, 𝐸𝑆&), 𝐶𝐸𝑆s are calculated 

as follows: 

𝐶𝐸𝑆$×/ = (1/𝑛)∑ (𝐸𝑆0 × 𝑠𝑖𝑔𝑛3𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐸𝑆/, 𝐸𝑆0)4)&
0n/                         (7) 

The number of ESs in each cluster can be at most the total number of ICA runs (for the 

present study, that is 25). A credibility index is computed for each cluster as follows: 

𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 = &stuvw	xy	z{|	0&	}~�}	��s|}vw
}x}��	&stuvw	xy	���	ws&|

                                                    (8) 



The higher the credibility index, the higher the chance of obtaining the 𝐸𝑆s for which the 

negentropy converges to its global maxima. In the present study, the cut-off for the 

credibility index was fixed at 50%. That is, clusters with a credibility index greater than 

50% were only considered for obtaining the consensus estimated source matrix (𝐶𝐸𝑆𝑀). 

The 𝐶𝐸𝑆𝑀$×t contains 𝐶𝐸𝑆$×/’s from 𝑚 clusters which had a credibility index greater 

than 50%. The characteristics of 𝐶𝐸𝑆s are similar to those of 𝐸𝑆s. 

d) Computing consensus mixing matrix (𝐶𝑀𝑀): - For the mRNA expression dataset 𝑋$×& 

(The expression levels for each probeset (GEO, CCLE and GDSC) or gene (TCGA) were 

standardized to a mean of zero and variance of one to remove probeset-specific or gene-

specific variability in the datasets) and 𝐶𝐸𝑆𝑀$×t, the 𝐶𝑀𝑀t×& is obtained as follows: 

𝐶𝑀𝑀t×& = ((𝐶𝐸𝑆𝑀1)t×$ × 𝐶𝐸𝑆𝑀$×t)�/ × (𝐶𝐸𝑆𝑀1)t×$ × 𝑋$×&                 (9) 

where 𝐶𝐸𝑆𝑀′, is the transpose of 𝐶𝐸𝑆𝑀. The characteristics of the 𝐶𝑀𝑀 are similar to 

those of the 𝑀𝑀. 

 

Detection of extreme-valued genomic region (DEGR) 

We observed a pattern in many 𝐶𝐸𝑆$×/’s where specific contiguous genomic regions contain 

many probesets or genes with extreme-valued weights. We developed an algorithm called 

detection of extreme-valued genomic region (DEGR) to identify the contiguous genomic region(s) 

with statistically significant co-localization of extreme-valued weights in 𝐶𝐸𝑆s. Using this 

algorithm, we quantified the number of 𝐶𝐸𝑆s with this pattern. The DEGR algorithm consists of 

the following steps:  



a) Collapsing probe-level weights of the 𝐶𝐸𝑆𝑀. The 𝐶𝐸𝑆s identified in the GEO dataset, CCLE 

dataset and GDSC dataset contain probe-level weights. As multiple probesets can target 

a single gene, many genomic regions have a high chance of co-localizing extreme values 

corresponding to these probe-level weights. Therefore, probe-level weights need to be 

collapsed to gene-level weights. In the DEGR algorithm, out of multiple probe-level 

weights corresponding to the same gene, the probe-level weight with the highest 

absolute value is retained as gene-level weight. 

b) Smoothing the 𝐶𝐸𝑆𝑀. To minimize the effect of outliers, smoothing is applied on the 

gene-level weights of CESs. Smoothing of the weights is performed per chromosome. If 

there are 𝑔 number of genes in a single chromosome, then the smoothing coefficients 

𝐶�/, 𝐶�I, …,	𝐶�� are generated for the 𝑘th gene from the truncated normal distribution 

(TND). Next, the smoothing coefficients are updated in the following way: 

𝐶′�0n𝐶�0/∑ 𝐶�0
�
/     𝑖	 = 	1, 2, … , 𝑔                                                (10) 

The smoothened weight of the 𝑘th gene in each 𝐶𝐸𝑆 (𝐶𝐸𝑆′�) is obtained in the following 

way: 

𝐶𝐸𝑆′� = (𝐶𝐸𝑆�×/)′ × (𝐶1�)�×/                                                (11) 

where 𝐶𝐸𝑆�×/ is the subset of the 𝐶𝐸𝑆s having weights from all genes mapping to that 

chromosome which contains the 𝑘th gene. For each gene, the mean of the TND is chosen 

as the base pair number of the gene. The standard deviation of the TND for genes 

mapping to the same chromosome is determined using the following steps: 



1. Fix a set of possible standard deviation (𝑠𝑑) values as input. In the present 

study, input values were all integers from 10,000 to 2,000,000 with a gap of 

10,000. 

2. Calculate interval length (𝑖𝑙) = 3 × 𝑠𝑑 

3. For every chromosome (𝑐ℎ) 

i. For every interval length (𝑖𝑙) 

• For every gene (𝑔) mapped to 𝑐ℎ calculate the neighborhood 

density (𝑛𝑑�~,�,0�), where 𝑛𝑑�~,�,0�  is the number of genes mapped 

to 𝑐ℎ which have distance from the gene 𝑔 in terms of base pair 

number < 𝑖𝑙. 

• Obtain 5% quantile (𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒_𝑛𝑑�~,�,0�  ) of all the 𝑛𝑑�~,�,0� 's for 

genes mapping to chromosome 𝑐ℎ corresponding to interval length 

𝑖𝑙. 

ii. Obtain the optimal interval length for chromosome 𝑐ℎ (𝑜𝑖𝑙�~), where 

𝑜𝑖𝑙�~  is the minimum of the 𝑖𝑙’s for which 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒_𝑛𝑑�~,�,0� > 10. 

iii. Assign the standard deviation parameter of the TND for genes mapping 

to chromosome 𝑐ℎ as 𝑜𝑖𝑙�~/3. 

c) Perform permutation test to mark extreme-valued weight indicator: Permutation test is 

pursued on each CES separately using the following steps. 

1. 1000 permutation of the non-smoothened weights of the gene-level CES are retained 

in a matrix p_CESMpx1000. 



2. Obtain smoothened permuted CESM (sp_CESM) using the smoothing method 

explained in the step b. Next, sort the absolute values of the weights of all the columns 

of sp_CESMpx1000 in decreasing order. 

3. Sort the absolute values of the weights of the smoothened CES in decreasing order 

(sorted_CES). 

4. For every column of sp_CESMpx1000 (sp_CESi), 

i. For every weight of sorted_CES (sorted_CESj), obtain the number of weights 

of sp_CESi greater than sorted_CESj (f>j) 

ii. Obtain the optimal cutoff for the sp_CESi (oci) as the maximum value of the 

weights of sorted_CES for which f>j/j > 5%. 

5. Initial indicator marks (iim) for every weight of the smoothened CES 

(smoothened_CESs) are obtained in the following way 

i. If smoothened_CESs > median(oc) then iims = 1 

ii. If smoothened_CESs < -median(oc) then iims = -1 

iii. Otherwise zero. 

6. Smoothen iim (smoothened_iim) using the smoothing method described in step b. 

7. Secondary indicator marks (sim) for every weight of the smoothened CES 

(smoothened_CESs) are obtained in the following way: 

i. If smoothened_iims > 0.85 then sims = 1 

ii. If smoothened_iims < -0.85 then sims = -1 

iii. Otherwise zero. 



8. Final indicator marks (fim) for every weight of the smoothened CES 

(smoothened_CESs) are obtained in the following way 

i. Obtain the number of genes (ngs) mapped to the corresponding chromosome 

which have a distance from gene 𝑠 in terms of base pair number < 

corresponding optimal interval length (oil) as described in step b.3.ii. 

ii. If ngs < 10 then fims = 0 

iii. Otherwise, fims = sims 

d) Obtain the indicator matrix IM$×t, where ith column of IM$×t is fim corresponding to 

the ith CES. Hence, IM(k,i) is 1 if the weight of kth gene of ith CES falls in an extreme-valued 

genomic region and zero otherwise.  

 

Transcriptional adaptation to CNA profiling (TACNA profiling) 

We hypothesized that the subset of CESs harboring a pattern in which contiguous genes are 

assigned extreme-valued weights might capture the degree of transcriptional adaptation to 

CNAs. These CESs are from now on referred to as CNA-CESs. To find support for this claim we first 

developed transcriptional adaptation to CNA profiling (TACNA profiling). In TACNA profiling, we 

reconstructed the gene expression profile for an individual sample by only using weights of 

extreme-valued genomic regions corresponding to the subset of CNA-CESs. 

 First, the matrix TACNAPpxn corresponding to TACNA profiles of p probesets/genes (for GEO, 

CCLE and GDSC, this analysis is done on probeset level and for TCGA, genelevel data is analyzed) 

and n samples is obtained using the following steps: 



a) We obtain the indicator matrix IM$×t corresponding to p probesets/genes and m CESs 

after applying DEGR on CESMpxm, where IM(k,i) is 1 if the weight of the kth gene of the ith 

CES falls in extreme-valued genomic region and zero otherwise.   

b) We obtain CNA-CESMpxm as: 

CNA-CESM(i,j) = CESM(i,j) X IM(i,j)  𝑖	 = 	1, 2, … , 𝑝. 𝑗	 = 	1, 2, … , 𝑛                  (12) 

c) We use the consensus mixing matrix CMMt×& corresponding to m CES’s and n samples 

(step d of the CSE algorithm described above) to obtain initial TACNA profiles 

(initial_TACNAPpxn) in the following way: 

initial_TACNAP$×& = CNA − CESM$×t × CMMt×&                         (13) 

d) Consensus-ICA on probelevel / genelevel standardized expression data always leads to 

specific consensus estimated sources and mixing matrix which re-generate TACNA 

profiles with average expression value of zero for each probeset / gene. The value zero in 

the re-generated initial TACNA profiles corresponds to transcriptional adaptation to 

average copy number alteration of all the samples. It is well studied that almost all types 

of tumors frequently have genomic alterations with gain or loss of the whole or parts of 

chromosomes. Hence, the ploidy of the tumor cells cannot be assumed to be 2n. As the 

majority of samples in the GEO dataset and TCGA dataset represent tumor tissue, the 

average ploidy in these datasets are not 2n. To ensure zero weights in initial TACNA 

profiles correspond to 2n ploidy, we adjusted the initial TACNA profiles from the GEO 

dataset and TCGA dataset with robust mean (Hodges Lehmann estimate) expression of 

the normal samples in the corresponding datasets for every probeset / gene13. The 

profiles after the above adjustment are defined as TACNA profiles. 



 TACNAP$×& = initial_TACNAP$×& − HodgesLehmannEstimate(initial_TACNAP��� ?¡)      (14) 

 

Transcriptional adaptation to CNA with CNA-CES’s having 50 or more genes in extreme valued 

region profiling (TACNA50 profiling) 

In many of the analyses presented in our manuscript, we used CNA-CESs having 50 or more genes 

in extreme valued region for obtaining TACNA profiles (TACNA50 profiling). This very stringent 

threshold for TANCA50 profiling was used to ensure that any biological association found with 

the degree of transcriptional adaptation of a gene was not the result of false positive findings, 

which could be the result of a CESs being incorrectly labeled as a CNA-CES by the DEGR algorithm. 

On the other hand, the change of false negative associations increased, but we deemed this in 

the context of this manuscript less harmful. The matrix TACNA50Ppxn corresponding to TACNA50 

profiles of p probesets/genes (for GEO, CCLE and GDSC, this analysis is done on probeset level 

and for TCGA, genelevel data is analyzed) and n samples is obtained using the steps for generating 

the initial TACNA profiles only with an updated IMpxm (IM50pxm). The steps to obtain IM50pxm are 

given below: 

a) We obtain the indicator matrix IM$×t corresponding to p probesets/genes and m CES’s 

after applying DEGR on CESMpxm, where IM(k,i) is 1 if the weight of the kth gene of the ith 

CES falls in extreme-valued genomic region and zero otherwise. 

b) We obtain a vector ngevrmx1 (number of genes in EVR) for each column of IMpxm using the 

following steps: 

1. If IMpxm is on probeset level, then convert it to genelevel using step ‘a’ of DEGR 

algorithm. 



2. Then for each column i, 

i. ngevr(i) = sum(IM(,i))                                                                                                  (15) 

c) A new matrix IM50pxm is generated in the following way: 

1. All entries of ith column of IM50pxm (IM50(,i)) = 0 for all i’s where ngevr(i) < 50 

2. IM50(,i) = IM(,i) for all i’s where ngevr(i) >= 50 

 

Cross-validation analysis within one platform 

A cross-validation analysis of TACNA-profiling was conducted to test the robustness of this 

method within one platform. A five-fold cross-validation analysis an mRNA expression dataset 

was done using the following steps: 

a) Samples from the mRNA expression dataset were randomly divided into five groups using 

a multinomial distribution simulation.  

b) Gene expression profiles from the mRNA expression dataset were standardized on the 

gene-level to a mean of zero and a standard deviation of one (standardized_mRNA). 

c) For the 𝑖th fold the following steps were conducted (𝑖 = 1,2,3,4 and 5): 

a. The input dataset (mRNA_CV0) for next steps was obtained by excluding samples 

in the 𝑖th group from the unstandardized mRNA expression dataset. 

b. Gene expression profiles from mRNA_CV0  were standardized to a mean of zero 

and standard deviation of one. 

c. Consensus independent component analysis was applied on the standardized 

mRNA_CV0   to obtain consensus estimated sources matrix (CESM0). 



d. CESM0  and standardized_mRNA were used to obtain the consensus mixing 

matrix (CMM0): 

e. CMM0 = ((CESM0)′ × CESM0)�/ × (CESM0)′ × standardized_mRNA          (16) 

f. CESM0  with extreme valued contiguous genomic regions (CNA_CESM0) were 

identified using the DEGR algorithm as described in the Supplementary Note. 

g. CNA_CESM0  and the CMM0  were used to obtain TACNA profiles for the samples 

present in mRNA_CV0  along with the samples in the 𝑖th group 

(TACNAP_excluded0). 

Pearson correlation coefficients were calculated between TACNAP_excluded0  and 

corresponding CNA profiles (derived from SNP arrays). 

 

Cross-study cross-validation analysis 

A cross-study cross-validation analysis of TACNA-profiling was conducted to test the robustness 

of this method across different studies or platforms. Following steps were conducted for each 

cross-study cross-validation analysis where consensus estimated sources of dataset 𝑖 were used 

to obtain TACNA-profiles of dataset 𝑗: 

d) Genes not present in both dataset 𝑖 and 𝑗 were removed from the analysis. 

e) Both dataset 𝑖 and dataset 𝑗 were standardized on gene-level separately, which means 

each gene expression is transformed to a mean of zero and standard deviation of one. 

f) Both of these standardized datasets were sample-wise merged to obtain a combined 

dataset (Combined_i_used_for_j). 



g) Consensus estimated sources matrix of dataset 𝑖 (CESM0) and Combined_i_used_for_j 

were used to obtain consensus mixing matrix (CMMcombined_i_used_for_j). 

CMMcombined_i_used_for_j = ((CESM0)′ × CESM0)�/ × (CESM0)′ ×

Combined_i_used_for_j                                                                                                          (17) 

h) CESM§ with extreme valued contiguous genomic region (CNA_CESM0) were identified 

using DEGR algorithm. 

i) CNA_CESM0	and CMMcombined_i_used_for_j were used to obtain TACNA-profiles for 

the samples present in dataset 𝑖 along with the samples in the dataset 𝑗 

(TACNAP_j_using_i). 

j) Pearson correlation coefficient between TACNAP_j_using_i and corresponding copy 

number profiles (derived from SNP arrays) were obtained. 

 

Cross-dataset heterogeneity in CNA occurrence is a constraint to reconstruct TACNA profiles of a 

dataset using	CNA_CESM of any other dataset. 

 

Human fragile sites 

Previously described genomic locations of aphidicolin-induced fragile sites identified through 

cytogenic analyses were used to assess the colocalization of borders of marked genomic regions 

in CNA-CESs with common fragile sites.14 Genomic coordinates were converted to human 

genome reference GRCh38 using the Batch Coordinate Conversion tool from USCS Genome 

Browser.15 Borders of marked genomic regions in CNA-CESs were assumed to colocalize with 

common fragile sites when one or both borders were located in a common fragile site. 



 

One-to-one gene- “best probeset” mapping for Affymetrix human microarrays 

As multiple probesets can target a single gene on Affymetrix gene expression microarrays, it can 

present a mild conundrum while attempting to obtain the enrichment score of a ‘gene-set’ 

defined by gene names rather than corresponding names of probesets. The R package ‘jetset’ 

(version 3.4.0) was used to obtain one-to-one mapping between genes and the ‘best’ probesets 

for expression data generated with Affymetrix HG-U133 Plus 2.0 and Affymetrix Human Genome 

U219.16 This package computes three scores for each probeset and then obtains an overall score 

to determine the best probeset for corresponding gene: 

a) Specificity score: - the specificity score is defined as the fraction of probes in a probe set 

that are likely to detect the targeted gene and unlikely to detect other genes. 

b) Coverage score: - the fraction of splice isoforms belonging to the targeted gene that are 

detected by the probeset is defined as coverage score of the probeset.  

c) Robustness score: - the robustness score quantifies robustness against transcript 

degradation. 

The overall score corresponding to each probeset is the product of the specificity score, coverage 

score, and robustness score. The probeset with the highest overall score is considered as the 

“best probeset” corresponding to the targeting gene and used in subsequent analyses. 

 

Gene Set Enrichment Analysis 

GSEA was performed utilizing 12 gene set databases from the MSigDB.17 Gene sets containing 

less than 10 genes or more than 500 genes (after filtering out genes that were not present in our 



data sets) were excluded from further analysis. Enrichment of a gene set was tested according to 

the two-sample Welch’s t-test for unequal variance.  

To obtain the metrics on which GSEA needed to be performed, we transformed the weights 

of the genes in each CNA-CES separately to metrics ranging from zero to one. Here, a metric of 

zero would correspond to the highest absolute weight (i.e., low degree of transcriptional 

adaptation to CNAs). A proportion of genes (38% of all genes in the GEO dataset and 25% of all 

genes in the TCGA dataset) had multiple metrics as they appeared in extreme-valued regions of 

multiple CNA-CESs. The lowest metric corresponding to these genes were considered for this 

analysis.  

Welch’s t-test was conducted between the set of metrics of genes whose corresponding 

gene identifiers are members of the gene set under investigation and the set of metrics of genes 

whose corresponding gene identifiers are not members of the gene set under investigation. To 

be able to compare gene sets of different sizes, Welch’s t statistics were transformed to -log10(P-

value). To control the false discovery rate, we performed a multivariate permutation test with 

100 permutations. For each permutation round gene identifiers were randomly assigned to 

metrics. This allowed us to present the number of significantly enriched gene sets per gene set 

database using a false discovery rate of 1% and a confidence level of 80%.  

 

Inferred CNA burden 

For each sample in the GEO dataset and TCGA dataset, CNA load was estimated as the sum of 

the ‘coefficients’ (i.e. indirect activity measurements) of all CNA-CESs in the MM with at least 50 



genes in their marked genomic regions. CNA loads were normalized to a 0-1 range across samples 

of the same tumor type in each dataset separately. 

 

Expression-based immune metric 

A previously defined set of genes describing CD8+ T cell and natural killer cell activity (CD2, CD3E, 

CD247, GZMK, NKG7 and PRF1) was used to calculate immune metric scores18. Per sample, the 

rank position of the mRNA expression levels of each of these genes was calculated. Scores for 

each sample were determined by calculating the mean rank position of the seven genes. Immune 

metric scores were normalized to a 0-1 range across samples of the same tumor type in each 

dataset separately. 

 

Estimating immune cell type abundance 

Immune cell type abundance was estimated using CIBERSORT.19 Earlier, we hypothesized that 

each CES describes the effect of a transcriptional regulatory factor on gene expression levels. As 

CNAs generally do not occur in non-tumor tissue, we reconstructed gene expression profiles 

using all CESs but CNA-CESs (i.e. residual profiling) to more accurately capture the effects from 

the tumor microenvironment on gene expression levels. Next, the abundance of 22 immune cell 

types were estimated by applying the leukocyte gene signature matrix (LM22) on the residual 

profiles. 

 

Prediction of gene functionalities 



We used a GBA approach to predict likely functions for genes based on gene co-regulation. For 

this, we conducted a consensus-ICA on an unprecedented scale (manuscript in preparation). In 

short, a covariance matrix was calculated between 19,635 genes using the expression patterns 

of 106,462 gene expression profiles generated with Affymetrix HG-U133 Plus 2.0 representing 

the many disease states, cellular states, and genetic and chemical perturbations that were 

obtained. Consensus-ICA was performed on the covariance matrix, which resulted in the 

identification of a large set of CESs and a mixing matrix reflecting the activity of each source in 

the expression pattern of each gene across the samples. Next, a GBA approach was used to 

predict the functionality of individual genes. First, we retrieved 16 public gene set collections 

describing a large range of biological processes and phenotypes. For each gene set, we calculated 

its ‘bar code’ by averaging the MM weight of its member genes. Next, for each gene in the MM, 

the distance correlation was determined between its MM weights and the gene set bar code. A 

high correlation between a gene’s MM weight and a gene set bar code indicated that the gene 

under investigation shared a functionality with the genes of the specific gene set under 

investigation. Significance levels were obtained with permutated data (250 permutations). This 

strategy was used on 23,372 well-described functional gene sets, which enabled us to create a 

comprehensive network of predicted functionalities of individual genes. This framework is 

available at http://www.genetica-network.com. 

 

 

 

Protein complexes analysis 



CORUM complex gene sets were collected from CORUM website ‘https://mips.helmholtz-

muenchen.de/corum/#download’ (Core complex set). Complexes not mapping to ‘Human’ 

organism were discarded. Genes that had a ‘None’ value in the ‘subunits(Entrez IDs)’ column 

were discarded, which correspond to genes that have a UNIPROTID but no Entrez ID. Finally, 

protein complex gene sets with 4 or less subunits were discarded. Pearson correlation matrices 

for each protein complex (n = 304) were calculated using TACNA50 expression levels from the 

TCGA dataset (n = 10,817). For each correlation matrix, a density metric was defined as the 

median value of the correlation matrix after discarding the diagonal. For each protein complex, 

1,000 similarly sized random groups of genes were generated and their density metric was 

calculated. A P value was assigned to each complex by calculating the fraction of permutations 

with lower density metrics as the real protein complex. 

 

Association between DNA methylation and degree of transcriptional adaptation  

For a subset of samples in the TCGA dataset (n = 9,317) available preprocessed methylation data 

generated with the Illumina 450 K array was collected. For each sample, we obtained the β-values 

of all individual genes. These β-values for individual genes were calculated using the mean signal 

values of methylation probes mapping to the same gene. In other words, β-values resemble the 

mean methylation level of individual genes in a given sample. For each gene, we correlated its 

mean methylation levels with TACNA expression levels across all samples. 

 

Identification of CES capturing gender differences 



Biological gender annotation for a subset of samples from the GEO dataset was collected from 

the GEO portal. A Mann-Whitney U test was performed for every CES comparing the mixing 

matrix weights of samples annotated to be male and samples annotated to be female. CES 471 

had the highest discrimination power between male and female samples (AUC = 0.9867). 

 
Expression quantitative trait loci (eQTL) analyses 

eQTL analysis was conducted using the mRNA expression profiles, the TACNA profiles and the 

CNA profiles of the TCGA dataset (n = 10,817). Details are given below: 

• Genes and samples not present in all three of the above-mentioned datasets were 

removed from the analysis. 

• Pearson correlation coefficients were obtained between mRNA expression profiles and 

CNA profiles on the gene-level. 

• Pearson correlation coefficients were obtained between TACNA profiles and CNA profiles 

on the gene-level. 

• Association within the CNA profiles on the gene-level was computed using Pearson 

correlation coefficient. 

Partial correlation coefficients between TACNA profiles and CNA profiles were computed on the 

gene-level to identify trans effect. Partial correlation analysis was conducted to remove false 

positive trans effects driven by CNA co-occurrence. 

 

TACNA profile versus mRNA changes upon chromosome 5 transfer 

Expression profiles were downloaded from the Gene Expression Omnibus for samples 

GSM978891-96 belonging to series GSE39768 performed on platform GPL4133. In addition, 



2,949 additional samples were downloaded for other studies performed on the same platform 

which had also Cy3 single label data available. All genes in this joint GPL4133 dataset were then 

median centered and log2 transformed. TACNA profiles were generated for the GPL4133 dataset 

using the sources obtained for the TCGA dataset (see Cross-study cross-validation section of 

Supplementary Note). To calculate arithmetic differences between the two conditions an 

average was calculated for the control arm (GSM978891-93) and another for the experimental 

arm (GSM978894-96) of the HCT116 model of chromosome 5 tetrasomy performed in GSE39768. 

Pearson correlations were calculated between the differences in mRNA expression and the 

differences of TACNA profiles using only genes mapping to chromosome 5. 
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