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SL.1. Curing curves and crosslink density of ENR compounds and ENR-TRGO nanocomposites
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Figure S 1. a) Curing curves of ENR compounds, b) Curing curves of ENR-TRGO nanocomposites.
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Figure S 2. a) Crosslink density of ENR compounds, b) Crosslink density of ENR-TRGO nanocomposites.
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SI.2. Mechanical properties of ENR compounds.
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Figure S 3. Stress-strain curves of ENR compounds.

Table S 1. Mechanical properties of ENR compounds.

Compound My v - 103 Mo Mg OR €r
(dN.m) (mol/cm?) (MPa) (MPa) (MPa) (%)

F1 3.14 + 0.04 359 + 0.05 0.51 £ 0.01 1.16 =+ 0.01 1.58 + 0.02 394 + 04

F2 436 £ 0.04 557 £0.03 070 £ 0.01 1.70 £ 0.01 1.90 + 0.04 328 + 06

F3 548 + 0.01 738 £ 0.09 0.87 £ 0.01 244 £ 0.05 32 £ 0.1 350 £ 12

F4 208 £ 0.0 249 £ 005 045 + 0.02 095 £+ 0.03 1.08 + 0.03 349 + 18

F5 338 £ 001 4.63 £ 0.02 059 £ 0.02 1.52 £ 0.01 1.61 + 0.05 315 £+ 08

F6 450 £ 000 6.71 £ 0.09 0.76 £ 0.01 2.11 + 0.01 1.7 £ 0.3 251 + 35
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SI.3. Infrared spectra of ENR compounds.
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Figure S 4. Infrared spectra of ENR compounds.
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SI.4. Mechanical properties of ENR-TRGO nanocomposites
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Figure S 5. Stress-strain curves of ENR-TRGO nanocomposites.

Table S 2. Mechanical properties of ENR-TRGO nanocomposites.

MH v- 105 M100 M300 OR &R
Compound
(dN.m) (mol/cm?) (MPa) (MPa) (MPa) (%)
F4 208 £ 0.01 249 £ 0.05 045+ 0.02 095 £ 003 1.08 £ 0.03 349 + 18
F4-A 232 £ 003 274 +£003 054 £+ 0.04 094 £ 0.09 1.3 £ 0.2 336 + 49
F4-B 242 + 0.01 3.05 £ 0.09 057 £ 001 121 £0.02 1.85 £ 0.07 431 £ 16
F4-C 240 £ 002 2.84 +£ 0.01 056 £ 0.01 129 £+ 0.02 1.7 £ 0.2 376 + 33
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SL.S. Stress-strain curves of F4-B before and after healing protocol
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Figure S 6. Stress-strain curves of F4-B before and after healing protocol.



SI.6. Characterization of TRGO

Raman spectroscopy was carried out in a Renishaw Invia Raman Confocal microscope using an argon laser
radiation source with an excitation wavelength of 514.5 nm. Three spectra were recorded from 250 cm-! to
3000 cm!. The crystallinity and the disorder in the basal-plane were determined from the area of the peaks of
the corresponding bands. FT-IR spectroscopy was used to analyze the TRGO functionalization using
potassium bromide (KBr) pellets in a Perkin Elmer spectrometer, model UATR Two. Spectra were taken from
400 cm! to 4000 cm™! with a resolution of 4 cm!. Pure KBr spectrum was used as background. X-ray
photoemission spectroscopy (XPS) analysis was performed on a Fisons MT500 spectrometer, operated at
300 W, with a non-monochromatized radiation source of MgKa of photon energy equal to 1253.36 eV. The

deconvolution was done in Origin Pro, with a Shirley type baseline and Gaussian adjustment.

Raman spectroscopy is commonly used to analyze the graphitic quality of carbon materials by comparing the
intensity ratio between the D, at 1360 cm™!, and G, at 1580 cm!, bands (Ip/Ig) (Figure S7). The results reflect
the structural changes occurred during the oxidation and exfoliation treatment and show a significant increase

in disorder, which is usually attributed to direct damage and functionalization of the surface.
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Figure S 7. Raman spectra of graphite and TRGO.

The nature of the functionalization was later established by XPS and FT-IR. The general XPS spectrum (Figure
S9) reports the presence of carbon (~75 %) and oxygen (~25 %) atoms, by the relationship between their

peaks and the deconvolution of the incorporated functionalities.
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Figure S 8. General XPS spectra of graphite and TRGO.

Figure S3 shows the deconvolution performed on the C 1s and O Is signals. Figure S9.a presents the
deconvolution of the C 1s signal with the percentages of the different species. The components indicate the
presence of: non-oxygenated ring C=C (sp? hybridization) at 284.5 eV, the C-C (sp? hybridization) at 285.8 eV,
C-OH bonds at 286.6 eV, C-O-C group at 287.6 eV, carboxylate carbon at 288.8 eV and the n- ©* interactions
associated to the non-oxygenated ring C=C (sp? hybridization) at 291.0 eV, which reveals the success of
reduction. The deconvolution performed on the signal of O 1s (Figure S9.b) is consistent with the C 1s data

and reveals the presence of C-O bonds (C-OH and C-O-C) at 533.3 eV and the O associated to the carboxylate
group at 531.0 eV.!2
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Figure S 9. Peak deconvolution of the a) C 1s and b) O 1s for TRGO.
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The functional groups were corroborated by the analysis of their infrared spectrum (Figure S10). Characteristic
bands of TRGO were identified at 3400 cm™! ( — OH stretching vibration), at 2960 cm-!, 2920 cm! and 2860
cm!' (-CH stretching vibrations) and at 1630 cm™!' (C = C bending in cyclic bonds). As for the epoxy groups
attached to the TRGO cyclic structure, its characteristic peak is identified at 890 cm™!. A band at 1110 cmis
also observed for the symmetrical stretching of type C — O - C. A small peak is present at 1740 cm! associated

with carboxylic groups, coinciding with XPS data.?
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Figure S 10. a) FT-IR spectrum of graphite; b) scheme of TRGO with its functional group.
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