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2 Supplementary Methods

National Institute for Health Research (NIHR) BioResource Rare
Diseases (BR-RD) Study

In addition to primary membranoproliferative glomerulonephritis (PMG), the pheno-
types examined include: bleeding/thrombotic/platelet disorders (BPD)[1], cerebral small
vessel disease (CSVD), Ehlers-Danlos syndrome (EDS), hypertrophic cardiomyopathy
(HCM), intrahepatic cholestasis of pregnancy (ICP), Leber Hereditary Optic Neuropa-
thy (LHON), multiple primary malignant tumors (MPMT)[2], pulmonary arterial hy-
pertension (PAH)[3], [4], primary immune disorders (PID)[5], inherited retinal disorders
(IRD)[6], [7], neurological and developmental disorders (NDD), neuropathic pain dis-
orders (NPD), stem cell and myeloid disorders (SMD) and steroid resistant nephrotic
syndrome. Data were also generated from process controls (CNTRL), individuals with
one of 162 rare diseases with no known causal mutation by standard of care genetic test-
ing (GEL) and from healthy individuals from the UK Biobank[8] with extreme red blood
cell traits (UKBio). A breakdown of the number of individuals per cohort can be found
in Table S1.

Ethics

Written informed consent was provided by all participants. The study was approved by
the East of England Cambridge South National Research Ethics Committee (Reference
13/EE/0325) and the South West Central Bristol Research Ethics Committee (Reference
10/H0106/8).

Whole-genome sequencing - data generation, variant calling and
annotation

In brief, DNA was extracted from whole blood, underwent initial quality control assess-
ment and was prepared using the Illumina TruSeq DNA PCR-Free sample preparation kit
(Ilumina, Inc.). Subsequently 100-150 base pair paired-end sequencing was undertaken
using an Illumina HiSeq 2500 or HiSeq X. The minimum coverage required per sample
was at least 95% of the autosomal genome at 15 times read depth. Reads were aligned
against the human genome (GRCh37) using Isaac (Illumina)[9].

Single nucleotide variants (SNVs) and indels were called using the [llumina Starling soft-
ware. Sample duplicates (n = 136) and those with poor data quality (n = 14) were
excluded. SNVs and indels were normalized and combined into gVCFs. For each vari-
ant, the overall pass rate (OPR) was enumerated as the product of the pass rate (the
proportion of alternate genotype passing the original variant filtering) and the call rate
(proportion of non-missing genotypes). A genotype quality (GQ) threshold of 20 and
depth (DP) threshold of 10 were imposed per genotype per individual; calls failing to



meet either of these criteria were set to missing. Only variants with OPR > 0.8 and
frequency of missingness < 0.01 were retained.

Variants were annotated using the Ensembl Variant Effect Predictor (v89)[10], their pre-
dicted deleteriousness based on CADD score[11] and their frequency in gnomAD (http://
gnomad .broadinstitute.org/variant)[12]. Variants were filtered using beftools (v1.8)[13]
and further filtered and analyzed using custom scripts written in Python and R.

Relatedness and ancestry

A subset of high quality common variants was extracted for ancestry and relatedness
estimation in the full BR-RD dataset. These variants were selected as they were present
on three Illumina genotyping arrays (HumanOmni2.58v1.1, HumanCoreExome-12v1.1
and HumanCoreExome-24v1.0), were biallelic, were genotyped in all BR-RD individuals,
had a minor allele frequency (MAF) > 0.3, were not in linkage disequilibrium (LD)
(pruned using PLINK v1.9[14] with r? < 0.2) and had OPR > 0.99. An initial kinship
matrix was computed using KING[15]. Subsequently, PC-AiR[16] and PC-Relate[17]
in the R package GENESIS were utilized to correct the kinship matrix for population
structure. The resulting kinship matrix was used as input in PRIMUSJ18] to identify the
maximal set of unrelated individuals. The ancestry of all BR-RD samples was ascertained
by calculating principal components (PC) using unrelated 1000 Genomes individuals[19]
and projecting the BR-RD genotypes onto this vector space. A multivariate model was
then used to classify each subject as being either of non-Finnish Furopean, Finnish,
African, South Asian and East Asian based on the 1000 Genomes data.

Further quality control

As described below in the section entitled ‘Common variant genome-wide association
study’, per individual heterozygosity and missingness were computed using common vari-
ants and individuals with values greater than three standard deviations from the mean
for each parameter were excluded (n = 49). This resulted in a final dataset comprising
146 PMG cases and 6,442 non-PMG controls that was used for all subsequent analyses
(see Table S1).

Structural variants

Structural variants (SVs) and copy number variants (CNVs) were called using Manta[20]
and Canvas|21], respectively. Variants were categorized as CNV gain/loss, translocations,
deletions, tandem duplications and insertions. Only those variants within at least 10
base pairs of an exon were included. Known common benign variants[22] and those
failing [llumina quality filters were excluded. Variants were filtered based on their allele
frequency in all BR-RD samples excluding those at > 0.001. Deletions identified by
both Canvas and Manta with a 20% minimum overlap were identified. The genome-
wide comparison of the frequency of deletions per gene between cases and controls was


http://gnomad.broadinstitute.org/variant
http://gnomad.broadinstitute.org/variant

undertaken using those deletions identified by both Canvas and Manta using PLINK
v1.07[23].

Comparison with previously described PMG and aHUS variants

Details on 843 common and rare variants within the genes C3, CD/6, CFB, CFH, CFHR1,
CFHRS3, CFHRS, CFI, DGKE, and THBD previously observed in patients with atypi-
cal hemolytic uremic syndrome (aHUS), age-related macular degeneration (AMD), C3G
or thrombotic microangiopathy (TMA) were extracted from the Database of Comple-
ment Gene Variants (DCGV) (http://www.complement-db.org)[24]. The variants were
manually curated to remove duplicates leaving 830. Three additional common variants
previously studied in MPGN but missing from the database were added[25]. Observed
sequence variants were matched to these previously described variants based on either
overlapping (i) genomic position, reference and alternate alleles, (ii) Human Genome
Variation Society (HGVS)[26] protein effect or (iii) HGVS ¢DNA effect. For common
variants (gnomAD non-Finnish Europeans (gnomAD-NFE) MAF > 0.05)), logistic re-
gression association analysis with five principal components as covariates, and epistasis
analyses were performed using PLINK v1.9.

Rare variant candidate gene and genome-wide coding variant
burden analysis

To extract coding variants, exon positions as defined by both Ensembl[27] and RefSeq[28]
were utilized. Variants residing within these loci passing quality control were retained.
Only data from European unrelated PMG and controls were examined. Variants equal to
or exceeding an allele frequency of 0.0001 in gnomAD-NFE were excluded. Only variants
of moderate (inframe indels and missense variants) or high (splice acceptor/donor, stop
gain/loss, start loss, frameshift) impact were analyzed. Per-gene rare variant burden
was enumerated as the proportion of individuals (cases versus controls) with at least one
alternate allele in each gene with significance calculated using the exactCMC function
in RVTESTS[29], which employs a Fisher’s exact test. A Manhattan plot was produced
using the R package qqman(30]. A QQ plot including 95% confidence intervals was
produced using the R packge snpStats[31]. As per the method employed by qqman, only
p-values < 1 have been included in the QQ plot.

Common variant genome-wide association study

Variants passing quality control filters that had a MAF > 0.05 in gnomAD-NFE and
across all samples in BR-RD were retained (n = 5,939,292). Standard quality control
procedures[32] were subsequently employed to remove samples and variants of poor qual-
ity. Initially, heterozygosity and per-sample missingness were computed using PLINK
v1.9. Individuals with heterozygosity or missingness greater than three standard devi-
ations from the mean were excluded. This resulted in the exclusion of 49 individuals
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(none with PMG). Next, the data were filtered to remove variants demonstrating de-
viation from Hardy-Weinberg equilibrium at p < 0.001 and those at a MAF < 0.05 in
controls. Genome-wide association study was undertaken with PLINK v1.9 assuming
additive allele effects using logistic regression with the first five principal components as
covariates. Following completion of the genome-wide association study, a Manhattan plot
was produced using the R package qqman[30]. A QQ plot including 95% confidence in-
tervals was produced using the R packge snpStats. High resolution plots showing the LD
between markers (as per 1000 Genomes November 2014 European data) were generated
using LocusZoom[33]. eQTL data were extracted from the Genotype-Tissue Expression
(GTEx) project (https://www.gtexportal.org)[34].

HLA imputation

HLA genotyping was performed by realignment of the raw sequence data to HLA con-
tigs using BWAKIT/BWAMEM v0.7.15 (https://github.com/1h3/bwa/tree/master/

bwakit). HLA alleles A, B, C, DQA1, DQB1 and DRB1 were examined. For each allele,
only the most likely genotypes were carried forward.

HLA genotyping was also performed using HLA-HD v1.2.0.1[35] which maps the raw
sequence data to an extensive dictionary of HLA alleles. This was run using default
parameters. HLA alleles A, B, C, DQA1, DQB1, DRB1-9, DPA1, DMA, DMB, DOA,
DOB, DRA, E, F, G, H, J, K, L and V were imputed.

The imputed results generated by the two methods were processed separately. The results
were converted to PED/MAP format at four-digit resolution and filtered on missingness
per individual (99%) and per variant (99%) using PLINK.

3 Supplementary Results

HLA replication

Identical serotypes at all five HLA types tested were observed for seven (2.1%) of the
cases and 1106 (7.1%) of the controls. The coverage of the observed serotypes for each of
the five HLA types were as follows: A 99.5%, B 99.5%, C 87.6%, DR 99.5%, DQ 92.8%.

Of the European PMG individuals in the discovery analysis, 22 had undergone renal
transplantation and might have been included within the MPGN NHSBT data. Amongst
these cases, four and two individuals were heterozygous and homozygous, respectively,
for DRB1*03:01 (corresponding to DR17). Removing four heterozygous, two homozygous
and sixteen wild type cases from the MPGN DR17 analysis, this serotype remained sig-
nificantly associated with disease (p = 2.0 x 10™%), confirming independent replication.
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5 Supplementary Figures
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Figure S1: Sample and analytic workflow for both the discovery and replication compo-
nents of the study. The flowchart shows the number of samples included, the analytical
strategies employed and the main findings.
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Figure S2: Principal component analysis showing the first four principal components
highlighting PMG cases (red) and controls (black) by ethnicity (European circle, not
European cross). All unrelated individuals post-exclusions, pre-common variant quality
control have been plotted.
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Candidate gene rare variant burden
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Figure S3: Cumulative burden of rare variants with moderate or high predicted im-
pact in the PMG candidate genes in each of the control cohorts of BR-RD sepa-
rately (black), together (blue), in PMG (red) and the subphenotypes of PMG based
on histopathology (C3GN, DDD, IC-MPGN, PMG unclassified (PMG U)), C3NeF sta-
tus (positive/negative) and those with low C3 (purple). Horizontal lines indicate the 95%
confidence intervals.
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Figure S4: Cumulative burden of rare variants with moderate or high predicted impact
in the PMG candidate genes with variable CADD threshold (none to > 20) and control
allele frequency (gnomAD-NFE MAF < 0.0001 to < 0.01), in PMG and control subjects.
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Figure S5: Exome-wide rare variant burden analysis Manhattan plot comparing Furopean
unrelated PMG cases and controls. No gene surpasses the exome-wide Bonferroni signif-
icance threshold indicated by a horizontal red line (p < 1.77 x 107%). Genes achieving p
< 1 x 1073 have been annotated.
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Figure S6: QQ plot for exome-wide rare variant gene burden analysis.
served/expected chi-square values and corresponding p-values are shown.
shaded area indicates the 95% confidence interval of the null.
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Figure S7: QQ plot for the common variant genome-wide association analysis. The
observed /expected chi-square values and corresponding p-values are shown. The grey

shaded area indicates the 95% confidence interval of the null. The genomic inflation
(lambda) is 1.017.
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Figure S8: Allele frequency of the lead variant from the chromosome 6 locus in each
of the control cohorts of BR-RD separately (black), together (blue), in PMG (red) and
the subphenotypes of PMG based on histopathology (C3GN, DDD, IC-MPGN, PMG
unclassified (PMG U)), C3NeF status (positive/negative) and those with low C3 (purple).
Horizontal lines indicate the 95% confidence intervals.
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Figure S9: Frequency of HLA serotype DR17 in the NHSBT data showing the controls
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6 Supplementary Tables

See separate Excel file.

Table S1

Number of individuals in each of the BR-RD cohorts at each stage of filtering.

Table S2

Full histological categorization and clinical details for all subjects with C3G (C3GN and
DDD). In the Source of histology data column, the abbreviations used are as follows:
LM light microscopy, EM electron microscopy and IS immunostain. ESRD is end-stage
renal disease.

Table S3

Prioritized rare moderate/high impact variants identified in candidate genes in PMG
subjects. Chr (chromosome), Pos (position), Ref (reference allele) and Alt (alternate
alele) are given with reference to Build 37 of the human genome. HGVSc and HGVSp
effects are given for the Ensembl transcript that is canonical or otherwise the transcript
with the highest impact variant effect. gnomAD_AF _NFE is the frequency of the
variant in non-Finish European individuals in gnomAD. gnomAD_AF is the frequency
of the variant in all gnomAD cohorts. Phenotype is the histological subphenotype
(PMG is PMG unclassified). AC_Controls gives the number of non-PMG individuals
with each variant. Controls_Cohort_AC shows the non-PMG cohorts in which subjects
with each variant are identified.

Table S4

Prioritized rare moderate/high impact variants identified in candidate genes in non-PMG
subjects. The column definitions (where they overlap) are as per Table S3.

Table S5

Rare variants in candidate genes previously classified as pathogenic or likely pathogenic in
the Database of Complement Gene Variants (DCGV). DCGV_cDNA and DCGV _Protein
are the cDNA and protein effects of the variant as reported in DCGV. DCGV _Conditions
gives the diseases each variant has been previously identified in. DCGV _Path is the
pathogenicity classification of the variant as per DCGV (using American College of Med-
ical Genetics and Genomics and the Association for Molecular Pathology criteria, see
DCGV publication by Osborne et al.). AC gives the number of individuals with each
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variant. Further column definitions (where they overlap) are as per Table S3. A single
variant seen in a PMG case is shown in red.

Table S6

Association statistics for sixteen common variants in candidate genes previously identified
in association with aHUS or MPGN comparing PMG with controls. Linkage disequilib-
rium, as calculated from the data itself, enable identification of independent signals, as
shown with r%. A1 is the minor allele. Effect gives the effect of the variant as described
in the Database of Complement Gene Variants (DCGV). F_A and F_U give the fre-
quency of the minor allele (A1) in PMG cases and controls, respectively. OR, L95 and
U95 give the odds ratio and 95% confidence intervals. P is the p-value as calculated
using logistic regression with five principal components as covariates. Further column
definitions (where they overlap) are as per Table S3. P-values achieving significance after
correcting for multiple testing are shown in red.

Table S7

Association statistics for all variants achieving p < 5 x 107% in the genome-wide associ-
ation study. The column definitions (where they overlap) are as per Table S6.

Table S8

GTEx eQTL results for rs3117135 (https://gtexportal.org/home/snp/rs3117135).
NES is the normalized effect size.

Table S9

Association statistics for imputed HLA alleles using BWAKIT/BWAMEM and HLA-HD.
For each HLA allele, for each imputation method (BWAKIT/BWAMEM (BWA-) and
HLA-HD (HLAHD-)) the frequency in PMG (_A), controls (_U), odds ratio (OR),
confidence intervals (lower L95 and upper U95) and p-value (P) are shown.
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