Electronic supplement material: Appendix

My niche: within-species individual spatial niche specialisation affects within and between species interactions

Annika Schirmer, Julia Hoffmann, Jana A. Eccard & Melanie Dammhahn

Animal Ecology, Institute for Biochemistry and Biology

University of Potsdam, Potsdam, Germany

Corresponding author:

Annika Schirmer

Animal Ecology, Institute for Biochemistry and Biology

University of Potsdam

Maulbeerallee 1, 14469 Potsdam, Germany

++49 (0)331 977 1988 annika.schirmer@uni-potsdam.de

Grid	Captured individuals	Recaptured individuals
G2	54	48
G3	83	80
G4	44	29
G5	40	29
G6	49	41
Total	270	227

Table A1: Overview of the number of captured and recaptured individuals from the two study species (*M. glareolus, A. agrarius*) on each study site.

	Correlation	Co-		
Variable	coefficient	variance	CI low	CI high
Core area size (kernel 50)	0.49	0.58	0.299	0.801
Home range size (kernel 95)	0.47	0.60	0.278	0.816

Figure A1 Covariance of boldness and home range and core area size respectively for *M. glareolus* (n = 21, blue solid line and dots) and *A. agrarius* (n = 15, orange dashed line and squares) tracked via automated VHF telemetry. Home ranges are based on 95 % of location points, core areas on 50 % of location points. Represented are covariance values and credibility intervals, as well as correlation coefficients to represent the strength of association between variables. Intervals different from zero represent significant covariances and are marked in bold.

	Correlation	Co-		
Variable	coefficient	variance	CI low	CI high
Maximum vegetation height in home range	-0.40	-0.57	-0.787	-0.211
Ground cover in home range	0.32	0.18	0.025	0.751

Figure A2 Covariance between boldness and microhabitat structure in home ranges of bank voles (*M. glareolus,* solid line and circles) and striped field mice (*A. agrarius,* dashed line and squares). We measured the maximum vegetation height (in cm) and estimated the percentage of ground cover (10 cm above ground) based on photographs in one square meter surrounding each trap location. Using QGIS we interpolated maximum vegetation height and percentage of ground cover on the basis of an inverse weighing of the distance between points to assess habitat characteristics for the whole area of the trapping grid. Subsequently, we extracted maximum vegetation height and vegetation cover from these GIS models for each simulated location point within individual home ranges and core areas (for more details see Schirmer et al. 2019). Represented are covariance values and credibility intervals, as well as correlation coefficients to represent the strength of association between variables. Intervals different from zero represent significant covariances and are marked in bold.

Figure A3 | X and Y coordinates of mean trapping points in dependence of the number of recaptures for a subset of individuals (n = 26) which were trapped 8 times. Neither coordinate was significantly dependent on the number of recaptures of individuals based on calculated generalised linear mixed-effects models.

Table A2 Repeatability of behavioural variables quantified in a combined open-field and dark-light test for *M. glareolus* (n = 62) and *A. agrarius* (n = 44). R stands for the repeatability coefficient, Cl_low represents the lower 95% confidence interval, Cl_high the upper 95% confidence interval and SE the standard error. Repeatabilities different from zero are indicated in bold.

.

	Variable	R	CI low	CI high	p-value
	Latency to investigate	0.45	0.17	0.69	0.001
lus	Latency to emerge	0.37	0.11	0.61	0.003
areo	Latency to cross the center	0.33	0.00	0.58	0.007
s gli	Number of center crossings	0.26	0.00	0.42	0.007
ode	Number of sections entered	0.22	0.05	0.46	0.026
Ň	Number of jumps	0.08	-0.11	0.33	0.158
	Activity	0.33	0.12	0.54	0.009
	Latency to investigate	0.41	0.18	0.60	0.001
rrius	Latency to emerge	0.43	0.17	0.63	0.001
agra	Latency to cross the center	0.16	0.00	0.28	0.013
nus (Number of center crossings	0.21	0.10	0.37	0.028
den	Number of sections entered	0.31	0.00	0.38	0.002
Apo	Number of jumps	0.22	-0.21	0.39	0.059
	Activity	0.37	0.07	0.66	0.036

Table A3 Results of the principle component analysis, corrected for species, for *M. glareolus* and *A. agrarius* (n = 126). PC 1 represents the principle component interpreted as exploration, PC 2 represents the component interpreted as boldness. The highest loading of each variable, signifying which component represents the variable best, is marked in bold.

		Components	
		PC 1	PC 2
	Latency to investigate	-0.58	0.77
s	Latency to emerge	-0.59	0.76
ding	Latency to cross the center	-0.74	-0.35
Гоас	Number of center crossings	0.78	0.24
_	Number of sections entered	0.85	0.28
	Activity	0.76	0.27
e	Eigenvalues	3.15	1.51
rian	Proportion Variance	0.56	0.27
Va	Cumulative Variance	0.56	0.83

Table A4 Covariances between exploration and the respective spatial interaction variables. Represented are the covariance values, their credibility intervals and the correlation coefficients to represent the strength of association between variables.

	Correlationc	Co-		
Variable	oefficient	variance	CI low	CI high
Intraspecific overlap of core areas	0.04	0.15	-0.383	0.528
Intraspecific overlap of home ranges	0.10	0.14	-0.241	0.475
No. of conspecific neighbours in core area	0.21	0.31	-0.428	0.652
No. of conspecific neighbours in home range	-0.01	0.13	-0.450	0.590
Distance to the nearest conspecific	-0.21	-0.64	-0.835	0.196
Interspecific overlap of core areas	0.05	-0.05	-0.458	0.378
Interspecific overlap of home ranges	0.18	0.10	-0.269	0.444
No. of heterospecific neighbours in core area	-0.10	0.03	-0.534	0.529
No. of heterospecific neighbours in home range	-0.09	-0.09	-0.660	0.426
Distance to the nearest heterospecific	-0,17	-0.15	-0.754	0.325

Figure A4 Covariance between exploration and spatial patterns at the home range scale. Presented are intra- and interspecific overlap, number of con- and heterospecific neighbours and the distance to the nearest con- or heterospecific of bank voles (*M. glareolus*, n = 21, dots) and striped field mice (*A. agrarius*, n = 15, squares). Results on the core area scale are similar, we therefore refrain from presenting them.

Table A5 Results for the fixed effects of Bayesian mixed-effects models on spatial patterns in home ranges (kernel 95) and core areas (kernel 50) of bank voles and striped field mice. Represented are the mean values for the variables based on the posterior distribution of the data, the lower and upper level of the 95 % credibility interval (CI) the effective sample size based on permutations and the adjusted p values based on Bayesian statistics.

Variable	Fixed	Post.mean Lov	wer Cl 95% Up	per Cl 95%	Eff.samp	pMCMC
	factor					
Intraspecific overlap of core	e Sex	0.136	-0.051	0.300	1000	0.112
areas	Species	-0.007	-0.205	0.186	1214	0.950
	Dif_Bold	0.000	-0.001	0.001	1000	0.956
	DyadSex	0.000	-0.005	0.007	698	0.912
Intraspecific overlap of	Sex	0.103	-0.113	0.309	1000	0.344
home range	Species	0.072	-0.152	0.306	1000	0.516
	Dif_Bold	0.000	-0.001	0.001	1000	0.872
	DyadSex	0.001	-0.006	0.007	1000	0.836
Interspecific overlap of core	e Sex	-0.001	-0.169	0.171	1000	0.992
areas	Species	0.045	-0.109	0.232	1000	0.604
	Dif_Bold	0.000	-0.001	0.001	1000	0.960
	DyadSex	0.000	-0.006	0.006	1000	0.990
Interspecific overlap of	Sex	-0.036	-0.265	0.199	1000	0.750
home range	Species	0.026	-0.204	0.241	1000	0.822
	Dif_Bold	0.000	-0.001	0.001	1000	0.824
	DyadSex	0.001	-0.006	0.007	1000	0.790
No of conspecific neighbour	rs Sex	-0.294	-0.794	0.252	1000	0.292
in core area	Species	-0.161	-0.675	0.401	1000	0.538
No of conspecific neighbour	rs Sex	0.119	-0.516	0.710	1000	0.682
in home range	Species	0.456	-0.190	1.063	1000	0.132
No of heterospecific	Sex	-0.009	-0.754	0.707	1000	0.980
neighbours in core area	Species	-0.077	-0.879	0.701	1000	0.852
No of heterospecific	Sex	0.335	-0.798	1.390	1000	0.528
neighbours in home range	Species	0.424	-0.527	1.390	1000	0.434
Distance to the nearest	Sex	-0.930	-3.138	1.689	1000	0.424
conspecific	Species	-0.104	-2.280	2.194	1000	0.920
	DyadSex	-0.056	-0.345	0.223	1000	0.738
Distance to the nearest	Sex	0.608	-2.006	3.399	1000	0.630
heterospecific	Species	-2.395	-4.933	0.207	1000	0.076
	DyadSex	-0.012	-0.296	0.307	1000	0.896

Figure A5 Covariance between boldness and spatial patterns at the core area scale. Presented are intra- and interspecific overlap (a, b) and number of con- and heterospecific neighbours (c, d) of bank voles (*M. glareolus*, n = 21, dots) and striped field mice (*A. agrarius*, n = 15, squares).

Variable	Species	Mean	SD	Min	Max
Interspecific overlap of home ranges	BV	0.48	0.30	0.10	1.00
	SFM	0.48	0.26	0.10	1.00
Intraspecific overlap of home ranges	BV	0.40	0.14	0.12	0.65
	SFM	0.49	0.21	0.11	0.94
Heterospecific number of neighbours	BV	5.52	7.24	0.00	26.00
in core area	SFM	6.47	6.76	1.00	21.00
Conspecific number of neighbours in	BV	6.05	5.89	1.00	20.00
home range	SFM	7.33	4.35	0.00	14.00
Interspecific overlap of core areas	BV	0.24	0.18	0.10	0.78
	SFM	0.36	0.30	0.10	1.00
Intraspecific overlap of core areas	BV	0.17	0.10	0.00	0.48
	SFM	0.19	0.18	0.00	0.57
Heterospecific number of neighbours	BV	1.24	1.87	0.00	7.00
in home range	SFM	2.27	2.28	0.00	6.00
Conspecific number of neighbours in	BV	2.19	2.69	0.00	9.00
core area	SFM	1.73	1.44	0.00	5.00
Distance to nearest conspecific	BV	7.00	6.10	0.00	31.20
	SFM	8.26	10.77	0.00	55.07
Distance to nearest heterospecific	BV	14.60	8.82	0.00	33.71
	SFM	12.34	10.75	0.00	58.53

Table A6 Descriptive statistic of spatial variables for bank voles (BV) and striped field mice (SFM). Given are mean,SD as the standard deviation, Min the minimum and Max the maximum value.

Table A7 Covariances of single variables comprising the boldness score in the manuscript and spatial interaction variables. We decided to use the PCA scores of the second component as a quantitative measure of boldness in the Bayesian mixed-effects models presented in the manuscript, rather than the single measured variables from the individual difference test, since the test itself measures six variables and picking one of them as a measure of boldness would neglect the underlying grouping structure of the data. Therefore, we present the covariances between the single variables and the spatial variables only here. Latency to investigate represents the latency until an individual stuck its head out of the pipe from the test set up, while the latency to emerge represents the latency until an individual left the pipe with its whole body. Represented are the covariance values their credibility intervals and the correlation coefficients to represent the strength of association between variables. Intervals different from zero represent significant covariances and are marked in bold.

		Correlation	Co-		
	Variable	coefficient	variance	CI low	CI high
	Intraspecific overlap of core areas	0.12	0.23	-0.197	0.689
a	Intraspecific overlap of home ranges	0.22	0.29	-0.004	0.677
gat	No. of conspecific neighbours in core area	-0.12	-0.28	-0.651	0.283
esti	No. of conspecific neighbours in home range	-0.07	-0.10	-0.599	-0.048
iž	Distance to the nearest conspecific	0.21	0.42	0.009	0.726
5	Interspecific overlap of core areas	0.00	0.00	-0.389	0.476
ncy	Interspecific overlap of home ranges	0.22	0.46	0.069	0.693
ate	No. of heterospecific neighbours in core area	-0.07	-0.15	-0.501	0.505
_	No. of heterospecific neighbours in home range	0.31	0.37	0.192	0.789
	Distance to the nearest heterospecific	-0.21	-0.28	-0.667	-0.017
	Intraspecific overlap of core areas	0.06	0.12	-0.272	0.491
	Intraspecific overlap of home ranges	0.13	0.17	-0.134	0.578
ge	No. of conspecific neighbours in core area	-0.05	-0.11	-0.634	0.274
ner	No. of conspecific neighbours in home range	-0.06	-0.08	-0.554	-0.047
0 er	Distance to the nearest conspecific	0.19	0.38	0.005	0.754
₹ A	Interspecific overlap of core areas	-0.06	-0.12	-0.334	0.410
enc	Interspecific overlap of home ranges	0.12	0.25	0.027	0.606
Lat	No. of heterospecific neighbours in core area	0.02	0.04	-0.395	0.508
	No. of heterospecific neighbours in home range	0.24	0.28	0.039	0.699
	Distance to the nearest heterospecific	-0.20	-0.27	-0.672	-0.005

A13 Exemplary R code of a calculated Bayesian mixed model investigating the covariance between boldness and spatial parameters

##MCMC model: Covariance between boldness and distance to the nearest conspecific library(MCMCglmm)

##Load data DataDis <- read.delim2("C:/.../DataDistance.txt")

#set priors ##create matrix variances of both covariates pvar1<-matrix(c(var(DataDis\$Boldness,na.rm=TRUE),0,0, var(DataDis\$DistanceConspecific, na.rm=TRUE)), 2,2) ##the distance to the nearest conspecific has only been measured once, therefore the within-individual correlation is fixed to nearly 0 prior1<-list(G=list(G1=list(V=diag(2)*pvar1/2,n=2),G2=list(V=diag(2)*pvar1/2,n=2)), R=list(V=diag(c(1,0.0001),2,2),nu=1,fix=2))

#Run MCMC model
##Boldness and the distance to the nearest conspecific have not been measured at the same time, therefore the
within-individual covariance was fixed to 0
mod.Dis<-MCMCglmm(cbind(Boldness,DistanceConspecific)~ trait1+Sex+Species,random=~us(trait):PIT+us(trait):Grid, rcov=~idh(trait):units,
family=c("gaussian", "gaussian"),data=DataDis, nitt=101000, thin=100, burnin=1000, prior=prior1, verbose=FALSE)</pre>

summary(mod.Dis) autocorr(mod.Dis\$VCV) plot(mod.Dis\$VCV) plot(mod.Dis\$Sol) posterior.mode(mod.Dis\$VCV) mod.Dis\$DIC head(mod.Dis\$Sol)

#calculation of among-individual correlations CorDis<mod.Dis\$VCV[,"traitDistanceConspecific:traitBoldness.PIT"]/sqrt(mod.Dis\$VCV[,"traitBoldness:traitBoldness.PIT"] *mod.Dis\$VCV[,"traitDistanceConspecific:traitDistanceConspecific.PIT"])

#extract covariance and credibility interval
posterior.mode(CorDis)
HPDinterval(CorDis, 0.95)