SUPPLEMENTARY MATERIAL

Reciprocal control of motility and biofilm formation by the PdhS2

two-component sensor kinase of Agrobacterium tumefaciens

Jason E. Heindl, Daniel Crosby, Sukhdev Brar, John F. Pinto, Tiyan Singletary, Daniel Merenich, Justin L. Eagan, Aaron M. Buechlein, Eric L. Bruger, Christopher M. Waters and Clay Fuqua

Running title: Agrobacterium PdhS2 regulates motility and biofilms

1) Supplementary Figures - S1-S8

2) Supplementary Figure Legends

3) Supplementary Tables – S1-S3

4) Supplementary References

Figure S1. A combined kinase- and phosphatase-null PdhS2 mutant allele has little effect on biofilm formation or swimming motility. The ability of plasmid-borne expression of a kinase- and phosphatase- null allele of *pdhS2* (p-*pdhS2* (K⁻P⁻)) to complement the $\Delta pdhS2$ phenotypes was compared against the wild-type *pdhS2* allele (p-*pdhS2*). Biofilm formation (black bars) and swimming motility (white bars) were evaluated as in Figure 2. (a) = P < 0.05 compared to the wild-type background with vector only; (b) = P < 0.05 compared to the $\Delta pdhS2$ background with vector only. Statistical significance was determined using Student's *t* test.

Figure S2. Morphology of WT, $\Delta divK$, $\Delta pdhS2$, and $\Delta divK \Delta pdhS2$ strains. Strains were grown to exponential phase in ATGN. Aliquots of cells were placed on top of an ATGN/1% agarose pad and imaged using phase contrast microscopy. (A), WT; (B) $\Delta divK$; (C) $\Delta pdhS2$; (D) $\Delta divK \Delta pdhS2$. Representative images are shown. Scale bar = 10 µm.

Figure S3. PleD regulation of swimming motility is epistatic to PleC. Swimming motility of the wild-type (WT) and indicated mutant strains was evaluated as described in Figure 2. (*) P < 0.05 compared to all strains.

Figure S4. Predicted CtrA-dependent promoters bearing one or more CtrA binding motifs. Promoter regions from select genes whose expression is upregulated (red) or downregulated (black) in the $\Delta pdhS2$ mutant background relative to the wild-type background. Predicted CtrA binding sites, as defined in the main text, are

indicated. Only those genes with a predicted full CtrA binding site are shown. Expression levels were determined either via microarray expression profiling or betagalactosidase translational reporters (Tables 1 and 2 in the main text).

Figure S5. PdhS2 regulation of swimming motility is independent of diguanylate cyclase activity. Swimming motility of the wild-type (WT) and indicated mutant strains was evaluated as described in Figure 2. P < 0.05 compared to WT (^a), $\Delta pdhS2$ (^b), or corresponding diguanylate cyclase mutant (^c).

Figure S6. PdhS2 does not affect global levels of cyclic-di-GMP. Cyclic-di-GMP levels were measured in whole cell extracts from equivalent ODs of the indicated strains. Data are from three independent experiments (N = 3).

Figure S7. A catalytically inactive DgcB modestly affects swimming motility. The effect on swimming motility of plasmid-borne expression of wild-type *dgcB* (p-*dgcB*) or a catalytic mutant allele of *dgcB* (p-*dgcB*^{*}) was evaluated. Expression of each *dgcB* allele was driven by the P_{lac} promoter. Swimming motility was evaluated as described in Figure 2. (*) = P < 0.05 compared to vector alone.

Figure S8. PdhS2 and DivJ are polarly localized in *A. tumefaciens***.** Time-lapse microscopy of a C-terminal green fluorescent protein fusion to PdhS2 (A) and DivJ (B). Overlaid phase and fluorescent images, acquired sequentially on Nikon E800

fluorescence microscope with a CCD camera using the 100 X objective. Time between panels is 40 minutes. To the right of each image is a cartoon interpretation of the image.

Table S1. Strains used in this study

Species	Strain	Relevant Characteristics	Source
A. tumefaciens	C58	Nopaline type strain, pAtC58,	[1]
		pTiC58	
A. tumefaciens	C58-JE001	$\Delta dgcB \Delta pdhS2 \Delta pleD (\Delta Atu1691)$	This study
		∆Atu1888 ∆Atu1297)	
A. tumefaciens	C58-JE002	<i>∆dgcB ∆pleD</i> (∆Atu1691 ∆Atu1297)	This study
A. tumefaciens	C58-JEH076	∆ <i>pdhS2</i> (∆Atu1888)	[2]
A. tumefaciens	C58-JEH128	∆pdhS2 ∆pleD (∆Atu1888	This study
		∆Atu1297)	
A. tumefaciens	C58-JEH130	∆pdhS2 ∆dgcA (∆Atu1888	This study
		∆Atu1257)	
A. tumefaciens	C58-JEH131	∆pdhS2 ∆dgcB (∆Atu1888	This study
		∆Atu1691)	
A. tumefaciens	C58-JEH132	∆pdhS2 ∆dgcC (∆Atu1888	This study
		∆Atu2179)	
A. tumefaciens	C58-JEH145	<i>∆pdhS2 ∆pleC</i> (∆Atu1888	This study
		∆Atu0982)	
A. tumefaciens	C58-JEH146	$\Delta pdhS2 \Delta crdS \Delta chvAB \Delta cel \Delta upp$	This study
		∆ <i>exoA</i> (∆Atu1888 ∆Atu3055-3057	
		∆Atu2728-2730 ∆Atu3302-8187	
		∆Atu1235-1240 ∆Atu4053)	

A. tumefaciens	C58-JEH147	∆pdhS2 ∆upp (∆Atu1888 ∆Atu1235- This study 1240)	
A. tumefaciens	C58-JEH148	∆pdhS2 ∆cel (∆Atu1888 ∆Atu3302- This study 8187)	
A. tumefaciens	C58-JEH149	<i>∆pdhS2 ∆crdS</i> (∆Atu1888 ∆Atu3055-3057)	This study
A. tumefaciens	C58-JEH150	<i>∆pdhS2 ∆chvAB</i> (∆Atu1888 ∆Atu2728-Atu2730)	This study
A. tumefaciens	C58-JEH151	<i>∆pdhS2 ∆exoA</i> (∆Atu1888 ∆Atu4053)	This study
A. tumefaciens	C58-JEH153	∆ <i>divK ∆pdhS2</i> (∆Atu1296 ∆Atu1888)	This study
A. tumefaciens	C58-JW2	<i>∆pleC</i> (∆Atu0982)	[2]
A. tumefaciens	C58-JW7	∆ <i>divK</i> (∆Atu1296)	[2]
A. tumefaciens	C58-JW8	<i>∆pleD</i> (∆Atu1297)	[2]
A. tumefaciens	C58-JX100	∆ <i>crdS</i> (∆Atu3055-3057)	[3]
A. tumefaciens	C58-JX101	Δ <i>chvAB</i> (ΔAtu2728-2730)	[3]
A. tumefaciens	C58-JX102	∆ <i>cel</i> (∆Atu3302-8187)	[3]
A. tumefaciens	C58-JX111	Δ <i>crdS</i> Δ <i>chvAB</i> Δ <i>cel</i> Δ <i>upp</i> Δ <i>exoA</i> (ΔAtu3055-3057 ΔAtu2728-2730	[3]

		∆Atu3302-8187 ∆Atu1235-1240	
		∆Atu4053; "EPS-")	
A. tumefaciens	C58-JX125	∆ <i>dgcA</i> (∆Atu1257)	[4]
A. tumefaciens	C58-JX187	∆ <i>dgcB</i> (∆Atu1691)	[4]
A. tumefaciens	C58-MLL2 A	∆ <i>exoA</i> (∆Atu4053)	[5]
A. tumefaciens	C58-PMM26	∆ <i>upp</i> (∆Atu1235-1240)	[3]
A. tumefaciens	C58-YW010	∆ <i>dgcC</i> (∆Atu2179)	[4]
E. coli	S17-1 λ <i>pir</i>	RK2 <i>tra</i> regulon, <i>pir</i> , host for <i>pir</i> -	[6]
		dependent plasmids	
E. coli	TOP10 F'	F' <i>lac</i> l ^q Tn10 (Tet ^R) <i>mcr</i> A ∆(<i>mrr</i> -	Thermo Fisher
		<i>hsd</i> RMS- <i>mcr</i> BC)	Scientific
		∆lacX74 recA1 araD139 ∆(ara-	
		<i>leu</i>)7697 galU rpsL endA1 nupG	

Table S2. Plasmids used in this study

Plasmid name	Relevant characteristics	Source
pGEM-T Easy	PCR cloning vector; Amp ^R	Promega
p <i>lacZ</i> /290	Broad host range plasmid	[7]
	carrying promoterless <i>lacZ</i>	
	for transcriptional fusions;	
	Tet ^R	
pNPTS138	ColE1 origin; <i>sacB</i> ; Km ^R	gift of M. Alley
pRA301	Broad host range plasmid	[8]
	carrying promoterless <i>lacZ</i>	
	for translational fusions;	
	Spec ^R	
pSRKGm	Broad host range vector	[9]
	containing P _{lac} ; <i>lacl^q</i> ;	
	<i>lacZα</i> ⁺; Gm ^R	
pctrA290	placZ/290 derivative with	[10]
	C. crescentus ctrA	
	promoter	
pDC001	pGEM-T Easy with full-	This study
	length <i>pdhS2</i> ^{(CA811-812GC,}	
	A823G) (PdhS2 ^{His271A,Thr275Ala}	
	mutant)	

pDC002	pSRKGm with full-length	This study
	<i>pdhS2</i> ^(CA811-812GC, A823G)	
	(PdhS2 ^{His271A,Thr275Ala}	
	mutant)	
pGZ22	p <i>lacZ</i> /290 derivative with	[11]
	C. crescentus ccrM	
	promoter	
pJEH010	pSRKGm with full-length	[2]
	wild-type <i>cckA</i>	
pJEH021	pGEM-T Easy with full-	[2]
	length <i>pdhS2</i>	
pJEH026	pSRKGm with full-length	[2]
	pdhS2	
pJEH030	pSRKGm with full-length	[2]
	Y674D cckA allele	
pJEH040	pNPTS138 derivative with	[2]
	pdhS2 SOE deletion	
	fragment	
pJEH052	pGEM-T Easy with <i>pdhS2</i>	This study
	lacking a stop codon	
pJEH053	pGEM-T Easy with	This study
	gfpmut3	

pJEH054	pGEM-T Easy with <i>divJ</i>	This study
	lacking a stop codon	
pJEH060	pSRKGm with a	This study
	pdhS2::gfpmut3	
	translational fusion	
pJEH078	pSRKGm with a	This study
	<i>divJ::gfpmut3</i> translational	
	fusion	
pJEH091	pGEM-T Easy with full-	This study
	length pdhS2 ^(CA811-812GC)	
	(PdhS2 ^{His271Ala} mutant)	
pJEH092	pSRKGm with full-length	This study
	pdhS2 ^(CA811-812GC)	
	(PdhS2 ^{His271Ala} mutant)	
pJEH099	pGEM-T Easy with full-	This study
	length <i>pdhS2</i> ^(A823G)	
	(PdhS2 ^{Thr275Ala} mutant)	
pJEH102	pSRKGm with full-length	This study
	pdhS2 ^(A823G)	
	(PdhS2 ^{Thr275Ala} mutant)	
pJEH113	pGEM-T Easy with A.	This study
	tumefaciens ccrM	
	promoter	

pJEH115	pGEM-T Easy with A.	This study
	tumefaciens ctrA promoter	
pJEH119	pGEM-T Easy with A.	This study
	tumefaciens pdhS1	
	promoter	
pJEH121	pRA301 with <i>A.</i>	This study
	tumefaciens ccrM	
	promoter	
pJEH122	pRA301 with <i>A.</i>	This study
	tumefaciens ctrA promoter	
pJEH124	pRA301 with <i>A.</i>	This study
	tumefaciens pdhS1	
	promoter	
pJEH141	pRA301 with 5'-TTAA-3' \rightarrow	This study
	5'-AATT-3' mutation of	
	CtrA binding motif in A.	
	<i>tumefaciens</i> dgcB	
	promoter	
pJFP006	pRA301 with 5'-TTAA-3' \rightarrow	This study
	5'-AATT-3' mutation of	
	CtrA binding motif in A.	
	tumefaciens Atu3318	
	promoter	

pJW109	pNPTS138 derivative with	[2]
	<i>pleD</i> SOE deletion	
	fragment	
pJS70	p/acZ/290 derivative with	[12]
	C. crescentus pilA	
	promoter	
pJX158	pRA301 with A.	[4]
	tumefaciens Atu3318	
	promoter	
pJX162	pRA301 with <i>A.</i>	[4]
	tumefaciens dgcB	
	promoter	
pJX520	pSRKGm with full-length	[4]
	dgcB	
pJX521	pSRKGm with full-length	[4]
	<i>dgcB</i> ^{A767C, A770C} (DgcB ^{EE256-}	
	^{257AA} mutant)	
pJX802	pNPTS138 derivative with	[4]
	dgcB SOE deletion	
	fragment	
pJZ383	pPZP201 derivative with	[13]
	P _{tac} ∷gfpmut3; Spec ^R	

Table S3. Primers used in this study

Primer	Sequence (5' – 3')	Use
JEH65	GAAGAA <u>CATATG</u> AGTAAAAGCGTCAG CA	cloning <i>pdhS2</i> with NdeI site
JEH85	GATTTCGCGCGATCCCTTCGA	Internal primer for <i>pdhS2</i> locus
JEH87	GAGCAGATGCTGGCCGGA	Internal primer for <i>pdhS2</i> locus
JEH100	GCTCTGTTGAAGGCGGCCAA	External primer for <i>pdhS2</i> locus
JEH113	GCCGGTTTCATGCACACGCA	External primer for <i>pdhS2</i> locus
JEH146	GAAGAA <u>GCTAGC</u> GGCGAAAGACCGC CGG	cloning <i>pdhS2</i> w/o STOP and with NheI site
JEH147	GAAGAA <u>CATATG</u> AGAGAAAAAGCGG TCGCA	cloning <i>divJ</i> with Ndel site
JEH148	GAAGAA <u>GCTAGC</u> GGCGATTTTCGCT TTCGCGG	cloning <i>divJ</i> w/o STOP and with Nhel site
JEH149	GAAGAA <u>GGTACC</u> TTATTTGTATAGTT CATCCATGCCA	cloning <i>gfpmut3</i> with KpnI site
JEH150	GAAGAA <u>GCTAGC</u> ATGAGTAAAGGAG AAGAACTT	cloning <i>gfpmut3</i> with Nhel site
JEH245	CGTGCGCAGCTCGgcCGACATGGAA GCG	<i>pdhS2</i> ^{CA811-812GC} mutagenesis
JEH246	CGCTTCCATGTCGgcCGAGCTGCGCA CG	<i>pdhS2</i> ^{CA811-812GC} mutagenesis
JEH261	CGCACGAGCTGCGCgCGCCGCTCAA CGC	<i>pdhS2</i> ^{A823G} mutagenesis
JEH262	GCGTTGAGCGGCGcGCGCAGCTCGT GCG	<i>pdhS2</i> ^{A823G} mutagenesis
JEH282	<u>GGTACC</u> TGCCAGAATCGTTGCT	cloning <i>ccrM</i> promoter region, +222 bp to -9 bp from translational start, with Kpnl site
JEH284	AAGCTTTGCTGCCATTGGTACT	cloning <i>ccrM</i> promoter region, +222 bp to -9 bp from translational start, with HindIII site
JEH285	<u>GGTACC</u> TTAACCTTTCGTTTACGGGC A	cloning <i>ctrA</i> promoter region, +328 bp to -9 bp from translational start, with Kpnl site
JEH287	CTGCAGAACCCGCATAATTATCCCCT	cloning <i>ctrA</i> promoter region, +328 bp to -9 bp from

		translational start, with Pstl site
JEH291	<u>GGTACC</u> ATTTGCAAGTGCCTCTT	cloning <i>pdhS1</i> promoter region, +264 bp to -9 bp from translational start, with Kpnl site
JEH293	<u>AAGCTT</u> GGCGGGCATGTCGAAA	cloning <i>pdhS1</i> promoter region, +264 bp to -9 bp from translational start, with HindIII site

REFERENCES

1. **Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW**. Plasmid required for virulence of *Agrobacterium tumefaciens*. *Journal of Bacteriology* 1975;123(1):255-264.

2. **Kim J, Heindl JE, Fuqua C**. Coordination of division and development influences complex multicellular behavior in *Agrobacterium tumefaciens*. *PloS one* 2013;8(2):e56682. doi: 10.1371/journal.pone.0056682

3. **Xu J, Kim J, Danhorn T, Merritt PM, Fuqua C**. Phosphorus limitation increases attachment in *Agrobacterium tumefaciens* and reveals a conditional functional redundancy in adhesin biosynthesis. *Res Microbiol* 2012;163(9-10):674-684. doi: 10.1016/j.resmic.2012.10.013

4. **Xu J, Kim J, Koestler BJ, Choi JH, Waters CM et al.** Genetic analysis of *Agrobacterium tumefaciens* unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. *Molecular microbiology* 2013;89(5):929-948. doi: 10.1111/mmi.12321

5. **Tomlinson AD, Ramey-Hartung B, Day TW, Merritt PM, Fuqua C**. *Agrobacterium tumefaciens* ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. *Microbiology* 2010;156(Pt 9):2670-2681. doi: 10.1099/mic.0.039032-0

6. **de Lorenzo V, Timmis KN**. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* 1994;235:386-405. doi: 10.1016/0076-6879(94)35157-0

7. **Gober JW, Shapiro L**. A developmentally regulated *Caulobacter* flagellar promoter is activated by 3' enhancer and IHF binding elements. *Mol Biol Cell* 1992;3(8):913-926. doi: 10.1091/mbc.3.8.913

8. **Akakura R, Winans SC**. Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors. *The Journal of biological chemistry* 2002;277(8):5866-5874. doi: 10.1074/jbc.M110555200

9. Khan SR, Gaines J, Roop RM, 2nd, Farrand SK. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. *Applied and environmental microbiology* 2008;74(16):5053-5062. doi: 10.1128/AEM.01098-08

10. **Domian IJ, Reisenauer A, Shapiro L**. Feedback control of a master bacterial cell-cycle regulator. *Proceedings of the National Academy of Sciences of the United States of America* 1999;96(12):6648-6653. doi: 10.1073/pnas.96.12.6648

11. **Stephens CM, Zweiger G, Shapiro L**. Coordinate cell cycle control of a *Caulobacter* DNA methyltransferase and the flagellar genetic hierarchy. *Journal of bacteriology* 1995;177(7):1662-1669. doi: 10.1128/jb.177.7.1662-1669.1995

12. **Skerker JM, Shapiro L**. Identification and cell cycle control of a novel pilus system in *Caulobacter crescentus*. *The EMBO journal* 2000;19(13):3223-3234. doi: 10.1093/emboj/19.13.3223

13. **Ramey BE, Matthysse AG, Fuqua C**. The FNR-type transcriptional regulator SinR controls maturation of *Agrobacterium tumefaciens* biofilms. *Molecular microbiology* 2004;52(5):1495-1511. doi: 10.1111/j.1365-2958.2004.04079.x

Figure S1

Figure S3

CtrA Binding Site Consensus

Figure S6

Figure S8

Α

В

