CHEMBIOCHEM

Supporting Information

Practical Synthesis of Cap-4 RNA

Josef Leiter,^[a] Dennis Reichert,^[b] Andrea Rentmeister,^[b] and Ronald Micura*^[a]

cbic_201900590_sm_miscellaneous_information.pdf

Supporting Information

to

Practical Synthesis of Cap-4 RNA

Josef Leiter,^[a] Dennis Reichert,^[b] Andrea Rentmeister^[b] and Ronald Micura*^[a]

^[a] Institute of Organic Chemistry, Center for Molecular Biosciences, University of Innsbruck ^[a] Department of Chemistry, Institute of Biochemistry, University of Münster, Germany

Contents

2
2
2
3
4
5
6
7
8
9
10
11
12

General

Reagents were purchased in the highest available quality from commercial suppliers (Sigma-Aldrich, abcr, Carbosynth) and used without further purification. Moisture sensitive reactions were carried out under argon atmosphere. ¹H and ¹³C spectra were recorded on a Bruker 400 spectrometer. Chemical shifts (δ) are reported relative to tetramethylsilane (TMS) referenced to the residual proton signal of the deuterated solvent (DMSO-d₆: 2.50 ppm for ¹H spectra and 39.52 ppm for ¹³C spectra; CDCl₃: 7.26 ppm for ¹H spectra and 77.16 ppm for ¹³C spectra). The following abbreviations were used to denote multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Signal assignments are based on ¹H-¹H-COSY, ¹H-¹³C-HSQC and ¹H-¹³C-HMBC experiments. MS experiments were performed on a Thermo Scientific Q Exactive Orbitrap with an electrospray ion source. Samples were analyzed in the positive ion mode. Reaction control was performed via analytical thin-layer chromatography (TLC, Macherey-Nagel) with fluorescent indicator. Column chromatography was carried out on silica gel 60 (70-230 mesh); for RP column chromatography, LiChroprep RP-18 (40-63µm) material was used.

Protein Expression

For protein production, *E. coli* BL21(DE3) cells were freshly transformed with the respective vectors pET16b-Ecm1, pET29-LuxS and pProEx-MTAN and grown shaking overnight in LB-medium at 37°C. Next, these cultures were used to inoculate the main culture in LB-medium (ratio 1:100) containing the respective antibiotic as selection marker. Cells were grown shaking at 37°C to an optical density OD600 = 0.6 and protein expression was induced by addition of 0.2 mM IPTG with subsequent incubation over night at 18°C. Cells were harvested by centrifugation (15 min, 4000 xg, 4°C). The resulting cell pellet was stored at -20° C before use.

Protein Purification

The thawed cell pellet was resuspended in 10 mL lysis buffer (50 mM Tris-HCl, 200 mM NaCl, pH 7.5) for Ecm1 and (30 mM sodium phosphate, 500 mM NaCl pH 7.2) for MTAN/LuxS containing 300 µM of protease inhibitor PMSF. The cells were lysed by sonication and the supernatant was cleared by centrifugation (30 min, 22000 xg, 4°C). Next the desired protein was purified via affinity chromatography using a 1 mL HisTrap (GE Healthcare) column using lysis buffer containing 500 mM imidazole for elution. In order to obtain RNase-free proteins size exclusion chromatography was subsequently performed using Superdex 200 Increase 10/300 GL column (GE Healthcare) in gel filtration buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 2 mM DTT, 1 mM EDTA, 10% glycerol) for Ecm1 and (30 mM sodium phosphate pH 7.2, 500 mM NaCl, 50 mM Hepes, 10% glycerol) for

2

MTAN/LuxS. The eluted fractions were concentrated and checked for RNase contamination before the protein purity and concentration was determined by comparison with BSA standard on SDS-PAGE gel.

Activity assay

Enzymatic methylation of 5' cap analog GpppA (0.5 mM) (Jena Bioscience) was performed using SAM (1 mM) with 10 μ L concentrated protein fraction in the presence of 5 μ M MTAN and LuxS in phosphate buffer (20 mM phosphate buffer, 150 mM NaCl, pH 7.4) at 37°C. Samples were taken at certain time points and the reaction stopped by adding 1/10 volume 1 M HClO₄. The conversion of GpppA to m⁷GpppA was analyzed by reversed-phase HPLC. The analysis was conducted on a NUCLEODUR® C18 Pyramid (125×4 mm) column (Macherey-Nagel). Elution was performed at a flow rate of 1 mL/min in a linear gradient of buffer A (100 mM phosphaste buffer, pH = 6.5) and buffer B (50 % buffer A, 50 % ACN).

Supporting Figure S1. Isolated protein fraction after purification. Proteins of interest Ecm1 (37 kDa) MTAN (29 kDa) and LuxS (23 kDa) are marked by arrows.

Supporting Figure S2. Activity-test using the concentrated protein fraction. After 1 h reaction time at 37°C, 80% conversion of 0.5 mM GpppA (corresponding to 0.9 U/µL enzyme) was detected in presence of 1 mM SAM, 5 µM MTAN/LuxS at pH 7.4. 1 mM adenosine monophosphate (AMP) was used as internal standard.

¹H-NMR (300 MHz, DMSO-d6) of compound 2

¹³C-NMR (75 MHz, DMSO-d6) of compound 2

¹H-NMR (700 MHz, CDCl₃) of compound ${\bf 3}$

³¹P-NMR (162 MHz, CDCl₃) of of compound **3**

 $^{\rm 13}\text{C-NMR}$ (75 MHz, DMSO-d6) of compound $\boldsymbol{5}$

¹H-NMR (300 MHz, DMSO-d6) of compound 6

¹H-NMR (300 MHz, DMSO-d6) of compound 7

¹³C-NMR (75 MHz, DMSO-d6) of compound 7

¹³C-NMR (75 MHz, DMSO-d6) of compound 8

$^1\text{H-NMR}$ (700 MHz, CDCl_3) of compound $\boldsymbol{9}$

 $^{31}\text{P-NMR}$ (162 MHz, CDCl₃) of of compound 9

