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1 A detailed derivation of the growth rate in terms of reaction
rates, at balanced growth

We start with
(A1) ṅk := V

∑
j

Nkjvj(c) for all k. (1)

Here N denotes the stoichiometry matrix, and vj(c) is the j-th reaction rate, as a function of concen-
trations c. Since nk = V ck, we have

V̇ ck + V ċk = V
∑
j

Nkjvj(c) for all k. (2)

In balanced growth, all concentrations are constant over time (1), ċ = 0, which means that

V̇

V
ck =

∑
j

Nkjvj(c) for all k. (3)

The time derivative of V = V (n) is given by

V̇ =
∑
l

∂V

∂nl
ṅl. (4)

Hence, using (4) and (1) in (3), we have in balanced growth that∑
l

∂V

∂nl
V
∑
j

Nljvj(c)

 ck = V
∑
j

Nkjvj(c) for all k. (5)

The steady-state assumption ensures that the concentrations c, and therefore also the reaction rates
vj(c) are constant in time. Therefore, the complete right-hand side of (5) is constant in time, and
thus the left-hand side must be as well. This strongly suggests (but does not directly imply) that ∂V

∂nl

is independent of time as well.1 Since n does change in time, this implies that ∂V
∂nl

does not depend
explicitly on n, i.e.:

∂V

∂nl
= ρl for all l,

for constants ρl.2 The biophysically reasonable assumption that total volume is the sum of all the
volumes taken up by individual molecules,

(A2) V (n) =
∑
l

ρlnl (6)

1The only alternative would imply that the weighted sum,
∑

l Nlj
∂V
∂nl

, is constant in time for all chemical reactions j

while the ∂V
∂nl

are not. This is unlikely.
2If we assume that the osmotic pressure is kept constant in a cell, the import of a particle must lead to the import of

water. The molar volume parameters, ρl, will therefore not only comprise the volume of particle l, but also the volume of
the water that is needed to keep the osmotic pressure constant. These parameters thus depend on the osmotic pressure.
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is therefore suitable to study balanced growth states. With this definition, we also have

ρ · c =
∑
l

ρlcl =
1

V

∑
l

ρlnl = 1 (7)

at balanced growth.
The (instantaneous) growth rate is now defined as

µ(t) :=
V̇ (t)

V (t)
. (8)

Since ρ · c = 1 at balanced growth,

0 =
d

dt
(ρ · c)

=
∑
k

ρk ċk

=
∑
k

ρk

∑
j

Nkjvj(c)−
V̇

V
ck

 using (8)

= ρ ·Nv(c)− ρ · (µc)
= ρ ·Nv(c)− µ(ρ · c)
= ρ ·Nv(c)− µ using (7).

We conclude that the growth rate of a cell at balanced growth can be expressed in terms of the catalytic
activities of its constituents reactions as,

µ = ρ ·Nv(c) =
∑
l

ρl
∑
j

Nljvj(c). (9)

2 Some basic Linear Programming
We give a short review of some basic Linear Programming (see e.g. (2; 3)) necessary for the definition of
Elementary Growth States and Elementary Growth Modes.

Let A be an m×n matrix, m < n. The linear programs in this paper are all in equational or standard
form

maximize c · x
subject to Ax = b,

x ≥ 0.

We may assume that A has full rank m (if A does not have full rank the matrix may be reduced to a
matrix with fewer rows which does have full rank without changing the solution space of vectors satisfying
Ax = b). A vector x is called a feasible solution if it satisfies all the constraints, so Ax = b and x ≥ 0.

Let D ⊆ {1, . . . , n} be an index set, and let AD denote the matrix consisting of columns from A whose
indices are in D. We will use similar notation for the restriction of x to the index set D, xD. A vector
x is called a basic feasible solution if x is a feasible solution for which there exists a set D ⊆ {1, . . . , n}
with m distinct elements such that AD is square and non-singular, x satisfies ADxD = b, and xj = 0
for all j /∈ D. The vector xD is then uniquely defined, since xD = A−1

D b. For any index set D with AD

invertible, we can compute xD. If this solution satisfies xD ≥ 0, then it induces a basic feasible solution
x that satisfies xj = 0 for all indices of j /∈ D. D is then called a feasible basis for x. (This parlance
is different from the usual definition of a basis in Linear Algebra, in which a basis is formed by a set of
vectors.)

We also recall a few standard concepts from convex geometry. A set X ⊂ Rn is called convex if for
each x,y ∈ X and λ ∈ (0, 1), we have λx+ (1− λ)y ∈ X. A set in Rn is a convex polyhedron if it is an
intersection of finitely many closed half-spaces in Rn. A cone is a set X ⊂ Rn with the property that
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x ∈ X implies λx ∈ X for all λ ∈ R and the cone is pointed if λx ∈ X if and only if λ ≥ 0. A convex
polytope is a bounded convex polyhedron.

A vertex of a convex polyhedron P ⊂ Rn is a point x ∈ P such that there exists a vector c with
the property that c · x > c · y for all y ∈ P\{x}. The space of feasible solutions of a Linear Program
form a convex polyhedron. A standard result from Linear Programming states that the vertices of this
polyhedron coincide exactly with the basic feasible solutions of the LP. Lastly, for a cone defined by

Aα = 0, α ≥ 0

we define its support by
suppα = {j | αj ̸= 0}. (10)

A standard result from LP is that the spanning rays of such a cone are those vectors in the cone with
minimal support.

3 A single pathway toy model showing the three inherent non-
linearities of self-fabrication

We here consider the simplest possible model of a self-fabricator, and compare it with a more conventional
model. This will allow us to highlight the inherent nonlinearities of self-fabrication that can be captured
with EGM theory. We will then extend this model with an additional step so that we create a core
model of overflow metabolism, based on a non-self-fabricating model that we analyzed before (4). These
models are not made with the intention to make the most realistic model possible. For this, various
more extensive models have already been made by others. See (5) for an overview of all resource-
allocation models of overflow metabolism. Instead, our models are meant to illustrate the differences in
the mathematical structure of models of self-fabrication compared to conventional models.

The Matlab code used to generate the plots in this section can be found separately as Supporting
Information.

3.1 Setting up the stoichiometry and the balanced growth assumption
The first model contains two metabolic reactions: 1) a transporter step that imports the external nutrient
and converts it to a metabolite X, and 2) a reaction that generates ATP using this metabolite. In
addition, the model contains a ribosome that synthesizes itself and the enzymes needed for the metabolic
steps using variable amounts of X and ATP as precursors. This is captured in the following stoichiometry:

N =

[
P −M
0 I

]
, where P =

[
1 −1
0 26

]
, and M =

[
100 200 210
800 700 900

]
. (11)

In non-self-fabricating models the enzyme synthesis is not explicitly modelled. Instead, the
demand for precursors is often modelled by a virtual biomass reaction. This reaction needs
to be imposed on the model and is often based on experimental data. To compare our self-
fabricator model with a non-self-fabricating model, we will assume that the biomass reaction
is equal to the mean of the enzyme synthesis reactions, i.e.,

N =
[
P −M

]
, where P =

[
1 −1
0 26

]
, and M =

[
170
800

]
. (12)

Note that, since we do not keep track of the production of enzymes and ribosomes anymore,
the bottom half of the stoichiometric matrix drops out.

We then add the balanced growth assumption to the model, demanding that all concentrations of all
cellular compounds are constant. The net synthesis and consumption of the compounds is captured by
the stoichiometry, but on top of that, the compounds also dilute by growth. We thus have

Pv −Mw − µx = 0, and Iw − µe = 0, (13)
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where v and w are the flux vectors of metabolic reactions (catalyzed by enzymes) and enzyme synthesis
reactions (catalyzed by the ribosome), x is the vector of metabolite concentrations, and e is the vector
of enzyme concentrations, including the ribosome concentration this time as its last entry.

Linearized models do not include a dilution by growth term. This is probably because metabo-
lite and enzyme concentrations are not explicitly calculated in these models, and the dilution
rate is therefore unknown. Instead, a steady-state assumption is used

Pv −Mw = 0, (14)

where w is now the biomass reaction rate.

3.2 Introducing enzyme/ribosome kinetics
In the model we choose the following rate equations

vtrans = etrans
glcextkcat,trans

glcext + kM,trans +
x

ki,X

,

vresp = eresp
xkcat,resp

x+ kM,resp +
atp

ki,ATP

,

wsynth,trans = rαtransgtrans(atp, x),

wsynth,resp = rαrespgresp(atp, x),

wsynth,rib = rαribgrib(atp, x),

where we have denoted the concentrations of metabolites by using lowercase letters. The α-variables
denote the fractions of the ribosome that are translating the corresponding enzyme. Although we could
have gone for a more general choice, for the current model we choose the same rate equation for the
synthesis of the different enzymes:

gtrans = gresp = grib =
xatpkcat,synth

1
kM,ATPkM,X

+ x
kM,ATP

+ atp
kM,X

+ atpx
, (15)

Here we encounter another difference between the general self-fabricator setup and the con-
ventional models. Models with a virtual biomass reaction implicitly assume that the synthesis
of all cellular components is equally fast. In contrast, here we could have picked different rate
equations for the synthesis of the different enzymes. If the enzyme concentrations would then
change because of a different resource allocation, the average rate of enzyme synthesis by the
ribosome would change accordingly.

3.3 A definition of the volume and an induced growth rate expression
We argue in the main text, and in SI1, that the cellular volume should be the sum of the volumes of its
components. Dividing the resulting expression for the volume by the volume on both sides gives:

1 = ρXx+ ρATPatp + σtransetrans + σresperesp + σribr, (16)

where the ρ, σ-variables are volumetric parameters. For example, ρX is the volume of a mole of metabolite
X. In the model, we choose: ρX = 0.005, ρATP = 0.0002, and σtrans = 0.6538, σresp = 1.1346, σrib =
1.2231. This choice will be motivated shortly.

Under the balanced growth assumption (Equation (13)) the assumption of Equation 16 is equivalent
to an expression for the growth rate:

µ = ρ · (Nv −Mw) + σ ·w =
∑
k,j

ρk (Nkjvj −Mkjwj) +
∑
j

σjwj . (17)
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We then introduce aj =
∑

k ρkNkj and bj = σj −
∑

k Mkjwj , such that the expression for the growth
rate simplifies to:

µ =
∑
j

ajvj + bjwj . (18)

This notation shows that all reactions can directly contribute to the growth rate. The coefficients aj
capture the volume added by the reaction itself, and bj denotes the volume added by the synthesis
reaction of the corresponding enzyme. This added volume is equal to the sum of the volumes of the
products minus the sum of the volumes of the substrates. Based on the assumption that chemical
reactions do not drastically change the volume of the reagents, we have chosen our ρ, σ-parameters such
that the coefficients are close to zero:

atrans = 0.005, btrans = −0.0062,

aresp = 0.0002, bresp = −0.0054,

brib = −0.0069

In a typical balanced growth state, the metabolic fluxes (v) are much higher than the enzyme synthesis
fluxes (w), so with Equation (18) we can see that the transport reaction will contribute most to volume
growth. This seems reasonable: “the transport reaction imports volume’’.

In conventional models the growth rate is often assumed to be proportional to the biomass
reaction. In the model of self-fabrication that we consider above, however, the growth rate
seems to be proportional to the transport reaction. More generally, as long as the assumption
holds that the volumes of the products is approximately equal to the volumes of the substrates
for each chemical reaction, the growth rate in self-fabrication models will always be determined
by the exchange reactions. Below, we will investigate if defining the growth rate as proportional
to the biomass reaction is a good approximation, and when it breaks up.

3.4 The complete model
Our model has now become the following set of differential equations:

ẋ = etransftrans (glcext, x)− erespfresp (x, atp)− (100αtrans + 200αresp + 210αrib)rg (x, atp) − µx,

˙atp = 26erespfresp (x, atp)− (800αtrans + 700αresp + 900αrib)rg (x, atp) − µatp,

ėtrans = rαtransg (x, atp) − µetrans,

ėresp = rαrespg (x, atp) − µeresp,

ṙ = rαribg (x, atp) − µr,

µ = atransetransftrans (glcext, x) + aresperespfresp (x, atp)

+ rg (x, atp) (btransαtrans + brespαresp + bribαrib) .

If we pick the ribosome allocation fractions α and assume that the systems is in a steady-state, the
system has 6 equations for 6 variables: (x, atp, etrans, eresp, r, µ). In the main text we solve the last four
of these equations and insert them in the first two to get our so-called balanced growth equations. This
is however not necessary in order to solve the optimization problem and, to increase legibility, we will not
do this here. Even for a model this small, the balanced growth equations in full are unwieldy. Instead, we
can now use the three α-variables to maximize the growth rate under the above steady-state conditions
and the constraint that αtrans + αresp + αrib ≤ 1. We get

max
α

µ,

subject to ẋ = ˙atp = ėtrans = ėresp = ṙ = 0,

µ = atransvtrans + arespvresp + btranswtrans + brespwresp + bribwrib,

αtrans + αresp + αrib ≤ 1,

αtrans, αresp, αrib ≥ 0.
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3.5 Results
We start by doing a full run of two models: a model of self-fabrication and a non self-fabricating version.
For a range of glucose concentrations we find the α’s that maximize the growth rate in the first model,
and the e’s that maximize the biomass production rate in the second model.

We see in Figures S1 and S2 that the model of self-fabrication is indeed well approximated by the
conventional model. In the following, we will highlight three nonlinearities that are incorporated in the
self-fabrication model. Two of these nonlinearities cannot be seen in the conventional model, and we
investigate where these differences show.

3.5.1 Enzyme concentrations and fluxes are no longer proportional

A first nonlinearity that is incorporated in both models is due to the nonlinear enzyme kinetics. The
dependency of the enzyme activity on the availability of its substrates and products makes sure that
fluxes and enzyme concentrations are no longer forced to be proportional. In Figure S3 we plotted the
enzyme concentrations and the corresponding fluxes that were calculated by the model. When nonlinear
enzyme kinetics are not modelled this would be a straight diagonal line.

3.5.2 The biomass composition changes

In our model of self-fabrication the synthesis of the enzymes and ribosomes is modelled explicitly. The
demand for precursors might vary between different enzymes, which is captured in the M -matrix of
Equation (11). If the enzyme concentrations change, the precursor demand can change with it: the
model thus calculates the demand for cell synthesis. This effect is visible in our model, although it is
a small effect, see Figure S4. In conventional models a virtual biomass reaction is added and therefore
the demand for cell synthesis is imposed on the model. This will therefore always be constant over
the different growth rates. The effect that is shown is small because of the choice of M -matrix: the
synthesis of all enzymes and the ribosome requires more ATP than X. Therefore, the decrease in the
concentration of the transport-enzyme and the increase of the concentrations of the respiration-enzyme
and the ribosome does not change the precursor demand that much. One could however imagine that,
especially in larger models, there could be precursors for which the demand per enzyme synthesis reaction
varies more. The change in the precursor demand will then have a larger effect on the model behaviour.
We changed the M -matrix to emphasize this changing precursor demand a bit more:

M =

[
100 200 210
800 700 900

]
→ M =

[
100 226 244
800 50 50

]
. (19)

In Figure S5 we indeed see that the effect is now more pronounced.

3.5.3 The growth rate is not always proportional to the biomass production rate

In Section 3.3 we discussed the expression for the growth rate that is used in our self-fabrication models:

µ =
∑
j

ajvj + bjwj ,

where aj and bj denote the differences in the summed volume of the products with the summed volumes
of the substrates. In principle, each reaction thus contributes to volume growth and hence to growth rate.
However, there are two assumptions that we can make in which this simplifies. First, if for each reaction
the summed volume of products is approximately the same as the summed volume of the substrates,
then aj and bj will be negligible except for reactions that transport to or from the cell. Second, if we
assume that metabolism is in a steady-state, all volume contributions of created internal compounds
will cancel because these compounds will also be degraded. In both cases, only the exchange reactions
will explicitly contribute to growth. In a situation where both of these assumptions cannot be made,
for example in a dynamic model in which polymers take up more or less volume than their constituents
because of their folding properties, our definition of the growth rate will clearly deviate from a growth
rate that is defined to be proportional to a biomass reaction.
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One could now ask if the rate of the biomass reaction rate is a good approximation of the cellular
growth rate when one or both of the assumptions is met? In our base model, of which the results were
shown in Figure S1, the cellular growth rate is indeed directly proportional to the total synthesis rate.
This is because of the following: in our base model the transport step is the only exchange reaction
and therefore the only reaction that contributes to volume growth. If the substrate yield (the ratio of
the biomass reaction and the transport reaction) is constant, this implies that the growth rate must be
proportional to the biomass reaction rate. The substrate yield is indeed quite constant because almost
all imported nutrients will be converted to biomass, because the dilution of metabolites is negligible.

The above argumentation immediately indicates that the biomass reaction rate would not approxi-
mate the cellular growth rate if the dilution of metabolites is not negligible. We therefore again changed
the M -matrix:

M =

[
100 200 210
800 700 900

]
→ M =

[
2 4 4
16 14 18

]
. (20)

We also adjust the volumetric parameters ρk, σj to keep the summed volume of the products of each
reaction more or less equal to the summed volume of the substrates:

ρX
ρATP
σtrans
σresp
σrib

 =


0.005
0.0002
0.6538
1.1346
1.2231

 −→


ρX
ρATP
σtrans
σresp
σrib

 =


0.375
0.015
0.99
1.71
1.77

 . (21)

The results are shown in Figure S6. The growth rate and the biomass reaction rate are indeed no longer
proportional. This is caused by the large dilution rate of the metabolites.

3.5.4 Solutions are not conserved under multiplication

Elementary Flux Modes are defined up to a multiplicative factor. This means that a steady-state flux
vector can always be multiplied by a positive number to give another steady-state flux vector. In con-
ventional resource-allocation models it is often assumed that vi = eikcat,ifi(x), so that the reaction rate
is proportional to the enzyme concentration when the metabolite concentrations are kept fixed. This
means that a steady-state solution can always be scaled by multiplying all enzyme concentrations by
the same factor. Indeed, scalar multiplication of the enzyme concentrations leads to the same multipli-
cation of the reaction rates, and this again leads to a steady state by the aforementioned property of
EFMs. For example, assume that (x0, atp0, etrans,0, eresp,0, r0) corresponds to a steady-state solution. In
a conventional model, the steady-state equations take the form

Nv = 0. (22)

If we keep the metabolite concentrations constant, and multiply all enzyme concentrations by λ ∈ R, we
get for the i-th element of Nv,

(Nλv)i =
∑
j

Nijλejfj(x) = λ
∑
j

Nijejfj(x) = 0. (23)

The above is no longer true in a self-fabrication model. We see in Section 3.4 that even if we keep the
metabolite concentrations fixed, a solution cannot be easily scaled to another solution. For example,
assume that (x0, atp0, etrans,0, eresp,0, r0, µ0) corresponds to one balanced growth state. We thus have

µ =
∑
j

ajvj + bjwj =
∑
j

ajejfj(x) + bjrαjgj(x). (24)

If we now multiply the enzyme and the ribosome concentrations by λ, we find that

µ′ =
∑
j

ajv
′
j + bjw

′
j =

∑
j

ajλejfj(x) + bjλrαjgj(x) = λµ. (25)

The differential equation for the ribosome was

ṙ = rαribg(x)− µr = 0, (26)
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but now becomes
ṙ′ = λrαribg(x)− λ2µr ̸= 0. (27)

Similarly, the steady-state equations for the enzymes and the metabolite concentrations are no longer
met. Inspection of these equations would suggest multiplying the α-variables by λ too. However, then
the time derivatives of the metabolite concentrations will no longer be zero.

The above shows that, in contrast to conventional models, the reaction rates in self-fabrication models
are not proportional to the growth rate within an Elementary Mode. While Elementary Flux Modes
could thus be defined up to this multiplicative factor, this is no longer possible for Elementary Growth
Modes. This is why the concept of the Elementary Growth States was introduced.

3.6 A two pathway toy model showing overflow metabolism
We now add a fermentation reaction to the model as an alternative for the respiration reaction. It
converts the metabolite X in 12 ATP-molecules, instead of the 26 molecules produced by respiration.
Furthermore, we set the kcat of the fermentation reaction to be higher than the respiration reaction.
These adaptations are based on the model of overflow metabolism that we used in (4). Additionally, we
introduce an additional constraint on the concentration of the membrane protein etrans ≤ 0.2. This gives
the results shown in S7.

This model illustrates that the co-utilization of two Elementary Modes can still be caused by growth
rate maximization under two constraints. This extends the results found for EFMs in (4) to EGMs.

3.7 Conclusion
By working out this toy model we have illustrated some important differences between models of self-
fabrication and conventional models of metabolism. We have pointed out that 1) enzyme concentrations
and fluxes are not necessarily proportional, 2) the biomass composition can change, 3) the growth rate
is not necessarily proportional to the biomass production rate, 4) flux ratios in Elementary Modes are
not constant over different growth rates and metabolite concentrations.

Moreover, we have also explored under what assumptions the above nonlinearities are approximately
linear again. This is important because the conventional models were highly successful in fitting exper-
imental data, but less biologically accurate in terms of their mechanistic underpinnings. To reproduce
the experimental data with a model of self-fabrication we need some additional assumptions, for example
that the biomass composition does not change drastically over different conditions. This thus indicates
the importance of assumptions that were first taken for granted.

4 Extensions of EGM theory
4.1 Including non-enzymatic reactions
The metabolic ODEs are now augmented with non-enzymatic reactions with rate vector u(x), and
stoichiometry matrix S, so that

ẋk =
∑
j

Skjuj(x) +
∑
j

Pkjejfj(x)−
∑
j

Mkjrαjgj(x)− µxk.

Setting cj =
∑

k ρkSkj , the definition of µ may be succinctly phrased as

µ = c · u+ a · v + b ·w.

The steady state equations for x now read

Su+ Pv −Mw = x(c · u+ a · v + b ·w).
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Using the same line of reasoning as before, Eq (21) in the main text becomes

r

xk

 n∑
j=1

(
ajfj(x)

µ
+ bj

)
αj(x) + bn+1µ

−
n∑

j=1

(
Pkjfj(x)

µ
+Mkj

)
αj(x) +Mk(n+1)µ

 =

n∑
j=1

(Skj − xkcj)uj(x). (28)

Note that the ribosome concentration now appears in the equations, since it occurs on the left hand side,
but not on the right due to the nonenzymatic reactions.

4.2 Including a positivity constraint for the ribosome concentration
The balanced growth equations were derived by first solving the steady state ribosome and enzyme
equations, and substituting the result into the steady state equations for the metabolites. Since ṙ =
r(αn+1 − µ), one does not get immediate information about r in steady state. Since r eventually drops
out of the balanced growth equations, because it is a factor in all of them, one needs to derive the steady
state ribosome concentration a posteriori. The expression for r is given in Eq (19) in the main text,

r =
µ∑n

j=1

(
ajfj(x)

µ + σj − bj

)
αj + (σn+1 − bn+1)µ

. (29)

Since finding any balanced growth solution generally starts with prescribing some metabolite concentra-
tion vector x, it is not guaranteed that the resulting ribosome concentration is positive. If it is not, the
enzyme concentrations in steady state are all negative as well, since ej = rαj/µ.

For certain choices of x, and growth rate µ, some vectors in the polytope Px,µ may correspond
to negative ribosome and enzyme concentrations. These should of course be discarded. One could
incorporate an additional constraint into the polytope, requiring that the denominator of (29) be positive,

n∑
j=1

(
ajfj(x)

µ
+ σj − bj

)
αj + (σn+1 − bn+1)µ ≥ 0.

This constraint is again of the same nature as the ones in B(x, µ)α = µum+1 in the definition of Px,µ.
Choosing a metabolite vector x such that this constraint is violated for all α ∈ Px,µ implies that the
polytope to which the ribosomal constraint is add would be empty.

Any biologically reasonable balanced growth solution would have a finite, strictly positive ribosome
concentration. Therefore, such solutions will not hit this new constraint.

4.3 Including stress responses
Investments in stress responses are often viewed as orthogonal to investments in growth. In EGM theory,
this is not necessary. For example, a heat shock response might involve increased expression of chaperone
proteins that accelerate the refolding of denaturated proteins. Chaperones themselves do not contribute
to the catabolic or anabolic parts of metabolism, and are therefore viewed as not contributing to growth.
The chaperones, however, extend the lifetime of proteins (they lower their natural degradation rate,
which we have ignored in the whole-cell model but can be put in without any modification of the main
results). In this indirect way, chaperones of course increase the growth rate relative to the situation in
which they are absent.

An example implementation would be as follows. First we incorporate degradation rates of enzymes,

ėj = rαj − µej − dj(T,h)ej

in which dj(T,h) are the degradation rate of enzymes, as a function of temperature (denaturation) and
chaperone concentrations h. Next, the chaperones need to be synthesized

ḣk = rαk − µhk,
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Variable/ Description Unit
parameter
n copy number of cellular compounds mol
c concentration of cellular compounds molL−1

x concentration of metabolites molL−1

e concentration of enzymes molL−1

r concentration of ribosome molL−1

αj ribosomal fraction allocated to produce enzyme/ribosome n.a.
N overall stoichiometric matrix n.a.
P metabolic stoichiometric matrix n.a.
M metabolite-to-enzyme stoichiometric matrix n.a.
I identity matrix n.a.
µ growth rate s−1

ρk volumetric parameter for metabolic compound k mol−1L

σk volumetric parameter for enzymes and ribosome mol−1L
fj enzymatic rate law s−1

gj enzyme synthesis rate law s−1

vj metabolic rate molL−1s−1

wj enzyme synthesis rate molL−1s−1

aj net contribution to growth rate by metabolic reaction j mol−1L

bj net contribution to growth rate by enzyme/ribosome synthesis reaction j mol−1L
Cx,µ cone corresponding to metabolite concentration x n.a.

and growth rate µ
Px,µ polytope corresponding to metabolite concentration x n.a.

and growth rate µ
uj j-th elementary unit vector n.a.

Table 1: Overview of all variables and parameters used in this paper.

(here modelled without its own degradation rate, but one could put that in) then one would obtain a new
whole cell model, with extended stoichiometry for all the enzymes and now also chaperones. The number
of αj increases: the ribosome now needs to be allocated not only over all enzymes and the ribosome, but
also over the chaperones.

If the degradation depends linearly on the chaperone concentration, the resulting balanced growth
equations would have the same qualitative properties as before. The polytope Px,µ,T of all balanced
growth solutions at metabolite concentrations x with growth rate µ and temperature T now has new
vertices, which are again called EGMs. Depending on T , the maximal growth rate solution may have a
positive αk for the chaperones. In that case, the investment of synthesising chaperones leads to a higher
growth rate than if this investment were not made.

Similar implementations may be given for other stress responses. A second example is cleaning up of
toxins (see Fig 6 in the main text, and code below), either made as an inevitable byproduct of certain
metabolic reactions, or passively diffuse into the cell. Such toxins could for instance lower the kcat of
metabolic reactions, leading to a lower growth rate. As long as cleaning up such toxins using specific
proteins is implemented using kinetics that are linear in those protein concentrations, the EGM theory
applies. If the effect of the toxin is sufficiently detrimental to metabolic reaction rates, the growth rate
maximiser will feature investment into proteins that naturalise those toxins.
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