Supplementary Table 1: PCR primers for Exon 5 in CCND3

CCND3_F CCTAACCTCCCCAGACTTCC CCND3_R AGCTTGACTAGCCACCGAAA

Supplementary Table 2: Sanger sequencing analysis of Exon 5 of CCND3 (NM_001760) in cell line analyed in this study

Cell line	Amino acid change 1	Nucleotide change 2
Gumbus	p.T283A	c.847A>G
BL41	p.S259fs	c.775_841delinsGCCCAGACCATCTCCAGC
BL67	p.R271fs	c.811_812insC
BL70	p.K268fs	c.801_802insC
SUDHL10	p.I290T	c.869T>C

positions according to NP_001751 positions according to coding sequence of NM_001760

Supplementary Table 3: The frequency of mutations in D-type Cyclins from previous reports.

Reference	Gene	BL	BCL-U	HGBL, DTH	HGBL, NOS	DLBCL		
Reference						GCB	Un	ABC
Schmitz R, 2012, Nature	CCND3	14.6 (124)		ND		1.9 (158)	ND	10.7 (133)
Momose S, 2015, Leukemia	CCND3	25.8 (31)	33.3 (24) 29.2 (24) 22.2 (9)			15.9 (44)	ND	
Reddy A, 2017, Cell	CCND3	ND			2.2 (315)	6.3 (128)	3.2 (310)	
Rohde M, 2017, Haematologica	CCND3	35.4 (65 [#])	14.3 (7)	NA	NA		15.4(13)	
Bouska A, 2017, Blood	CCND3	28.8 (52*)					ND	
Karube K, 2017, Leukemia	CCND3	ND			1.3	0.7	3.3	
	CCND1					0 (45)		0 (50)
Shipp MA, 2018, Nat Med	CCND2	ND			0 (45)	ND	0 (50)	
	CCND3					4.4(45)		8 (50)
	CCND1					0.6	0	0
Schmitz R, 2018, NEJM	CCND2		N	ID		0.6	2.6	0.7
	CCND3					6.7	9.6	11.9
Ennishi D, 2019, JCO	CCND3		N	ID		12.1 (157)	N	ID

ND: not done or not analyzed (available),, #: including leukemic BL, *: denoted as molecular BL, abbreviations; BCL-U: B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL 'former disease category in WHO 4th ed) " HGBL_DTH: High-Grade B-Cell Lymphoma, with *MYC* and *BCL2* and/or *BCL6* translocation, HGBL_NOS: High-Grade B-Cell Lymphoma, not otherwise specified, GCB: germinal center B-cell-like, ABC: activated B-cell-like, Un: unclassifiable. Parenthesis indicates the number of analyzed cases.