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Supplementary Methods 
 
The following provides a detailed description of the semi-automatic face detection and 
tracking processes and subsequent gaze classification. The methods for data-driven 
analysis of head-mounted eye tracking data are also presented. 
 

Semi-automatic gaze classification of head-mounted eye tracking data 
Face detection 
Faces were located using the Viola-Jones detector1 (Computer Vision System Toolbox, 
MATLAB R2015a, MathWorks). Face detection was visualised using a rectangular bounding 
box, and the user was required to confirm detection performance to proceed to the next 
scene frame. If the user disagreed, the face would be marked up manually by either 
dragging a rectangular box (for non-tilted faces) or marking four corner points to create a 
rectangular-like polygon (for tilted faces). Once the user confirmed that the bounding box 
accurately surrounded the face region, the coordinates of the four vertices were stored and 
the script proceeded to the next frame. For the current study, the following guidelines were 
used for the bounding box: the upper and bottom edges were located along the middle of the 
forehead and just underneath the chin, respectively, while the side edges were aligned with 
the sides of the face including a small margin. Alternatively, the user was able to skip the 
frame when no face was present. The user was also allowed to indicate the maximum 
number of frames that should be manually skipped (here the number was set to 2 frames) 
before an interactive video player was presented so that the user could more easily fast-
forward to the next frame that contained a face. 

 
Supplementary Figure S1: Regions-of-interest coding for the upper and lower face. 
A randomly selected frame from the scene recording showing the manually coded face 
region based on pre-defined guidelines and the division of the face area into an upper and 
lower region. 
 

Face tracking 
Detecting the face in each frame is computationally inefficient, and feature tracking 
represents a superior approach. The Kanade-Lucas-Tomasi (KLT) algorithm2,3 was applied 
to track the face using an adaptive window that changed the position, size, and angle of the 
bounding box in line with the face region. A video player visualised tracking behaviour and 
the four coordinates of the vertices of the bounding box were stored for each frame. For KLT 
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face tracking, the user was required to set the minimum number of feature points (threshold) 
that are used to estimate the bounding box. Although only very few points are typically 
required (e.g., 5 points), the threshold was increased to 15 points for the current study given 
that spatial accuracy and precision of face regions were crucial to investigate scanning 
behaviour. In addition, the user was required to specify the maximum number of frames to 
be processed to avoid a decline in tracking quality over time since points can be lost across 
frames. For the present study, a maximum of 150 frames were processed before the script 
returned to the face detection stage. Furthermore, a pushbutton was included to manually 
trigger the return to the face detection stage at any time in case the bounding box location 
could no longer be estimated accurately using the automatic algorithm. The flowchart in 
Supplementary Figure S2 summarises the face detection and tracking process. 
 

Data extraction 
The location of the face region was now known for every frame and given by the edge 
coordinates of the bounding box. The face area was subdivided into an upper and a lower 
part as a proxy for the eye and mouth regions, respectively. This was done by splitting the 
bounding box at the midline (Supplementary Figure S1). The eye tracking data was loaded 
into MATLAB to extract the x- and y-coordinates of the gaze points, and each gaze point was 
associated with its corresponding scene frame. The gaze point was classified by checking 
whether its coordinates fell within the upper or lower face region (using the inpolygon 

function). For each participant, a binary event timeline was created. An entry was coded ‘1’ if 
the gaze point fell within the lower/upper face, and ‘0’ if not. A speech timeline was added to 
annotate periods as listening (coded ‘0’) or speaking (coded ‘1’); this information was 
manually coded offline. Finally, an additional timeline indicated whether the gaze point was 
associated with a fixation (coded ‘1’) or not (coded ‘0’).  
 

Coding performance 
Manual checks were performed for 20% of data (10% per cultural group) collected for a 
separate study with the same paradigm. The mean accuracy was 99.02% (SD = 1.37%) for 
the upper face and 99.35% (SD = 0.97%) for the lower face. To code the upper and lower 
face and non-face regions for 1 minute of recording time, the semi-automatic method 
required 5 minutes and 16 seconds. Using a fully manual approach, gaze annotation took 
11 minutes and 29 seconds (i.e., more than double the time). 
 
 

Data-driven analysis of head-mounted eye tracking data 
For screen-based eye tracking data, iMap4,5 represents a data-driven method that 
aggregates gaze data across time and stimuli to produce density maps. Head-mounted eye 
tracking data, however, cannot simply be collapsed given that the position, size, and angle of 
the face changes with every frame. We applied linear transformations to re-map gaze points 
onto a normalised face template in a fully automatic fashion. Monte Carlo permutation 
testing (also named approximate permutation test or random permutation test)6 was then 
used to identify cultural differences in gaze clustering. 
 

Data extraction 
To collapse gaze points across time and participants, the original absolute gaze coordinates 
that fell within the face region were re-expressed as relative coordinates with respect to the 
bounding box (rather than the scene frame), making them independent of the location, size, 
or angle of the face. This was achieved using the following steps: 

(1) Non-rectangular bounding boxes (for non-tilted, four-point polygonic shapes) were first 
transformed by fitting a minimally bounding rectangle around the four vertices. 

(2) Each bounding box and its corresponding gaze points were then rotated such that the 
top and bottom edges were aligned in parallel with the x-axis of the scene frame, i.e. 
such that the face was no longer tilted. Rotations were not required to be performed 
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around a specific point. The angle α between the bottom edge of the bounding box 
and the x-axis was first computed to set up a rotation matrix R, 

𝑅 =  [
cos (−𝛼) −sin (−𝛼)
sin (−𝛼) cos (−𝛼)

]. 

To perform clockwise rotations, the angle α is negative in this rotation matrix. R was 
then used to rotate the bounding box and the original gaze coordinates to obtain the 
new coordinates of each shifted vertex (vx’, vy’) and the new gaze coordinate (x’, y’), 

[
𝑣𝑥′

𝑣𝑦′
] = 𝑅 [

𝑣𝑥′

𝑣𝑦′
] ; [

𝑥′
𝑦′

] = 𝑅 [
𝑥′
𝑦′

]. 

(3) The new gaze coordinates were then expressed relative to the rotated bounding box 
by setting its vertices to v1 = (-1, -1), v2 = (1,-1), v3 = (1,1), and v4 = (-1,1), i.e. the origin 
represented the centre of the face (nose tip). 

(4) For every participant and for each condition, a grid was set up to map all relative gaze 
coordinates into a unified coordinate space. For this study, a 100 x 100 grid was used 
with the same vertices as the bounding box, i.e., v1 = (-1,-1), v2 = (1,-1), v3 = (1,1), and 
v4 = (-1,1). 

(5) Each relative gaze coordinate was then mapped into the grid by finding its location 
within the grid and filling the corresponding entry. This represented the density maps 
with gaze collapsed across time. 

(6) The density maps were smoothed to consider both measurement error and that foveal 
visual attention occurs not only at the precise coordinate position but is distributed 
within 1.5º to 2º visual angle7. In this study, smoothing was performed using a two-
dimensional isotropic Gaussian kernel, with a kernel width corresponding to 2º (using 
imgaussfilt). 

 

Statistical analysis 
Comparing each pixel individually when contrasting 100px x 100px maps would result in 
10,000 independent t-tests and introduce the multiple comparison problem. If the alpha-level 
is set to 0.05 for a single t-test, this would give 500px flagged as significant by chance. To 
adjust the alpha-level from a local scale (i.e., a single pixel) to a global scale (i.e., the entire 
map), several approaches are available. The Bonferroni correction method approximates an 
adjusted significance threshold by dividing the alpha-value by the number of tests (i.e., 
0.05 / 10,000 = 0.000005 in the above example). This threshold, however, is too 
conservative due to the notion of spatial correlation. Given the spatial smoothing, gaze 
points are to an extent spatially dependent. The Bonferroni correction method, however, 
assumes independence between pixels, such that the adjusted threshold is overly 
conservative. An alternative method is based on Random Field Theory (RFT)8,9, which also 
provided the framework for iMap4. The smoothness underlying the activation maps is 
estimated, and the Euler characteristic (the number of clusters or “blobs” after 
thresholding)10 is determined at varying thresholds. The threshold at which 5% (0.05 alpha-
level) of equivalent statistical maps would occur under the null hypothesis can then be 
computed. RFT requires a Gaussian distribution and sufficient smoothness, and represents 
a powerful method when assumptions are met. However, RFT may produce unreliable 
results when data is not normally distributed or for paradigms with a low number of 
participants since maps may not necessarily be sufficiently smooth10. 

Another approach – and the one chosen here – is non-parametric permutation 
testing6, which does not require data to be normally distributed, and has previously been 
implemented in two screen-based studies11,12. In contrast to previous studies11,12, however, 
we applied a cluster-based approach to correct for multiple comparisons (as opposed to, 
e.g., FDR). Permutation testing uses the observed data itself to generate a null distribution 
that describes a gaze distribution that is entirely random. This is obtained by exchanging the 
data across conditions or groups in all possible arrangements to compute the frequency 
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distribution of test statistics (e.g., t-score). Consider a between-subject design with 
Participants A and B in one group, and Participants C and D in another group. By shuffling 
participants into all possible combinations, test statistics are calculated for AB (Group 1) vs 
CD (Group 2), AC (Group 1) vs BD (Group 2), and AD (Group 1) vs BC (Group 2) to obtain 
the null distribution, i.e. the distribution of test statistics if group allocations were random. 
Naturally, these permutations are typically conducted on data sets with larger participant 
numbers, and computing all possible permutations is time-consuming and computationally 
demanding. The Monte Carlo method13 can approximate the null distribution by running 
many permutations – typically in the order of several thousand iterations. Once the null 
distribution is computed, the proportion of test statistics that result in larger values than the 
observed statistic (the Monte Carlo significance probability) can be calculated. To obtain 
significant differences, this proportion should be minimal (e.g., less than 5%, or p < 0.05). 
Permutation testing only assumes exchangeability6 – i.e. data needs to be exchangeable 
across conditions or groups – and this assumption is met when exchanging data sets from 
different participants.  

The Monte Carlo permutation test was implemented in MATLAB using the 
CoSMoMVPA toolbox14 and FieldTrip toolbox15. The statistical analysis involved cluster-
based permutation tests, whereby a clustering procedure was applied to the original data set 
and to each permutated data set that was obtained by swapping participants between the 
cultural groups. Specifically, the clustering procedure involved identifying neighbouring pixels 
if their test criterion was greater than the critical value tcrit associated with a specified p-value 
threshold. This threshold was required to be set by the user, and a moderately strict 
threshold of 0.01 was chosen for the current study. To examine which clusters in the original 
map were significant, a cluster statistic was selected and used as comparison with each 
permuted map.  We chose the size of the cluster as the statistic for the present analyses. 
For every iteration, the statistic of each cluster in the original map was compared against 
that in the permuted map. After all iterations were performed (here the number of iterations 
was set to 10,000), the Monte Carlo significance probability was calculated; in other words, 
the proportion of test statistics that resulted in a larger value than the actual observed 
statistic of the original cluster was obtained. If this only occurred very few times, i.e. less 
than 5% (0.05) of times, this cluster was flagged as significant.  
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Supplementary Figure S2: Flowchart of the semi-automatic face detection and tracking process.  
Green and red lines indicate ‘yes’ and ‘no’ responses, respectively
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Supplementary Analysis 
 
To strengthen the current study interpretations, the following briefly presents the methods 
and results of a subset of the data obtained from a separate screen-based face scanning 
study16. The screen-based study aimed to examine cultural differences in face scanning and 
also included other cognitive tasks and tested infant and adult age groups. Here, only 
relevant face scanning data collected from the adult sample is presented. The sample 
consisted of the majority of participants who also took part in the present dyadic interaction 
study, with the results revealing cultural differences in face scanning. This suggests that the 
observed group differences in face scanning in the current dyadic interaction study are 
unlikely to be attributed solely to the local research assistant’s individual-specific behaviour. 
 
Methods 
Thirty-one British (16 female) and 30 Japanese adults (17 female) participated in the screen-
based study, of which 24 British and 26 Japanese participants also took part in the current 
dyadic interaction study. The same participant criteria as in the dyadic interaction study were 
applied. 
 
Apparatus 
A Tobii TX300 eye tracker (Tobii Technology, Sweden) was used to record eye movements 
at a sampling rate of 120 Hz. Face stimuli were presented on a 23” monitor. 
 
Procedure 
Participants sat in front of the monitor at 65cm distance. A five-point calibration was 
conducted prior to the start of the free-viewing experiment. Face stimuli were interleaved 
with other cognitive tasks, and presented in either static conditions (image of a face) or 
dynamic conditions (video of a face speaking the syllables do re mi fa sol la ti do). In each 
condition, every participant was shown four female face identities with a neutral facial 
expression (two faces of White-British ethnicity and two of Japanese ethnicity). Each face 
trial started with a gaze-contingent central stimulus before the face stimulus (measuring 
16.5˚ in height and 12.0˚ in width) was displayed for 18 seconds in colour at 1920 x 1080 
resolution (see Supplementary Figure 3 for an example). Sound was muted and replaced 
with instrumental music. Face identities were never repeated and were matched in location 
and speech timings. 
 
Results 
Given that the original study included eye movement data from both infants and adults, 
fixations were obtained using GraFIX, a semi-automatic tool designed to parse eye-tracking 
data of varying quality17. Regions-of-interest (ROI) included the eyes, bridge, nose, and 
mouth (see Supplementary Figure S3), and fixation time proportional to inner face fixation 
time was obtained for each ROI. 
 

 

Supplementary Figure S3: Regions-of-interest superimposed onto a face. 
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For the purpose of this Supplementary Analysis, a three-way ANOVA was conducted with 
factors Group (British, Japanese), Face Ethnicity (White-British, Japanese), and ROI (eyes, 
bridge, nose, mouth), separately for static and dynamic faces. Greenhouse-Geisser 
estimates were used when the sphericity assumption was not met.  
 

Static faces 

A main effect of ROI was revealed (F(3, 177) = 111.40, p < 0.001, ƞp
2 = 0.654), showing that 

scanning patterns were not homogeneous across facial features. The ROI x Face Ethnicity 
interaction was also significant (F(3, 177) = 4.75, p = 0.003, ƞp

2 = 0.074). A follow-up 
analysis using paired-samples t-tests, collapsed across cultural groups, revealed more eye 
scanning and less bridge scanning of White-British faces compared to Japanese faces 
(eyes: t(60) = -2.46, p = 0.017, Cohen’s d = 0.221; bridge: t(60) = 2.52, p = 0.014, Cohen’s d 
= 0.380). No significant differences were observed for the nose (t(60) = 0.83, p = 0.409, 
Cohen’s d = 0.065) or mouth (t(60) = -0.77, p = 0.444, Cohen’s d = 0.085). The relevant 
effects for the present analysis, however, are those including both ROI and Group as factors. 
A ROI x Group interaction was found (F(3, 177) = 2.79, p = 0.042, ƞp

2 = 0.045), suggesting 
that scanning patterns differed between the cultural groups. No other effects were significant 
(Face Ethnicity: F(1, 59) = 0.47, p = 0.495, ƞp

2 = 0.008; Group: F(1, 59) = 0.19, p = 0.663, ƞp
2 

= 0.003; Face Ethnicity x Group: F(1, 59) = 0.15, p = 0.698, ƞp
2 = 0.003; Face Ethnicity x ROI 

x Group: F(3, 177) = 1.16, p = 0.328, ƞp
2 = 0.019). To follow up the ROI x Group interaction, 

the fixation data was collapsed across the two levels of Face Ethnicity, and independent t-
tests were conducted to compare cultural groups for each ROI. The findings revealed no 
significant cultural differences in eye scanning (British: M = 0.49, SD = 0.14; Japanese: M = 
0.48, SD = 0.22; t(59) = 0.13, p = 0.902, Cohen’s d = 0.032), bridge scanning (British: M = 
0.08, SD = 0.06; Japanese: M = 0.10, SD = 0.07; t(59) = -1.39, p = 0.170, Cohen’s d = 
0.379), or nose scanning (British: M = 0.15, SD = 0.10; Japanese: M = 0.19, SD = 0.18; t(59) 
= -1.19, p = 0.240, Cohen’s d = 0.306), but demonstrated that British adults scanned the 
mouth significantly more than Japanese participants (British: M = 0.13, SD = 0.05; 
Japanese: M = 0.09, SD = 0.04; t(59) = 4.63, p < 0.001, Cohen’s d = 1.180). 
 
Dynamic faces 
Main effects of ROI (F(1.99, 117.09) = 50.44, p < 0.001, ƞp

2 = 0.461) and Face Ethnicity (F(1, 
59) = 7.80, p = 0.007, ƞp

2 = 0.117) were revealed. Crucially, a ROI x Group interaction was 
found (F(1.99, 117.09) = 3.42, p = 0.036, ƞp

2 = 0.055). No other effects were significant 
(Group: F(1, 59) = 2.17, p = 0.146, ƞp

2 = 0.035; ROI x Face Ethnicity: F(1.67, 98.71) = 0.29, 
p = 0.712, ƞp

2 = 0.005; Face Ethnicity x Group: F(1, 59) = 2.81, p = 0.099, ƞp
2 = 0.045; Face 

Ethnicity x ROI x Group: F(1.67, 98.71) = 0.09, p = 0.885, ƞp
2 = 0.001). As with the static 

faces, independent t-tests were conducted to compare cultural groups at each level of ROI, 
collapsed across Face Ethnicity. No cultural differences were found for eye scanning (British: 
M = 0.24, SD = 0.13; Japanese: M = 0.21, SD = 0.16; t(59) = 0.95, p = 0.346, Cohen’s d = 
0.263) or bridge scanning (British: M = 0.05, SD = 0.06; Japanese: M = 0.07, SD = 0.08; 
t(59) = -1.07, p = 0.290, Cohen’s d = 0.336). However, Japanese adults scanned the nose 
significantly more than British participants (British: M = 0.14, SD = 0.09; Japanese: M = 0.23, 
SD = 0.17; t(59) = -2.54, p = 0.014, Cohen’s d = 0.647), while the British group tended to 
scan the mouth region more (British: M = 0.49, SD = 0.18; Japanese: M = 0.39, SD = 0.24; 
t(59) = 1.88, p = 0.065, Cohen’s d = 0.481).  
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