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Figure S1: Transcriptomic profiling of HepG2 UPR BAC-GFP reporters, related to
Figure 2. A: Distribution of log2 fold changes (compared to DMSO solvent control) of UPR-
related genes across the indicated concentration range of tunicamycin for each HepG2 cell line
(WT, CHOP-GFP, ATF4-GFP, pXBP1(S)-GFP and BiP-GFP) at 8 and 24h exposure time. B:
Pearson correlation matrix of different HepG2 cell lines based on either all genes (top panel) or
UPR-related genes (lower panel). Correlations are the mean of correlations between cell lines at
each concentration of tunicamycin. C: Heatmap of log2 normalized counts of UPR-related genes
(selection based on upper quantile of log2 fold changes of all UPR-related genes at 10 µM) for
each HepG2 cell line exposed to the indicated concentration range of tunicamycin either for 8 or
24h. Hierarchical clustering of genes based on euclidean distance.
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Figure S2: Modeled pharmacokinetics of tunicamycin exposure, related to Figure 2
and 3. A: effective intra-cellular concentration of tunicamycin Sc over time, B: exposure-related
stressor Si (unfolded proteins due to tunicamycin) which acts as input to the UPR signaling
network.
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Figure S3: Standard errors of model parameter estimates, related to Figure 3. The
standard errors were approximated via a Hessian-based approach and are presented in log10 scale.
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CHOP TUN at 6µM

Figure S4: Parameter sensitivity analysis of CHOP expression, related to Figure 3.
In the sensitivity analysis, we considered the sensitivity of CHOP expression at 16 hours after
exposure to 6µM of tunicamycin. Parameters positively affecting CHOP are shown in black, while
parameters negatively affecting CHOP are shown in red.
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Figure S5: Predicted dynamics of the three UPR sensors upon tunicamycin exposure,
related to Figure 4. Plot of the dynamics of the sensors IRE1α (blue), PERK (green), and
ATF6 (red), after normalization to their maximally obtained value during the studies time period.
Black squares indicate the moment at which sensor activity is half-maximal.

5



Figure S6: Effect of n on CHOP upon exposure to 6 µM of tunicamycin, related to
Figure 4. Heat-map showing the temporal response of CHOP for a range of n values. The black
solid line indicates the time point of maximal CHOP activity within the simulated time period.
The black dashed line indicates the best fit value (n = 46.32).
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Figure S7: Sensitivity of the CHOP response to the Hill coefficient describing the
relation with pATF6(N), related to Figure 4. For three values of n (including the estimated
value of n = 46.32), we plot the pATF6(N) response over time (upper left panel), the relation
between CHOP transcription and pATF6(N) level (upper right panel), the CHOP transcription
rate due to pATF6(N) over time (lower left panel) and CHOP dynamics (lower right panel).
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Figure S8: Details of inner model states with respect to the CHOP response at different
tunicamycin concentrations, related to Figure 4. For two tunicamycin concentrations, we
plot the pATF6(N) response over time (upper left panel), the relation between CHOP transcription
and pATF6(N) level (upper right panel), the CHOP transcription rate due to pATF6(N) over time
(lower left panel) and CHOP dynamics (lower right panel).
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Figure S9: Simulation of inner model states, related to Figure 3 and 4. Dynamics of
modeled UPR network components are shown upon exposure to tunicamycin at 1µM (black) and
6µM (red). Note that free ATF6 stands for activated ATF6 sensor, i.e., free uncleaved ATF6.
Among the three branches, ATF4 tightly follows the dynamics of eIF2αp and unfolded proteins.
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Figure S10: Simulation of inner model states upon ATF6 knockdown, related to Figure
3 and 5. Dynamics of modeled UPR network components upon exposure to 6µM tunicamycin,
either with (red) or without (black) siATF6 treatment. Note that siATF6 results in lower BiP
levels, which reduces the folding capacity. Hence, there are more unfolded proteins, which induces
more ATF4 and pXBP1(S), in the long run leading to slightly higher CHOP levels compared to a
setting without siATF6.
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Figure S11: Quantification of ATF6 forms after treatment of 1 µM tunicamycin, related
to Figure 6. A: Western blot of uncleaved ATF6 (G = glycosylated, UG = unglycosylated)
measured in HepG2 WT cells at 2, 4, 6, 8, 16 or 24 hours after exposure to tunicamycin (1
µM). Tubulin protein expression was used as protein loading control. B: Quantified protein
expression of ATF6 forms from three biological replicates after protein loading correction using
tubulin (symbols and shaded area represent mean ± SD). Cleaved ATF6 was estimated based on
the difference between total uncleaved ATF6 at 4, 6, or 8h and the total ATF6 at 2h.
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Table S1: Model parameters, their units, their estimated values (± 95% confi-
dence interval) and the boundary values used during the estimation procedure,
related to Figure 3, 4, 5 and 6. For the rationale behind the choice of boundary
values see the section on parameter ranges.

Parameter unit description estimated θ1 estimated θ2± 95% CI lower boundary upper boundary

Et - general translation rate (from mRNA to unfolded protein) 2.21e+00 2.00e+00 ± 8.45e-08 1.0 200.0

E2 au effective exposure at 2 µM 1.16e+00 1.22e+00 ± 1.80-e07 1.0 20.0

E4 au effective exposure at 4 µM 1.55e+00 1.67e+00± 3.10e-04 1.0 20.0

E6 au effective exposure at 6 µM 1.88e+00 2.07e+00 ± 7.45e-08 1.0 20.0

E12 au effective exposure at 12 µM 2.11e+00 2.48e+00± 3.62e-08 1.0 20.0

δ au/hr BiP-mediated folding rate 1.84e+01 1.96e+01 ± 3.70e-08 0.10 200.0

Pt - total amount of PERK 1.87e+01 8.36e+00 ± 3.12e-08 1.0 2.0e5

KBU au Michaelis-Menten constant for dissociation of BiP and unfolded proteins 1.24e+07 1.24e+07 ± 3.07e-08 1e3 1e10

β1 au/hr IRE1α-dependent formation rate of XBP1 4.90e+00 2.75e+00 ± 3.90e-08 1.0e-8 2.0e8

β2 au/hr PERK-dependent ATF4 formation rate 1.52e+01 4.35e+00 ± 2.67e-08 1.0e-8 2.0e8

β3 au/hr ATF6-dependent ATF6f formation rate - 1.18e+04 ± 3.08e-08 1.0e-8 2.0e8

KIU au Michaelis-Menten constant for dissociation of IRE1α and unfolded pro-
teins

9.57e+06 9.56e+06 ± 2.75e-08 1e1 1e10

KPU au Michaelis-Menten constant for dissociation of PERK and unfolded pro-
teins

1.35e+06 1.35e+06 ± 3.42e-08 1e1 1e10

KAU au Michaelis-Menten constant for dissociation of ATF6 and unfolded pro-
teins

- 1.08e+09 ± 2.71e-08 1e1 1e10

rU 1/hr degradation rate of unfolded proteins 4.07e-02 2.02e-08 ± 4.95e-08 1.0e-8 2.0e3

rX 1/hr degradation rate of XBP1 5.16e-01 2.34e-01± 3.29e-08 1.0e-8 2.0e3

rA4
1/hr degradation rate of ATF4 4.95e+00 6.26e+00± 3.68e-08 1.0e-8 2.0e3

rB 1/hr degradation rate of BiP 2.58e-01 1.52e-01± 3.14e-08 1.0e-8 2.0e3

rC 1/hr degradation rate of CHOP 9.95e-01 2.83e-0± 3.92e-08 1.0e-8 2.0e3

rA6
1/hr degradation rate of ATF6f - 1.05e-0± 4.96e-08 1.0e-8 2.0e3

γ1 au/hr basal BiP transcription rate 1.13e+00 6.25e-01± 3.26e-08 0 2e2

γ2 au/hr basal CHOP transcription rate 3.29e-01 2.96e-01± 3.68e-08 0 2e2

α1 1/hr XBP1-mediated BiP transcription rate 8.14e+04 8.14e+0± 2.68e-08 0 1e6

α2 1/hr ATF4-mediated BiP transcription rate 2.97e+03 2.60e+02± 4.43e-08 0 1e6

α3 1/hr XBP1-mediated CHOP transcription rate 3.15e+02 3.17e+01± 3.26e-08 0 1e6

α4 1/hr ATF4-mediated CHOP transcription rate 2.86e+02 2.88e+01± 3.94e-08 0 1e6

α5 1/hr ATF6f-mediated BiP transcription rate - 5.09e+04± 4.08e-08 0 1e6

α6 au/hr ATF6f-mediated CHOP transcription rate - 1.39e+01± 3.87e-08 0 1e6

KBP au Michaelis-Menten constant for dissociation of BiP and PERK 5.03e+07 5.03e+07± 1.56e-02 0 1e9

KBI au Michaelis-Menten constant for dissociation of BiP and IRE1α 8.81e+02 1.92e+03± 3.27e-08 0 1e9

KBA au Michaelis-Menten constant for dissociation of BiP and ATF6 - 7.81e+01± 3.45e-08 0 1e9

b0 au/hr basal production rate of ATF4 2.91e-06 2.41e-06± 4.00e-08 0 2e2

es au/hr factor scaling the effective intra-cellular concentration to unfolded pro-
teins

1.31e+05 1.31e+05± 6.88e-08 1e-3 2e7

ss au/hr net production rate of unfolded proteins independent of translation at-
tenuation and exposure

-1.870 -2.00 ± 8.01e-08 -20.0 2e3

τ1 1/hr time constant describing initial increase in stressor 2.47e-01 2.26e-01± 3.87e-08 1e-15 5.0

τ2 1/hr time constant describing stressor decay 8.90e-03 8.45e-15± 1.01e-23 1e-15 5.0

θth au threshold for stressor levels that activate signaling 7.37e-01 7.75e-01 ± 5.29e-08 0.0 1.0

KA2C au ATF6f level at which ATF6f-dependent CHOP transcription is half-
maximal

- 7.17e-01± 3.32e-08 1e-8 1e4

n - cooperativity in ATF6f-dependent CHOP transcription Hill kinetics - 4.63e+01± 2.86e-08 1e-2 1.0e2

eXBP1 au GFP scaling factor for XBP1 reporters 5.64 6.60± 2.94e-02 1.0e-7 1.0e2

eATF4 au GFP scaling factor for ATF4 reporters 2.28e-01 1.23e+00± 2.58e-02 1.0e-7 1.0e2

eBIP au GFP scaling factor for BiP reporters 1.13e-05 3.68e-06± 4.12e-02 1.0e-7 1.0e2

eCHOP au GFP scaling factor for CHOP reporters 1.45e-02 7.75e-03± 3.60e-02 1.0e-7 1.0e2

sXBP1 au GFP offset for XBP1 reporters 5.20e-04 5.65e-04 ± 3.55e-01 -1.0e2 1.0e2

sATF4 au GFP offset for ATF4 reporters 3.54e-02 4.19e-02± 1.90e-01 -1.0e2 1.0e2

sBIP au GFP offset for BiP reporters 1.09e-01 7.81e-02± 2.61e-01 -1.0e2 1.0e2

sCHOP au GFP offset for CHOP reporters -7.10e-04 -3.89e-03 ± 2.26e-01 -1.0e2 1.0e2
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Transparent Methods

Experimental details

Cell culture

HepG2 human hepatocellular carcinoma cells were purchased at American Type Culture Collec-
tion (ATCC, Wesel, Germany). To capture the induction of key proteins of the UPR, CHOP,
ATF4, BiP and pXBP1(S) were GFP-tagged using a bacterial artificial chromosome (BAC) re-
combineering approach (Poser et al., 2008; Wink et al., 2014; Hendriks et al., 2011; Wink et al.,
2017; Hiemstra et al., 2016). Hereby, stable HepG2 GFP-BAC reporter cell lines were established
expressing protein-GFP fusions under control of the endogenous promoter for each gene. HepG2
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% (v/v) fetal
bovine serum (FBS), 25 U/mL penicillin and 25 µg/mL streptomycin at 37◦C and 5% CO2, and
were used until passage 20. Cells were plated using a density of 70.000 to 140.000 cells/cm2 when
grown for 3 to 5 days.

Chemicals and antibodies

Tunicamycin was purchased at Sigma (Zwijndrecht, The Netherlands) which was dissolved in
dimethylsulfoxide (DMSO) from BioSolve (Valkenswaard, The Netherlands) and stored at -20◦C
until usage. The maximum solvent end concentration of DMSO was at most 0.2% (v/v) to min-
imize the effect of the solvent itself. For western blotting, antibodies were used against CHOP,
ATF4, pXBP1(S) and ATF6 from Cell Signaling (Bioké, Leiden, The Netherlands), BiP from BD
Biosciences (Vianen, The Netherlands) at a dilution of 1:1000, and Tubulin from Sigma (Zwijn-
drecht, The Netherlands) at a dilution of 1:5000.

RNA interference

siRNA-mediated transient silencing of genes of interest in HepG2 cells was done using a reverse
transfection approach. Prior to transfection, siGENOME SMARTpool siRNAs from Dharmacon
(Eindhoven, the Netherlands) were mixed with INTERFERin from PolyPlus (Leusden, the Nether-
lands) for 10 minutes to allow for complex formation. Hereafter, siRNA mix, resulting in a 50
nM siRNA and 0.3% INTERFERin end concentration, together with cells at a density of 78.000
cells/cm2 were added to each well. As control, mock (only INTERFERin) and siRNA scram-
bled non-targeting control was employed. At 24 hours post-transfection, medium was refreshed.
siRNA-silenced cells were evaluated at 72 hours post transfection or exposed to compounds to
assess the effect of the knockdown on drug-induced ER stress response activation.

Confocal Microscopy

Cells were plated in SCREENSTAR 96 wells or µClear 384 wells plates from Greiner Bio-One
(Alphen aan den Rijn, The Netherlands) at the earlier mentioned cell densities. Prior to confocal
microscopy imaging, cells were stained with 100 ng/mL Hoechst33342 for a minimum of 30 minutes
to allow for nuclei visualization and cell tracking. To measure the induction of BAC-GFP intensity,
cells were imaged live using an automated Nikon TiE2000 confocal microscope (Nikon, Amsterdam,
The Netherlands) including an automated xy-stage, Perfect Focus System and lasers at wavelength
408, 488, 561 and 647nm. Cells were kept at 37◦C and 5% CO2 humidified atmosphere during
imaging.

Image Analysis

Segmentation and quantification of the GFP intensity was done using CellProfiler version 2.1.1
(Broad Institute Cambridge, USA) using analysis modules described previously (Wink et al.,
2014; Niemeijer et al., 2018). In brief, nuclear segmentation based on Hoechst signal was done
using an in-house constructed watershed masking algorithm (Di et al., 2012). The propagation
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segmentation method based on GFP signal was used for cytoplasm segmentation. GFP intensity
was measured in the nucleus as well as in the cytoplasm. For subsequent analysis, Rstudio version
1.0.153 (Boston, USA) was used. For alignment of the data acquired around discrete time points
(1,2,..., 24 hours), we employed cubic interpolation of the GFP intensity such that standard
deviations can be estimated from the individual replicates, which are integrated into the cost
function for parameter estimation (see Supplementary text about single-cell data analysis for
details).

TempO-seq transcriptomics

To assess mRNA levels, cells were seeded in 96 wells plates from Corning (Amsterdam, The
Netherlands) using a density of 156.000 cells/cm2. After compound exposure the following day,
cells were washed with 1x PBS and lysed using 50 µL per well in 1x BNN lysis buffer from
BioSpyder (Carlsbad, USA). After a 15 minute incubation period at room temperature, lysates
were frozen at -80◦C. As internal control, 0.05 µg/µL Universal Human RNA Reference (MAQC)
in 1x BNN lysis buffer was used. Lysates were sent to and analyzed by BioSpyder Technologies
Inc. (Carlsbad, USA) using the TempO-seq technology (Yeakley et al., 2017) of a targeted gene
set consisting of the S1500+ gene list (Mav et al., 2018). In brief, a pair of detector oligos
hybridized to its specific target mRNA leading to oligo pair ligation. This was followed by PCR
amplification of ligated pairs of oligos incorporating also a sample-barcode and adaptors, which
was subsequently sequenced. Alignment of raw reads was done using the TempO-seqR package
(BioSpyder Technologies Inc., Carlsbad, USA). Read counts were normalized using the DESeq2
R package (Love et al., 2014) and log2 transformed. UPR-related genes were defined by selecting
target genes of transcription factors ATF4, ATF6, pXBP1(S) and DDIT3 that were based on
DoRothEA (Discriminant Regulon Expression Analysis) v2 (Garcia-Alonso et al., 2018) using
confidence level A to D and that were present in the S1500+ geneset.

Western blot analysis

For western blot analysis, samples were collected after two wash steps with ice-cold 1x PBS by
adding 1x sample buffer supplemented with 10% v/v β-mercaptoethanol and stored at -20◦C.
Prior to loading, samples were heat-denatured at 95◦C for 10 minutes. Proteins were separated
on SDS-page gels using 120 volt and transferred to polyvinylidene difluoride (PVDF) membranes
at 100 volt for 2 hours. After blocking using 5% ELK, membranes were stained with primary and
secondary HRP- or Cy5-conjugated antibodies diluted in 1% bovine serum albumin (BSA) in tris-
buffered saline (TBS)-0.05%Tween20. Thereafter, Enhanced Chemiluminescent (ECL) western
blotting substrate from Thermo Scientific (Bleiswijk, The Netherlands) enabled to visualize the
HRP-conjugated antibody staining using the Amersham Imager 600 from GE Healthcare (Eind-
hoven, The Netherlands). Protein expression was quantified using ImageJ version 1.51h (National
Institutes of Health, USA) and normalized to tubulin protein expression.

Statistics

Confocal microscopy data from three biological replicates is represented as the mean± SE. TempO-
seq gene expression data was represented either as log2 normalized counts ± SE or as log2 fold
changes with standard error calculated using the DESeq2 R package (Love et al., 2014). Signifi-
cance was determined with the Wald test and Benjamini Hochberg correction using the DESeq2
R package (Love et al., 2014). Significance for TempO-seq gene expression data was determined
at three threshold levels (*padj < 0.05, **padj < 0.01, ***padj < 0.001). Western blot data for
ATF6 quantification originated from three biological replicates and were represented as the mean
± SE. Here, significance levels were calculated using unpaired Student’s t test with Benjamini
Hochberg multiple testing correction, represented as *padj < 0.1, **padj < 0.05, ***padj < 0.01.
Processing and visualization of all data was done using Rstudio version 1.0.153 (Boston, USA) in
combination with R 3.4.1 and the following R packages: ggplot2 (Wickham, 2010), RColorBrewer
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(Neuwirth, 2014), data.table (Dowle et al., 2018), dplyr (Wickham et al., 2011), tidyr (Wickham,
2017), reshape2 (Zhang, 2016), scales, stats and splines.

Computational modeling

UPR model construction and simulation

We built a dynamic model of the UPR signaling network with six state variables: unfolded protein
(U), pXBP1(S) (X), ATF4 (A4), ATF6 fragment(A6), BiP (B), and CHOP (C). These states
represent concentrations of molecules per cell and their dynamics are mathematically described
by a set of ordinary differential equations. The equations obey kinetics of biochemical reactions
including mass-action, Michaelis-Menten or Hill kinetics. We simplified the model in a similar way
as (Trusina et al., 2008; Diedrichs et al., 2018) with quasi-steady state assumptions for association
or dissociation of complexes and modulation effects. Furthermore, we took multiple conservation
terms into account in order to reduce the number of state variables. We extended the available
model of (Trusina et al., 2008) by incorporating ATF4 and CHOP. Furthermore, because ATF6
is proteolytically processed but this is not the case in the XBP1 branch (Ye et al., 2000), we
considered the possibility that ATF6 and XBP1 need to be assigned different parameters (e.g., their
degradation rates) to allow these branches to respond differently. To take the pharmacokinetics
of the exposure into account, we modeled the intra-cellular concentration of tunicamycin as a
function with two exponents, which represents the analytical solution to a linear system for two
compartments (i.e., the medium in which cells reside and intra-cellular spaces).

The set of ODEs is mathematically represented as

ẋ(t) = f(x(t),u(t), θ), (1)

where x(t) stands for the six state variables of the dynamic system, u(t) is the input function, and
θ contains the system parameters. The dynamics of the UPR state variables are described by:

U̇ = f1(x),

Ẋ = f2(x),

Ȧ4 = f3(x),

Ȧ6 = f4(x),

Ḃ = f5(x),

Ċ = f6(x),

(2)

with initial condition
x0 = (U0, X0, A4,0, A6,0, B0, C0). (3)

In the following the right hand sides of equations (2) are provided for each state. Our modeling
work follows (Trusina et al., 2008) assuming a quasi steady-state for sensors which can bind to
BiP or to unfolded proteins. In addition, we incorporated the ATF6 branch and the downstream
molecules ATF4 and CHOP (Trusina et al., 2008). This allows to integrate all experimental data
obtained from our GFP reporter cell lines, i.e., pXBP1(S), ATF4, BiP and CHOP.

We subsequently describe all equations for the system states, starting with the unfolded protein
U :

f1(x) =
Et

1 + Pact
+ ss + Si − δ Bf − rU U , (4)

where Et denotes the base rate of translation, i.e., the formation of peptides or unfolded proteins
from mRNA which can be modulated by translation attenuation. Si represents the rate of pro-
duction of unfolded proteins due to the exposure-related stressor, which is described explicitly as
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a function of time (see below). The parameter ss represents a net folding/unfolding rate that is
independent of BiP and of translation. Instead, it includes both the folding activity of chaperones
other than BiP and unfolding activity of existing proteins. Because it represents a net effect, ss
can have a positive or negative value, depending on which process prevails. Unfolded proteins
are removed by degradation, which occurs at rate rU , or by their folding following binding to the
chaperone BiP, which occurs at rate δ. The latter process depends on the amount of free form of
BiP, which is given by

Bf =
U

U +KBU
B , (5)

where KBU is the amount of unfolded proteins for which half of the BiP molecules is present in
free form. Inhibition of translation is modeled by modification of the Et term, where Pact denotes
the active form of PERK and is given by

Pact = Pt (U/KPU )/(1 +Bf/KBP + U/KPU ) , (6)

where Pt is the effective/net amount of PERK, and KPU and KBP are Michaelis-Menten param-
eters describing the affinity of the complexes PERK:UP and BiP:UP, respectively.

The amount of spliced XBP1 is described by:

f2(x) = β1 Iact − rX X . (7)

Here, β1 represents the XBP1 splicing rate, which depends on the amount of active IRE1α. The
latter is represented by Iact and is given by:

Iact = (U/KIU )/(1 +Bf/KBI + U/KIU ) , (8)

where KIU and KBI are Michaelis-Menten parameters describing the affinity of the complexes
IRE1α:UP and BiP:IRE1α, respectively. Spliced XBP1 is degraded at rate rX .

The amount of ATF4 is described by:

f3(x) = b0 + β2 eIF2αp − rA4
A4, (9)

where rA4 denotes the degradation rate of ATF4, b0 indicates its basal production rate, and
β2 is the additional production rate of ATF4 due to eIF2αp, where eIF2αp is the fraction of
phosphorylated eIF2α that obeys:

eIF2αp = 1− eIF2αup = 1−
(

1 +
Pt U

KPU +Bf KPU/KBP + U

)−1

, (10)

where eIF2αup denotes the fraction of unphosphorylated eIF2α. Note that the total amount of
eIF2α (phosphorylated and unphosphorylated) is considered to be conserved.

The amount of pATF6(N) is described by:

f4(x) = β3A6,act − rA6
A6, (11)

where A6,act is the activated sensor (i.e., the free form of ATF6, which is not the same as
pATF6(N)), which obeys

A6,act = (U/KAU )/(1 +Bf/KBA + U/KAU ) . (12)

As before, KAU and KBA are Michaelis–Menten parameters representing the affinity of the com-
plexes ATF6:UP and BiP:ATF6, respectively.

The amount of BiP is described by:

f5(x) = γ1 + α1X + α2A4 + α5A6 − rB B , (13)
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where γ1 is the basal production rate of BiP, rB is the degradation rate of BiP, and α1, α2, α5

represent the additional BiP production rate due to activity of pXBP1(S), ATF4 and pATF6(N),
respectively.

The amount of CHOP is described by:

f6(x) = γ2 + α3X + α4A4 + α6A6,hill − rC C, (14)

where γ2 is the basal production rate of CHOP, rC is the degradation rate of CHOP, and α3,
α4, α6 represent the additional CHOP production rate due to activity of pXBP1(S), ATF4 and
pATF6(N), respectively. A6,hill describes the contribution of pATF6(N) to the CHOP transcrip-
tion rate with a Hill function:

A6,hill =
An6

An6 +Kn
A2C

, (15)

where n and KA2C are the exponent and threshold in the Hill-function. Note that because there is
not a clear peak in the dynamics of pXBP1(S) or ATF4 shown in Fig. 2D in the main text, a Hill
function with an exponent larger than one is not needed to describe the effect of pXBP1(S) and
ATF4 on CHOP (i.e., the fitting performance is not improved). Hence, for the sake of simplicity,
we only used a Hill function for pATF6(N).

In addition to the six state variables, the exposure-related stressor Si is a dynamic variable
whose kinetics do not depend on the other system states. The intra-cellular concentration of the
applied compound (Sc) is described explicitly with the following pharmacokinetics (see the sup-
plementary subsection “Describing cellular exposure with a two-compartment model” for details
about its derivation):

Sc = Ei

(
e(−τ2t) − e(−τ1t)

)
H(t). (16)

Here Ei represents the effective intra-cellular concentration of the applied compound, with the
subscript i denoting the applied concentration in µM. For 1 µM, we set E1 = 1; for the other
four concentrations we assign four free parameters that are estimated (see Table S1). H() stands
for the Heaviside function. We consider the stressor to affect the signaling network only when
a threshold θth is crossed. We describe this by the above discussed Si, i.e., the effective rate at
which unfolded proteins are formed due to the stressor:

Si = es (Sc − θth)H(Sc − θth), (17)

where es scales the effective intra-cellular concentration of tunicamycin to unfolded proteins. At
equilibrium, the total production rate of unfolded proteins is Et

1+Pact
+ ss.

For each GFP-reporter cell line, we introduce scaling and offset parameters denoted as eGFP
and sGFP , respectively. Those two parameters transform the state in the ODE to the observable.
For example, for ATF4 we formulated the observable Ao4 as

Ao4 = eatf4A4 + satf4. (18)

Hence, to map the concentrations of the proteins to the GFP intensities, we introduce eight
parameters for the four UPR cell lines: exbp1, sxbp1, eatf4, echop, sxbp1, satf4, sbip, and schop.

All model simulations were conducted in python 2.7.14.

Model calibration and model selection

We fitted our models to the quantified dynamics of reporter cell lines, using the maximum likeli-
hood approach to estimate parameters. Given the nonlinear nature of the model, multiple local
optima of parameters could exist in the likelihood landscape. To find the global optimum, we
employed a Monte Carlo method with multiple starting values. We generated a set of Ns = 1000
starting values {θs} in Θ using Latin hypercube sampling (McKay et al., 2000). We listed the
employed boundaries of the parameters in Table S1. For each starting value, we use the Trust-
Region-Reflective-Newton method to obtain the local minimum θf (Coleman & Li, 1996). For a
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robust and efficient estimation, we incorporate the sensitivity equation (Raue et al., 2013) and a
steady state constraint (Rosenblatt et al., 2016) into our local optimization. After applying this

local optimization for all starting values, we take the estimate θ̂ = θf with the minimal negative
log-likelihood. Numerical optimization relied on the python package scipy. To quantify the un-
certainty of parameter estimates, we applied a Hessian-based approach to explore the likelihood
around the estimates. We quantified this as a 95% confidence interval of the estimates (Raue et
al., 2009) (see details in the Supplement “Covariance matrix of estimates” and confidence inter-
vals of the estimates in Table S1). Moreover, we performed a sensitivity analysis of the impact of
single parameters on the CHOP level based on the maximum likelihood estimate, i.e., the most
plausible set of parameters based on the measurements (see details in the Supplement “sensitivity
analysis”).

Plausible models are expected to give a good fit to observations with a relatively small value
of the negative-log likelihood at θ̂. We performed a likelihood-ratio-based test to evaluate the
goodness of fit to the measurements, as for example applied in (Garćıa-Pérez & Alcalá-Quintana,
2015a,b) aiming to get insight into processes underlying temporal-order and simultaneity judg-
ments by observers. Specifically, Garćıa-Pérez & Alcalá-Quintana (2015a) focused on a likelihood-
ratio based approach to check goodness of fit and Garćıa-Pérez & Alcalá-Quintana (2015b) further
incorporated the likelihood ratio into a Bayesian test when computing the ratio of two posterior
distributions in order to derive a closed-form psychometric function about simultaneity judgments.
In general, the test can be used to compare two models by the ratio of their likelihoods, denoted by
4G, and a p value is computed from a χ2 distribution. In our case, we used this approach to eval-
uate whether the data are more compatible with separate incorporation of the ATF6 branch (with
estimates θ2) rather than with lumping ATF6 and XBP1 into a single branch (with estimates θ1).

Modeling of knockdown conditions

We simulated the calibrated model by incorporating single knockdown perturbations with siRNA
treatments. We focused on the knockdowns with siDDIT3 and siATF4, and siATF6, setting the
knockdown efficiencies at the values estimated by the analysis of the TempO-seq data. To account
for variability of knockdown efficiencies over experiments and over time from different assays, we
varied the knockdown efficiency by 20% more or less than the reference value and simulated the
model accordingly.

Here we describe how we model knockdown experiments by siRNA treatments. The dynamics
of the mRNA can be described by the following differential equation:

τm
d

dt
[mRNA] = λm + tf(t)− dm [mRNA] , (19)

where [mRNA] represents the amount of mRNA of interest, τm is the time constant of the mRNA,
tf(t) is mRNA production rate due to TF activity, λm denotes the basal production rate, and dm
is the degradation rate of the mRNA. We consider knockdown of a gene of interest to increase
the mRNA degradation rate compared to the control case. To study how this affects the protein
dynamics over time, we first write the equation for the protein:

τp
d

dt
[protein] = λp[mRNA]− dp [protein] , (20)

where [protein] represents the amount of protein of interest, τp is the time constant of the protein
and dp is the degradation rate of the protein.

Considering transcription to be much faster than (post-)translational processes, i.e. τm � τp,

the mRNA will be at equilibrium, i.e., [mRNA](t) = λm+tf(t)
dm

.
Substitution of this relation into the translation step in (20) gives

τp
d

dt
[protein] = λp

λm
dm

+ λp
tf(t)

dm
− dp [protein]. (21)
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Lumping λm
dm

into λ∗p and λp
λm
dm

into µ∗
p results in:

τp
d

dt
[protein] = µ∗

p + λ∗ptf− dp [protein]. (22)

In this equation, µ∗
p and λ∗p incorporate the effects of the increased mRNA degradation upon

knockdown. Thus, these parameters are expected to decrease when cells are pre-treated with

siRNA knockdowns. We define the knockdown efficiency eKD as 1 − [mRNA]KD
[mRNA] , which equals

1− dm
dm,KD

, where dm,KD is the mRNA degradation rate upon knockdown. Then we obtain dm,KD =
dm

1−eKD , which propagates into the parameters for protein formation as µ∗
p,KD = (1− eKD)µ∗

p and
λ∗p,KD = (1− eKD)λ∗p. In conclusion, the knockdowns can be simulated by decreasing the protein
production rates with a multiplier based on the measured knockdown efficiency.

For ATF4, ATF6 and CHOP, for which we obtained knockdown efficiencies, we thus perturbed
the production rates as follows: For siATF4, we set β2 = (1 − eKD)β̂2 and b0 = (1 − eKD)b̂0,

where β̂2 and b̂0 are the estimated values in the absence of knockdown. For siATF6, we set
β3 = (1 − eKD)β̂3, where β̂3 is the estimated value in the absence of knockdown. For siDDIT3,
we set γ2 = (1− eKD)γ̂2, α3 = (1− eKD)α̂3, α4 = (1− eKD)α̂4, and α6 = (1− eKD)α̂6, where γ̂2,
α̂3, α̂4, and α̂6 are the estimated values in the absence of knockdown.
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Supplementary Details

Analysis of single-cell data

For the analysis of single-cell imaging data, we applied the following steps: First, for each of
three biological replicates (each consisting of two pooled technical replicates), we calculated the
geometric mean (denoted by I) based on GFP measurements for thousands of cells per image
well at all time points and for all treatment conditions. Second, from this analysis we obtained
the minimum (denoted by Imin) and maximum (denoted by Imax) of these geometric means with
respect to all conditions and time points (separately for every cell line in every plate). We then
applied min-max normalization to obtain the normalized intensity (denoted by IN ) each time
point according to:

IN =
I − Imin

Imax − Imin
. (23)

Third, we interpolated the normalized means to the time points from 1h to 22h as described in
the main text (note that some treatment conditions only had data before 23h). Finally, we took
the arithmetic mean and standard deviation of the interpolated data for the biological replicates,
which we used for further model fitting purposes.

Describing cellular exposure with a two-compartment model

To describe the exposure of cells to the chemical tunicamycin, we introduce a two-compartment
model describing the concentrations of the chemical in the medium ([C1]) and in the cells ([C2]):{

d[C1]
dt = [D]δ(t)− τ1[C1] ,

d[C2]
dt = τ1[C1]− τ2[C2] .

(24)

Here, τ1 is the cellular absorption rate from the medium, τ2 is the degradation rate of the chemical
within cells and [D] and δ(t) are the applied exposure and unit pulse input functions, respectively.
To obtain the solution of the above set of ODEs, one can take a convolution: In general, for
g(t) =

∫
f(τ)h(t − τ)dτ , g(t) is the output function, f(t) is the input function and h(t) is the

transfer function of the linear system, which can be derived by Laplace transformation. In our
case, the transfer functions for [C1] and [C2] are exp(−τ1t)H(t) and exp(−τ2t)H(t), respectively.
For [C1](t) we then obtain the solution [C1](t) = [D] exp(−τ1t)H(t). Furthermore, for [C2](t) we
obtain:

[C2](t) = [D] exp(−τ2t)
(
exp(−(τ2 − τ1)t)(τ2 − τ1)−1 − (τ2 − τ1)−1

)
. (25)

This simplifies to:

[C2](t) = (τ2 − τ1)−1τ1[D](exp(−τ1t)− exp(−τ2t)). (26)

To avoid structural non-identifiability issues, we absorb the term τ1(τ2− τ1)−1 into the parameter
es that scales the stressor (see Eq. (17) in main text), leaving us with:

[C2](t) = [D](exp(−τ1t)− exp(−τ2t))H(t). (27)

Activation of the three UPR sensors

Our calibrated model can be used to provide insight into the activation speed of the three UPR
branches. We therefore quantified the moment at which the active forms of the sensors (active
IRE1α, active PERK, and free ATF6) reach their half-maximal value, taking 1 µM of tunicamycin
as a representative case (Fig. S5).
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Effect of Hill coefficient on CHOP transcription

Because the estimated value of the Hill coefficient in the relation between A6,hill and A6 (Eq. (15)
in main text) is very high (n = 46.32), this implies a switch-like response of CHOP transcription
with increasing pATF6(N), questioning the suitability of a lower n value. In the model, the sigmoid
dependency of CHOP expression on pATF6(N) levels is complemented by linear dependencies on
XBP1 (with parameter α3) and on ATF4 (with parameter α4) (Eq. (14) in main text). In
order to understand the effect of the Hill exponent n on CHOP regulation, we varied n over a
wide range (from 0 to 200) while keeping the other model parameters the same and plotted the
predicted CHOP response in a two-dimensional heat-map with time on the horizontal axis and
n on the vertical axis (Fig. S6). This analysis shows that an increase of the exponent beyond
the calibrated value (n = 46.32) still has a clearly noticeable effect on the dynamics of CHOP.
Consistent with sensitivity of the CHOP response to n, high values of n lead to a more pronounced
peak in CHOP levels and an even more step-like response of CHOP transcription with pATF6(N)
concentration and with time compared to low values of n (Figs. S7 and S8). As a side note,
because CHOP in our model does not provide feedback to any of the other state variables, the
Hill coefficient n will not affect the pATF6(N) concentration itself. Thus, this analysis shows that
the value of the Hill exponent is important in determining the CHOP dynamics, especially around
the time of its peak.

Contribution of pXBP1(S) and ATF4 to CHOP production

According to the model calibration, the coefficients describing pXBP1(S)-mediated and ATF4-
mediated CHOP transcription respectively are α3 = 31.77 (pXBP1(S)), and α4 = 27.64 (ATF4),
suggesting approximately equal contribution of these two TFs. However, besides these coefficients,
the concentrations of ATF4 and pXBP1(S) themselves also have an important role in the contri-
bution of the TFs to CHOP transcription. Because the amount of pXBP1(S) is much lower than
ATF4 (Fig. S9), this concentration effect dominates when one considers the product terms α3X,
α4A and α6A6,h and the pXBP1(s) contribution to CHOP transcription is small (Fig. 4B-D).

Choice of parameter ranges

During model calibration, we did not restrict the allowed parameter ranges taking full biophysical
details into consideration because the units of the normalized intensities in our imaging data were
arbitrary, precluding determination of the unit of concentrations. Rather, we required all param-
eters (besides ss) to be positive and based our choices of parameter ranges on trial simulations
with Trusina et al.’s previously published model parameterization (Trusina et al., 2008). The
parameter ranges considered and the units of parameters are provided in Table S1. Note that
the high values for some of the Michaelis-Menten constants are due to the high levels of unfolded
proteins in our simulations (for which we have no measurements) and should be interpreted in a
relative rather than absolute manner.

Covariance matrix of estimates

In order to study the uncertainty of the estimated parameter values, we utilize the Jacobian matrix
(J) to approximate the Hessian matrix H:

H = JTJS(θ) . (28)

Here, the mean squared error S(θ) (i.e., the residual sum of squares divided by the number of
degrees of freedom) is given by

S(θ) =
RTR

nD − nθ
, (29)

where R is the vector containing the residuals between model prediction and data, nD = 440
denotes the number of data points and nθ = 47 denotes the number of free parameters in our
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model with ATF6 branch. The squares of the standard errors of the estimates are the diagonal
items in the co-variance matrix, expressed as the inverse matrix H−1. The standard errors of all
parameters are presented in Fig. S3. We multiplied these values by 1.98 to obtain confidence
intervals (CIs) (Raue et al., 2009) (shown together with the estimates in Table S1). Note that
although the amount of experimental measurements is large compared to the number of parameters
in our case, the CI for some parameters may be underestimated by the Hessian-based estimate.

Sensitivity analysis

We performed a sensitivity analysis to quantify the importance of the model parameters around
our maximum likelihood estimate. Because CHOP is an important determinant in downstream cell
fate and most of the signalling parameters are expected to indirectly affect the activity of CHOP
especially around the peak, we focus on CHOP activity at 16 hours after treatment with 6µM
of tunicamycin. Thus, we performed a local sensitivity analysis around the maximal likelihood
estimate θ̂ for the model with ATF6.

In the sensitivity analysis, we omitted parameters that should have no impact on CHOP
in conditions of 6µM tunicamycin treatment. Specifically, these are the effective tunicamycin
concentrations of 2, 4, 12 µM, i.e. E2, E4 and E12. Moreover, we omitted the three pairs of
the scaling coefficients (eXBP1, eATF4, and eBIP ) and offsets (sXBP1, sATF4, and sBIP ) for the
non-CHOP reporter cell lines. We varied each of the remaining parameters by both increasing
and decreasing them by a small value (δθ) from its optimum. Subsequently, we quantified the
sensitivity using the following equation:

∆C

∆θi
=
C(θ + δθ)− C(θ − δθ)

2 δθ
, (30)

where for different parameters, we used different δθ. For τ2 and rU , we chose a value just above the
machine precision (3e-16); for other parameters, we set δθ to 1e-6×θ̂, i.e., based on the maximum
likelihood estimate. As the sensitivity can be negative or positive and the absolute value of
sensitivities has a broad range, we plotted the log10 of the absolute values of the calculated
sensitivities, with the colour indicating positive or negative sensitivity (Fig. S4). The most
straightforward parameters having a positive impact on CHOP are the scaling parameters eC and
sC , and parameters representing direct inputs like E6 and es. As expected, parameters with a
negative impact typically arise from those promoting degradation of CHOP, like rC .
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