Expanded View Figures

GAPDH 37 kDa

Figure EV1.

Figure EV1. Mecp2 levels and axonal vesicle number in cortical Mecp2-silenced neurons.

- A Western blot analysis of DIV 5 cortical neurons transfected with siMecp2 or siControl (siCtl) to assess Mecp2 protein levels.
- B We quantified the number of BDNF-mCherry-containing vesicles trafficking within cortical axons transfected with siMecp2 or siControl (siCtl). Data are presented as the mean \pm SEM of at least three independent experiments, with 94 siCtl and 81 siMecp2 axons and 894 siCtl and 753 siMecp2 vesicles (unpaired *t*-test).
- C Brain extracts from WT, WT HTT_{SD}, and WT HTT_{SA} mice were analyzed by Western blotting for total HTT and phospho-HTT. Quantification of n = 3 samples per genotype did not reveal any significant differences on total HTT. The mutation of HTT S421 into alanine or aspartic acid abrogated the recognition of phospho-HTT by the phospho-specific antibody, further demonstrating the specificity of HTT phosphorylation at S421. Data are presented as means \pm SEM, and one-way ANOVA test followed by Tukey's post-hoc analysis for multiple comparisons.
- D We quantified the number of BDNF-mCherry-containing vesicles trafficking within WT, HTT_{SA} , or HTT_{SD} cortical axons. Data are presented as the mean \pm SEM of at least three independent experiments, with 80 axons and 700 vesicles per condition (one-way ANOVA test followed by Tukey's post-hoc analysis for multiple comparisons).
- E Western blot analysis of DIV 5 HTT_{SA} or HTT_{SD} cortical neurons transfected with siMecp2 or siControl (siCtl) to assess Mecp2 protein levels.
- F Quantification of the number of BDNF-mCherry-containing vesicles trafficking within WT, HTT_{SA}, or HTT_{SD} cortical axons transfected with siMecp2 or siControl (siCtl). Data are presented as the mean \pm SEM of at least three independent experiments, with WT (n = 753 vesicles/81 axons), HTT_{SA} (n = 812 vesicles/81 axons), or HTT_{SD} (n = 787 vesicles/82 axons) (one-way ANOVA test followed by Tukey's post-hoc analysis for multiple comparisons). ns = not significant.
- G Representative Western blot analysis of PSD-95 and phospho-TrkB protein levels in striatum samples from WT, KO HTT_{SD}, KO WT, and KO HTT_{SA} mice.

Source data are available online for this figure.

Figure EV2. Phenotypic characterization of WT, HTT_{SD}, HTT_{SA} (A, B, C, and D) mice and WT, KO/HTT_{SD}, KO/HTT_{SA} (E, F, G, and H) mice.

- A There were no significant differences in body weight between 6-month-old WT, HTT_{SD}, and HTT_{SA} mice (WT: n = 11; HTT_{SD}: n = 6, and HTT_{SA}: n = 10).
- B No significant differences in the distance travelled in the open-field between 4-month-old WT, HTTSD, and HTTSA mice (WT: n = 10; HTT_{SD}: n = 6 HTT_{SA}: n = 11).
- C No differences between genotypes in the accelerating Rotarod test for assessing motor coordination of 6-month-old WT (n = 11), HTT_{SD} (n = 11), and HTT_{SA} mice (n = 12).
- D No differences in forelimb strength of 6-month-old WT (n = 11), HTT_{SD} (n = 11), and HTT_{SA} mice (n = 12) as assessed by the grip strength test.
- E No significant differences in body weight between KO/HTT_{SD} (n = 32), KO/HTT_{SA} (n = 24), and KO mice (n = 24) at different postnatal timepoints.
- F Distance travelled during the open-field test by WT (n = 17), KO (n = 20), KO/HTT_{SD} (n = 19), and KO/HTT_{SA} mice (n = 17) at P35 and P55. Results are expressed in meters.
- G, H Results of 24-h Phenorack monitoring to measure the spontaneous activity of 12 WT, 12 KO, 8 KO/HTT_{SD}, and 7 KO/HTT_{SA} mice at P45 (G). Distance travelled at 8 AM versus 8 PM (H).

Data information: Kruskal–Wallis test with Dunn's comparison; *P < 0.05, **P < 0.01, ***P < 0.001, ns = not significant. Data are presented as the means \pm SEM.

Figure EV2.

Figure EV3. Acute and chronic FK506 treatment of WT, HTT_{SA}, and Mecp2 KO mice.

- A Western blot of HTT S421 phosphorylation. We treated WT and HTT_{SA} 30-day-old mice intraperitoneally with FK506 (5 mg/kg) or vehicle and analyzed brain extracts for endogenous HTT phosphorylation by Western blotting, 2 h after administration (WT FK506 = 3, WT Vehicle = 6, HTT_{SA} FK506 = 3, HTT_{SA} Vehicle = 3). The relative protein level of phospho-HTT was normalized on total HTT protein level and is presented as the ratio. Data are presented as the means \pm SEM, **P* < 0.05, Mann-Whitney test.
- B Western blot of HTT S421 phosphorylation. We treated WT, HTT_{SA}, and *Mecp2* KO 30-day-old mice intraperitoneally with FK506 (5 mg/kg) or vehicle chronically for 20 days and analyzed brain extracts for endogenous HTT phosphorylation by Western blotting, 2 h after the last administration (KO FK506 n = 2, KO Vehicle n = 2, WT FK506 = 2, WT Vehicle = 2, HTT_{SA} FK506 = 2, HTT_{SA} Vehicle = 2).
- C Western blot of HTT and Mecp2. We treated WT and Mecp2 KO 30-day-old mice intraperitoneally with FK506 (5 mg/kg) or vehicle chronically for 20 days (WT FK506 = 3, WT Vehicle = 3, HTT_{SA} FK506 = 3, HTT_{SA} Vehicle = 3). Data are presented as the means \pm SEM, ns = not significant, Mann–Whitney test.

Source data are available online for this figure.

Figure EV4. Absence of cytotoxicity and increased neuronal activity after chronic FK506 treatment.

- A FK506 did not increase the levels of cleaved caspase-3, as shown by immunostaining. Representative images of Striatum labeled with Casp3 (green) and DAPI of 50day-old Mecp2 KO mice treated with FK506 (right panel) or vehicle (left panel) for 20 days.
- B Absence of apoptosis in the dorsal striatum of *Mecp2*-knockout mice treated chronically with FK505 or with Vehicle. TUNEL assay was used to detect potential apoptotic neurons in 50-day-old *Mecp2*-deficient mice (*n* = 3 for each stage). Left panel: detection of cells containing fragmented DNA after desoxyribonuclease I treatment of a representative dorsal striatum section originating from one *Mecp2*-knockout and one wild-type animal. No labeled cells were visible after counting all striatum sections of 50-day-old *Mecp2*-knockout mice.
- C FK506 tends to increase the number of cFos-positive neurons. Representative images of striatum labeled with cFos (green) of 50-day-old KO mice treated with FK506 (right panel) or vehicle (middle panel) for 20 days.
- D Vertical scatter plot representing the number of cFos positive neurons counted in the dorsal striatum of P50 Wt placebo (n = 2)-, KO placebo (n = 3)-, and KO FK506 (n = 3)-treated mice in a picture of length 650 μ m and width 445 μ m. Each dot represents the mean of three successive sections.

Figure EV4.

Figure EV5. Breathing patterns in 55-day-old WT, KO Vehicle, KO FK506, KO/HTT_{SD}, and KO/HTT_{SA} mice.

Left: Typical plethysmographic recordings of breathing (inspiration upward) performed in quiet, 55-day-old WT, KO Vehicle, KO FK506, KO/HTT_{SD}, and KO/HTT_{SD}