Molecular Cell, Volume 77

Supplemental Information

c-di-GMP Arms an Anti- σ to Control Progression

of Multicellular Differentiation in Streptomyces

Kelley A. Gallagher, Maria A. Schumacher, Matthew J. Bush, Maureen J. Bibb, Govind Chandra, Neil A. Holmes, Wenjie Zeng, Max Henderson, Hengshan Zhang, Kim C. Findlay, Richard G. Brennan, and Mark J. Buttner

Figure S1. Overexpression of *whiG* **or deletion of** *rsiG* **causes hypersporulation during growth in liquid culture, related to Figure 1 and Figure 4.** Fluorescence (top) and DIC images (bottom) are stills taken from Movies S1-3. Scale bar = 5um.

Figure S2. Superimposition of the two RsiG- σ^{WhiG} structures, related to Figure 5. The one complex in the crystallographic asymmetric unit (ASU) from the 2.08 Å structure (the hexagonal crystal form) is colored green and the three complexes in the ASU from the 3.0 Å structure (the orthorhombic crystal form) are colored magenta, cyan and red. RsiG and σ^{WhiG} are labelled as is the c-di-GMP dimer bound between the proteins. All heterodimeric complexes are identical. Also, note, each c-di-GMP dimer adopts an identical conformation when bound to the RsiG- σ^{WhiG} complex.

Figure S3. Characterization of RsiG and σ^{WhiG} structure and detailed interactions, related to Figure 5. (A) Overlay of the RsiG bound σ^{WhiG} structure onto the FlgM bound σ^{28} structure (Sorenson et al., 2004). σ domains 2 and 4 are colored grey and black for σ^{28} and σ^{WhiG} , respectively. These domains overlay as a unit while the σ_3 regions (colored orange and magenta σ^{28} and σ^{WhiG} , respectively) do not. Nonetheless a salt bridge is conserved between a conserved glutamate in σ_3 and conserved arginine in σ_2 of both proteins. (B) Superimposition of two RsiG structures whereby one $E(X)_3S(X)_2R(X)_3Q(X)_3D$ repeat motif of one structure (magenta) was overlaid onto the second repeat of the other structure (yellow). The remaining helices and motifs of the two structures also superimpose as do the c-di-GMP dimers. (C) Detailed c-di-GMP interactions with RsiG and σ^{WhiG} . All residues that contact c-di-GMP are shown in the figure. H-bonds are indicated by dashed lines.

Figure S4. c-di-GMP binds with high affinity to RsiG- RsiG- σ^{WhiG} and is required for stable RsiG- σ^{WhiG} complex formation, related to Figure 7. (A) FP binding isotherm of the interaction between F-c-di-GMP and a solution with equimolar RsiG and σ^{WhiG} . The resultant K_d is 0.39 ± 0.05 µM. This experiment was repeated three times (technical replicates). (B) Coexpression of σ^{WhiG} with WT his₆-RsiG (left) or his₆-RsiG* (right). The positions of the proteins on the gel are labelled and, as can be observed, σ^{WhiG} copurifies with WT his₆-RsiG*.

Figure S5. Conservation of residues in RsiG and σ^{WhiG} involved in binding c-di-GMP, related to Figure 7. (A) Sequence logos depicting amino acid sequence conservation of the two alpha helices involved in c-di-GMP binding among RsiG homologs in all bacteria. Residues involved in the σ^{WhiG} -RsiG interface and/or cdi-GMP binding are indicated. Note the conservation of the two $E(X)_3S(X)_2R(X)_3Q(X)_3D$ signature c-di-GMPbinding motifs. Residues are numbered based on the S. venezuelae sequence. RsiG homologs were identified by a reciprocal BLAST search (e-value cut off = 0.001) of the 3,962 'reference' or 'representative' annotated genomes available at GenBank, using the S. venezuelae RsiG sequence as a query. Homologs were aligned using MUSCLE (Edgar 2004). Fourteen sequences (all <41% sequence identity) that did not align well were removed from the analysis. The remaining 134 sequences were re-aligned, the regions of interest extracted, and the resulting alignments were used to create Weblogos (Crooks et al., 2004). (B) Sequence logo depicting amino acid sequence conservation of σ region 2.1 among σ^{WhiG} homologs that co-occur with RsiG. Residues involved in the σ^{WhiG} -RsiG interface and/or c-di-GMP binding are indicated. Note that the two σ^{WhiG} residues that make direct contacts to c-di-GMP, Lys57 and Arg62, are highly conserved. Residues are numbered based on the S. venezuelae sequence. Homologs were identified by a reciprocal BLAST search of the 134 genomes that contain a *rsiG* homolog, using the S. *venezuelae* σ^{WhiG} sequence as a query. The sequences were aligned using MUSCLE (Edgar 2004), σ region 2.1 was extracted and the resulting alignment used to create a Weblogo (Crooks et al., 2004).

Structure	form 1:RsiG- σ^{WhiG}	form 2:RsiG- σ^{WhiG}		
PDB code	6PFJ	6PFV		
Space group	P6 ₄	P22 ₁ 2 ₁		
Cell constants (Å)	a=b=92.1,c=96.6	a=79.8, b=97.3, c=204.6		
Cell angles (°)	α=β=90.0, γ=120.0	α=β=γ=90.0		
Resolution (Å)	79.8-2.08	87.9-3.00		
$R_{sym}(\%)^a$	5.1 (86.9) ^b	9.8 (99.8)		
R _{pim} (%)	1.4 (62.4)	5.3 (65.3)		
Overall I/o(I)	20.5 (1.4)	8.9 (1.2)		
#Unique Reflections	53900	32724		
#Total Reflections	410742	132151		
% Complete	96.2 (94.0)	99.1 (99.1)		
CC(1/2)	1.00 (0.537)	0.997 (0.447)		
Multiplicity	7.1 (7.0)	4.0 (4.2)		
Refinement Statistics				
Resolution (Å)	79.8-2.08	87.9-3.00		
$R_{\text{work}}/R_{\text{free}}(\%)^{c}$	19.5/23.8	20.9/27.9		
Rmsd				
Bond angles (°)	1.38	0.855		
Bond lengths (Å)	0.004	0.004		
Ramachandran analysis				
Favored (%/)	97.8	91.0		
Disallowed(%)	0.0	0.0		

 ${}^{a}R_{sym} = \Sigma\Sigma |Ihkl-Ihkl(j)|/\Sigma Ihkl, where Ihkl(j) is observed intensity and Ihkl is the final average value of intensity. {}^{b} values in parentheses are for the highest resolution shell. {}^{c}R_{work} = \Sigma ||Fobs| - |Fcalc||/\Sigma|Fobs| and R_{free} = \Sigma ||Fobs| - |Fcalc||/\Sigma|Fobs|; where all reflections belong to a test set of 5% randomly selected data.$

Family	Number of <i>rsiG</i>	Number of genomes
Failing	homologs identified	in search set
Acidimicrobiaceae	2	3
Acidothermaceae	1	1
Actinopolysporaceae	2	2
Catenulisporaceae	1	1
Cellulomonadaceae	1	8
Conexibacteraceae	1	1
Cryptosporangiaceae	1	2
Geodermatophilaceae	16	16
Ilumatobacteraceae	1	1
Kineosporiaceae	1	1
Nocardioidaceae	1	19
Patulibacteraceae	1	1
Pseudonocardiaceae	39	46
Rubrobacteraceae	2	2
Streptomycetaceae	63	63
Thermoleophilaceae	1	1

Table S2. Distribution of *rsiG* homologs in bacterial families, related to Figures 4, 5 and 6

Table S3. Primers, plasmids, and strains used in this study, related to STAR Methods

Primers	5' sequence	
vpz26215 redi E		TUTETUEACC
vnz26215_redi_R		GCTGCTTC
VIIZZOZIS_IEUI_K		
VIIZISUUS_IEUI_F		CTCCTTC
VIIZISUUS_IEUI_K		
V1219430_redi_F		
Vnz19430_redi_R		GCIGCIIC
Vnz26215_check_F		
vnz26215_check_R		
vnz15005_check_F	CGATCCGATGATCCGATCGGA	
vnz15005_check_R	GTCGTCGATCCCCAGGTGA	
vnz19430_check_F	TGCACCACTGCACGCATGC	
vnz19430_check_R	GCIGCCAGICGGGGAACIC	
vnz26215_comp_F	GGCGAAGCTTCCTGGAGCATTCGGGTGA	
vnz26215_comp_R	GGGGTACCGGTGCTCGGCCACCGAG	
vnz19430_comp_F	GGCGAAGCTTACCCTCTGCACCACTGCAC	
vnz19430_comp_R	GGGGTACCCATCCTCCGACCCTACGCAG	
vnz26215_ermE_F	GGGAATTCCATATGCCCCAGCACACCTCCG	
vnz26215_ermE_R	GGAAGCTTGGTGCTCGGCCACCGAG	
HI_ermE_P1	GTCTAGAACAGGAGGCCCCATATGAGTACCCTTGCGCACACCATG	
HI_ermE_P2	TTACCTCCGATGTTGAGTCAGTGTTCGCGGGGGGGC	
HI_ermE_P3	CGAACACTGACTCAACATCGGAGGTAAGCCATGTCCGTTCTCCTCGAG	
HI_ermE_P4	TGAGAACCCTAGGGGATCCAAAGCTTTCAGTGGATGATC	
vnz28820_qRT_F	CGGGAGGTCGAGGTGCTCAG	
vnz28820_qRT_R	TGGCTCTTCACGGTGAGGGC	
hrdBqRT_F	TGTTCTGCGCAGCCTCAATC	
hrdBqRT_R	CTCTTCGCTGCGACGCTCTT	
vnz26215_BACTH_F	CTAGTCTAGAGATGCCCCAGCACACCTCCG	
vnz26215_BACTH_R	GGGGTACCCGGCGTCCGACGTCGGCCA	
T18seq_F	GTGTGGAATTGTGAGCGGAT	
T18seq_R	TTCCACAACAAGTCGATGCG	
T25seq_F	CGGTGACCAGCGGCGATT	
T25seq_R	GGCGATTAAGTTGGGTAACGCC	
NT25seq_F	CCCCAGGCTTTACACTTTATGC	
NT25seq_R	TTGATGCCATCGAGTACGGCT	
T18Cseq_F	GTGCCGAGCGGACGTTCGA	
T18Cseq_R	CTTAACTATGCGGCATCAGAGC	
vnz19430_BACTH_F	GGGGTACCCGGGCGAGCAGGTCGTCGAC	
vnz19430_BACTH_R	CTAGTCTAGAGATGAGTGCACCTGGCACCGG	
vnz26215_MCS1_F	CCGGAATTCGATGCCCCAGCACACCTCCG	
vnz26215_MCS1_R	CCCAAGCTTTCAGCGTCCGACGTCGGC	
vnz19430_MCS2_F	GGGAATTCCATATGAGTGCACCTGGCACCGG	
vnz19430_MCS2_R	GGGGTACCTCAGGCGAGCAGGTCGTCG	
Plasmid Relevan	t genotype/comments	Source
pIJ790 Modified	I RED recombination plasmid [oriR101] [repA101(ts)] araBp-gam-be-	Gust et al., 2003
ехо		
pIJ773 Plasmid	template for amplification of the apr oriT cassette for 'Redirect' PCR-	Gust et al., 2003
targeting		
plJ10770 Plasmid	cloning vector for the conjugal transfer of DNA from <i>E. coli</i> to	Schlimpert et al.,
Strepton	nyces spp. Integrates site specifically at the Φ BT1 attachment site	2017
(Hyg ^R).		
plJ10900 plJ10770) carrying <i>whiG</i> driven from its own promoter	This work
plJ10901 plJ10770) carrying <i>rsiG</i> driven from its own promoter	This work
plJ10913 plJ10770) carrying <i>rsiG</i> * driven from the WT <i>rsiG</i> promoter	
plJ10257 Plasmid	cloning vector for the conjugal transfer of DNA (under control of the	Hong et al., 2005
ermF* o	postitutive promoter) from <i>E. coli</i> to <i>Streptomyces</i> spn. Integrates site	- 0
specifica	Ilv at the Φ BT1 attachment site (Hvg ^R).	
plJ10902 plJ10257	/ carrying <i>whiG</i> , driven by ermE*	This work
plJ10906 plJ10257	/ carrying whiH and whil, driven by ermE*	This work
pKT25 Two-hvb	rid plasmid. N-terminal cvaAT25 fusion (Kan ^R)	Karimova et al 1998
pKNT25 Two-hvb	rid plasmid, C-terminal cyaAT25 fusion (Kan ^R)	Karimova et al., 1998
pUT18 Two-hvb	rid plasmid, C-terminal cyaAT18fusion (Amp ^R)	Karimova et al., 1998

Plasmid	Relevant genotype/comments	Source
pUT18C	Two-hybrid plasmid, N-terminal cyaAT18fusion (Amp ^R)	Karimova et al., 1998
pKT25-zip	A derivative of pKT25 in which the leucine zipper of GCN4 is genetically fused	Karimova et al., 1998
	in frame to the T25 fragment	
pUT18C-zip	A derivative of pUT18C in which the leucine zipper of GCN4 is genetically fused	Karimova et al., 1998
	in-frame to the T18 fragment	
pIJ10907	pKT25 carrying whiG	This work
pIJ10908	pKNT25 carrying whiG	This work
pIJ10909	pUT18 carrying <i>whiG</i>	This work
pIJ10910	pUT18C carrying whiG	This work
pIJ10911	pKT25 carrying rsiG	This work
pIJ10912	pUT18 carrying <i>rsiG</i>	This work
pCOLADuet-1	Expression vector for coexpression of two target genes, each under the	Novagen
	control of a T7 promoter (Kan ^R)	
pET15B	T7 expression vector (Amp ^R)	Novagen
pIJ10914	pCOLADuet-1 carrying whiG at MCS1 and rsiG at MCS2	This work
pIJ10915	pCOLADuet-1 carrying $\Delta 26$ <i>rsiG</i> at MCS1 and <i>whiG</i> at MCS2 (genes codon	This work
	optimized for <i>E. coli</i>)	
pIJ10916	pCOLADuet-1 carrying $\Delta 26 rsiG^*$ at MCS1 and whiG at MCS2 (genes codon	This work
	optimized for <i>E. coli</i>)	
pIJ10917	pCOLADuet-1 carrying <i>rsiG</i> at MCS1	This work
pIJ10918	pET15B carrying <i>rsiG</i> * (gene codon optimized for <i>E. coli</i>)	This work
pIJ10919	pCOLADuet-1 carrying $\Delta 26 rsiG(L56M-L85M)$ at MCS1 (gene codon optimized	This work
	for <i>E. coli</i>)	
pIJ10920	pCOLADuet-1 carrying whiG at MCS1 (gene codon optimized for E. coli)	This work
pKF351	Plasmid cloning vector for the conjugal transfer of DNA from E. coli to	Schlimpert et al.,
	Streptomyces spp. Integrates site specifically at the Φ C31 attachment site	2017
	(Hyg ^R) and carries <i>ftsZ-ypet</i> driven from its own promoter.	
pSS5	Plasmid cloning vector for the conjugal transfer of DNA from E. coli to	Schlimpert et al.,
	Streptomyces spp. Integrates site specifically at the Φ BT1 attachment site	2017
	(Hyg ^R) and carries <i>ftsZ-ypet</i> driven from its own promoter.	

Strains	Relevant genotype/notes	Reference
S. venezuelae		
ATCC10712	wild type	
SV6	ΔwhiG::apr	This work
SV80	Δvnz15005::apr	This work
SV81	ΔrsiG::apr	This work
SV6-pIJ10770	Δ <i>whiG::apr</i> with pIJ10770 integrated at the ΦBT1 attachment site	This work
SV6-pIJ10900	Δ <i>whiG::apr</i> with pIJ10900 integrated at the ΦBT1 attachment site	This work
Sven-plJ10257	wild type with pIJ10257 integrated at the Φ BT1 attachment site	This work
Sven-plJ10902	wild type with pIJ10902 integrated at the Φ BT1 attachment site	This work
SV6-plJ10257	Δ <i>whiG::apr</i> with pIJ10257 integrated at the ΦBT1 attachment site	This work
SV6-pIJ10906	Δ <i>whiG::apr</i> with pIJ10906 integrated at the ΦBT1 attachment site	This work
SV81-plJ10770	Δ <i>rsiG::apr</i> with pIJ10770 integrated at the ΦBT1 attachment site	This work
SV81-plJ10901	Δ <i>rsiG::apr</i> with pIJ10901 integrated at the ΦBT1 attachment site	This work
SV81-plJ10913	Δ <i>rsiG::apr</i> with pIJ10913 integrated at the ΦBT1 attachment site	This work
<i>Sven</i> -plJ10257-pKF351	wild type with pIJ10257 integrated at the Φ BT1 attachment site and pKF351 integrated at the Φ C31 attachment site	This work
<i>Sven</i> -plJ10902-pKF351	wild type with pIJ10902 integrated at the Φ BT1 attachment site and pKF351 integrated at the Φ C31 attachment site	This work
SV81-pSS5	Δ <i>rsiG::apr</i> with pSS5 integrated at the ΦBT1 attachment site	This work
E. coli		
DH5a	F– φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1	Invitrogen
ET12567(pUZ8002)	ET12567 containing helper plasmid pUZ8002	Paget et al., 1999
BW25113	Δ(araD-araB)567 ΔlacZ4787(::rrnB-4) laclp-4000(lacl ^Q),	Datsenko and
	λ–rpoS369(Am) rph-1Δ(rhaD-rhaB)568 hsdR514	Wanner 2000
BTH101	F– cya-99 araD139 galE15 galK16 rpsL1 (Strr) hsdR2 mcrA1 mcrB1	Karimova et al., 1998
BL21 pLysS Rosetta	F— ompT hsdSB(rB- mB-) aal dcm (DE3) pLysSRARE (Cam ^R)	Novagen