Exploring resveratrol dimers as virulence blocking agents -

Attenuation of type III secretion in Yersinia pseudotuberculosis and

Pseudomonas aeruginosa

Charlotta Sundin^a*, Caroline E. Zetterström^a, Duc Duy Vo^a, Robert Brkljača^b, Sylvia Urban^b and Mikael Elofsson^a

^a Department of Chemistry Umeå University, SE 901 87 Umeå, Sweden

^b School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO

Box 2476 Melbourne, Victoria, 3001, Australia

e-mail address corresponding author: charlotta.sundin@umu.se

>pCS500 Orf1, ExoS promoter, GFP 1682bp

TAGA<mark>GGATCC</mark>TCCTTTCGCCCGACTGGGCTCAGCGTAGCTCTTCGGCGGCGGCGACCAGTTGTTCG AGTTGGTGGTGGATCTGGGCCCTGTCCAGCAACTGCAAGGGCTGGCGGTTCCAGAGCAGCCGTTC GCCGCTTTCGGGGTCACGGCCCAGGATCGGCTTGCAAGGGTCCTGGCTGAACAGGTTCTGCTCGTT CAGATGGCAGAGATGCGGGCCCACCTGCAGGCTGAGTACGCTCTCCTCGTCGTTGGGCGTCGGGA GATCGAGAGCGAGAAAAAGCTGGTGGATGGCGGCGGCGGGGAGAGTGGATTCATGGCGTGTTCCGA GTCACTGGAGGCCAGCCATTAGAGCAGTGCCAGCCCGGAGAGACTGTTAATCGTGGTTCTCTTTTTT AGGTTTTGCCGCTGCCGATTCCAGTGAAAAA<u>AACGGCGGCCAATCCTGATA</u>GGCGATGGGGTTTCCC GTTCCTAGACTGGCGGAGAAACATCAGGAGAAGGCAACCATC<mark>ATGCAG</mark>ATTTAAGAAGGAGATATA CATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATG TTAATGGGCACAAATTITCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAACTTACCC TTAAATTTATTTGCACTACTGGAAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTCGCGTAT GGTCTTCAATGCTTTGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCATGC CCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTACAAGACACGTGCTG AAGTCAAGTTTGAAGGTGATGCCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGA TGGAAACATTCTTGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCAGAC AAACAAAAGAATGGAATCAAAGTTAACTTCAAAATTAGACAACAATGAAGATGGAAGCGTTCAAC TAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTAC CTGTCCACAAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGTT TGTAACAGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATA<mark>GAATTC</mark>GTAATCATGTCAT AGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAAGCATAAA GTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCT TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGG TTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGG CGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA AAGAACATGTGAGCAAAAGGC

Orf1 gene reverse transcription

AACGGCGGCCAATCCTGATA ExoSf21 primer

ATGCAG NsiI PstI site after ligation

 \underline{ATG} starting codon of ExoS

GFP gene

GGATCC BamHI site

GAATTC EcoRI site

Figure S1. Inhibition of Y. pseudotuberculosis growth by anigopreissin A.

Figure S2. Toxity towards J774 cells after 6 h.

		ctrl	cmpd 8	cmpd 8	cmpd 8	cmpd x	cmpd x	cmpd x	cmpd y	cmpd y	cmpd y		
Plate 1	1	2	3	4	5	6	7	8	9	10	11	12	μM
А	45897	46712	1509	1580	1590	2402	2186	2448	2890	2122	2559	52157	100,0
В	50332	40243	1521	1733	1651	3980	4154	4652	23223	6083	6200	50714	50,0
С	51866	40643	1613	2008	1842	26774	31782	31862	37832	34600	37497	50704	25,0
D	38027	41897	14134	14853	21438	35243	32780	37926	39539	41327	45301	50896	12,5
E	1340	1693	28901	31184	31347	30403	34183	38190	36907	40086	42737	48173	6,3
F	1370	1588	37007	38574	43412	42090	40836	42744	43279	45837	45141	49104	3,1
G	1659	1562	42082	42533	41370	42613	42574	44876	47904	43074	44807	49384	1,6
Н	1652	1704	36700	41964	41229	38978	34984	34179	35121	31927	34387	47764	-

Figure S3. Raw data of GFP measurement directly from plate reader showing the control strains PAK(pCS500) well B2-D2 and PAK*exs*A(pCS500) well E2-G2 and PAK(pCS500) with addition of compound 8 at 100-3.1 μ M in triplicates B3-G5.

Figure S4. Synthesis of monopropargylated viniferifuran.

To a mixture of viniferifuran (120 mg, 0.26 mmol, 1 equiv.), TBAI (98 mg, 1 equiv.) in DMF (5 mL) at 0 °C, was added 60% NaH (32 mg, 3 equiv.). The reaction was stirred at 0 °C for 30 min and then a 80% weight solution of propargyl bromide in toluene (43 μ L, 1.5 equiv.) was added to the reaction mixture. The mixture was stirred at rt for overnight and then neutralized with 1 N HCl. The mixture was extracted with ethyl acetate. The organic phase was washed with H₂O and brine, dried over MgSO₄, filtered and concentrated to give a crude. The crude was purified by high performance liquid chromatography using a reversed-phase C-18 column and a gradient of 20-100% MeOH in H₂O (both + 0.005% HCOOH) over 40 min to afford 4 major fractions of monoalkylated products whose structures were analysed by 2D NMR: 13c (fraction 1, 5 mg); 13 (fraction 2, 7 mg); mixture of 13a and 13 (fraction 3, 1 mg) and 13b (fraction 4, 5 mg). LCMS of mono propargylated product: ESI- [M-H]- for C₃₁H₂₁O₆ calculated 489.1, found 489.2.

Compound 13: ¹H NMR (600 MHz, Acetone- d_6) δ 8.52 (br s, 4H), 7.59 (d, J = 9.0 Hz, 2H), 7.13 (d, J = 2.0 Hz, 1H), 7.07 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 16.3 Hz, 1H), 6.98 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 16.3 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 6.74 (d, J = 8.6 Hz, 2H), 6.61 (t, J = 2.2 Hz, 1H), 6.50 (d, J = 2.2 Hz, 2H), 4.81 (d, J = 2.4 Hz, 2H), 3.08 (t, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, Acetone- d_6) δ 161.5, 159.3, 159.1, 157.7, 157.0, 150.5, 138.9, 134.1, 131.1, 130.2, 129.7, 129.0, 126.2, 123.7, 123.0, 118.9, 117.2, 116.7, 110.8, 108.5, 104.2, 98.3, 80.6, 78.1, 57.3.

Compound 13b: ¹H NMR (600 MHz, Acetone- d_6) δ 8.52 (br s, 4H), 7.51 (d, J = 8.9 Hz, 2H), 7.25 (d, J = 2.1 Hz, 1H), 7.14 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 16.3 Hz, 1H), 7.03 (d, J = 16.3 Hz, 1H), 6.81 (d, J = 8.9 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 6.60 (t, J = 2.2 Hz, 1H), 6.50 (d, J = 2.2 Hz, 2H), 4.91 (d, J = 2.4 Hz, 2H), 3.12 (t, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, Acetone- d_6) δ 161.5, 159.4, 159.1, 158.0, 156.5, 151.9, 138.8, 134.0, 131.1, 130.7, 129.7, 129.4, 124.4, 124.2, 123.4, 118.0, 117.3, 117.2, 110.9, 108.8, 104.2, 97.8, 80.9, 78.1, 58.0.

Compound 13c: ¹H NMR (600 MHz, Acetone- d_0) δ 8.54 (br s, 4H), 7.49 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.6 Hz, 2H), 7.13 (d, J = 2.0 Hz, 1H), 7.08 (d, J = 16.3 Hz, 1H), 6.99 (d, J = 16.3 Hz, 1H), 6.92 (d, J = 2.4 Hz, 2H), 6.90 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 8.8 Hz, 2H), 6.60 (td, J = 2.2 Hz,

1H), 6.50 (d, J = 2.2 Hz, 2H), 4.79 (d, J = 2.4Hz, 2H), 3.08 (t, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, Acetone- d_6) δ 161.4, 159.3, 159.2, 157.5, 156.9, 151.2, 139.0, 133.6, 133.0, 129.6, 129.4, 129.3, 124.9, 124.3, 118.0, 117.2, 116.8, 110.9, 108.6, 104.1, 98.6, 80.7, 78.0, 57.3.

Mixture of compound 13a and 13 (see ¹H NMR spectrum below)

Figure S5. Click chemistry between compound 13 bound to bacteria and sulfonyl-cyanine azide.