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Supplementary Methods 

 

Study samples 

 

Cambridge AMD study patients were excluded if they had greater than 6 diopters of myopic 

refractive error or evidence of other inflammatory or retinovascular disease (such as retinal 

vessel occlusion, diabetic retinopathy, or chorioretinitis) that could contribute to the 

development of or confound the diagnosis of maculopathy. All participants described their 

race/ethnicity as white on a recruitment questionnaire and were confirmed to be of European 

descent in the genetic analyses. Participants were examined by an ophthalmologist and 

underwent color stereoscopic fundus photography of the macular region. Images were graded 

at the Reading Centre, Moorfields Eye Hospital, London, using the International Classification 

of Age-related Maculopathy and Macular Degeneration.1  

For the European Genetic Database (EUGENDA) cohort, all the individuals were 

graded by classification of retinal images according to the standard protocol of the Cologne 

Image Reading Center by certified graders.2 Only patients graded as late AMD were included 

in the study. Serum was obtained by a standard coagulation/centrifugation protocol, and within 

1 hour after collection serum samples were stored at –80°C.   
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Supplementary Figure 1. Two-stage, fixed-effects meta-analysis of individual participant 

data from Cambridge and EUGENDA studies shows significant association of FHR-4 

levels and late AMD.  

Panels A and B show forest plots of odds ratios (ORs) (with 95% Confidence Intervals, CIs) 

of late AMD per standard deviation (SD) change in natural logarithmically transformed FHR-

4 (A) and FH (B) levels using logistic regression models adjusted for sex, age, batch effects 

and the first two genetic principal components. The overall OR estimate is obtained from a 

two-stage, fixed-effects meta-analysis of the two study-specific estimates. I2 statistic is used to 

assess heterogeneity across studies.  
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Supplementary Figure 2. CFHR4 gene transcription was not detected in eye tissues. 

rtPCR analysis on cultured primary human RPE cells from 42 individual donors detects 

expression of FH and FHL-1, but not FHR-4 (panel A). Panels B-F show data reanalyzed from 

the NCBI Gene Expression Omnibus public data repository: where B is from an Affymetrix 

Human Exon 1.0 ST microarray3; C, RNAseq (Illumina)4; D, RNAseq (Illumina) HiSeq 20005; 

E, Affymetrix Human Exon 1.0 ST microarray6; and F, Affymetrix U133plus2 human genome 

array7. Panel G: RNAseq of 53 human tissue samples from the Genotype-Tissue Expression 

(GTEx) project8 detects CFHR4 expression only in the liver. Error bars in panels A-F represent 

standard deviation. Source data are provided as a Source Data file. 
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Supplementary Figure 3. FHR-4 does not diffuse freely across Bruch’s membrane. 

Enriched Bruch’s membrane from donor eyes were placed inside a modified Ussing chamber, 

where: a, is the enriched BrM; b, are the sampling access points; and c, are magnetic stirrer 

bars to maintain flow around each chamber (panel A). Panel B: samples from either the sample 

chamber or diffusate chamber were run on a 4-12% NuPage gel Bis-Tris gel and compared to 

a pure protein control (FHR-4); the protein in the gel was stained with Instant Blue. The gel 

shows 20μl samples taken and run directly from each chamber, as well as 100μl samples that 

have been concentrated prior to running on the gel. Gel is representative of three independent 

experiments.  
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Supplementary Figure 4. FHL-1 mediated C3b breakdown assay.  

Panel A: protein stained SDS-PAGE gel demonstrating FI cleavage of C3b in the fluid phase 

in the presence of a co-factor (FHL-1) is shown, with pure C3b (2μg), FI (0.04μg), and FHL-1 

(0.5μg) controls included. FI cannot cleave the α-chain of C3b without a co-factor (lane ‘0’), 

but with increasing concentration of FHL-1 the breakdown of the C3b α-chain into iC3b (seen 

as two bands at 68kDa and 43kDa) was observed. Gel is representative of three independent 

experiments. Panel B: a repeat of the C3b breakdown assay as shown previously (panel A) but 

the amount of FHL-1 remains a constant 1μg and increasing amounts of FHR-4B purified 

protein is supplemented into the reaction. The 43kDa iC3b band is masked by the presence of 

FHR-4B. This competition assay gel is representative of three independent experiments.  
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Supplementary Figure 5. Box plots (and corresponding data points) of FHR-4 and FH 

levels measured in Cambridge and EUGENDA samples, by AMD status and genotype of 

8 independently associated variants at the CFH locus from the IAMDGC study.9 

Each box plot depicts median value (central line), first quartile (lower bound line) and third 

quartile (upper bound line). Source data are provided as a Source Data file. 

Note: the CFH variant rs121913059 (R1210C,10 IAMDGC association signal number 1.3) was 

present heterozygously only in a single case from the Cambridge cohort and no corresponding 

box plot of FHR-4/FH levels is shown. 

 

 

(continued on the next page) 
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Supplementary Figure 6. GWAS meta-analysis of FHR-4 levels in controls reveals a 

strong genome-wide significant signal spanning the CFH locus.  

Each panel shows a Manhattan plot, a regional plot (upper left-hand side) and a quantile-

quantile (QQ) plot (upper right-hand side) for the results of the GWAS meta-analysis of FHR-

4 levels (Panel A) and FH levels (Panel B). Manhattan plots illustrate P-values for each single 

variant tested for association with log(levels). Observed -log10(P-values) are plotted against the 
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genomic position of each variant on chromosomes 1–22 plus the X chromosome. The 

horizontal red line indicates the threshold considered for genome-wide significance (P-value ≤ 

5 x 10−8). Regional plots show the only genome-wide association signal observed, i.e., at the 

CFH locus (on chromosome 1q31.3). The most associated variant is denoted by a purple circle 

and is labelled by its rsID. The other surrounding variants are shown by circles coloured to 

reflect the extent of LD with the most associated variant (based on 1000 Genomes data, 

November 2014). A diagram of the genes within the relevant regions is depicted below each 

plot. Physical positions are based on NCBI RefSeq hg19 human genome reference assembly. 

QQ plots compare the distribution of the observed test statistics with its expected distribution 

under the null hypothesis of no association. A marked departure from the null hypothesis 

(reference line) is seen in the meta-analysis of FHR-4 levels (corresponding to the CFH locus). 

Genomic inflation values (λ) were equal to 1.005 and 0.998 from the GWASs of FHR-4 levels 

and 0.998 and 0.999 from the GWASs of FH levels, in the Cambridge and EUGENDA studies, 

respectively.  
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Supplementary Figure 7. Association analyses of the common diplotypes (haplotype pairs, with overall frequency ≥ 1%) formed by the 7 
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AMD independently associated variants at the CFH locus considered in our study and rs6677604 (proxy for the previously reported AMD 

protective CFHR1-3 deletion11) with AMD, FHR-4 and FH levels. 

Panels A and B show the OR (with 95% CI) estimates for the CFH diplotype (haplotype-pair) association with AMD in the IAMDGC dataset and 

the Cambridge and EUGENDA meta-analysis, respectively; panels C and D show the Beta (with 95% CI) estimates for the CFH diplotype 

(haplotype-pair) association with FHR-4 and FH levels, respectively, in the Cambridge and EUGENDA meta-analysis; the haplotype-pair H1:H1 

is used as reference. Numerical details together with haplotype-pair frequencies and P-values are given in Supplementary Data 10. The estimates 

shown in each plot are labelled further according to the presence of the alleles that make each haplotype different from the reference H1, that is 

indicated with the corresponding IAMDGC association signal numbers (1.1, 1.5-1.7), in red if the allele different from the reference is AMD risk-

increasing, in blue if protective; the Y402H label is blue to indicate the presence of the protective allele G of variant 1.2 (rs570618, proxy of 

Y402H), red for the AMD risk-increasing allele T; finally, the label DEL indicates the presence of the protective allele A of the proxy for the 

CFHR1-3 deletion (rs6677604). Source data are provided as a Source Data file.  
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Supplementary Figure 8. FHR-4 and FH levels are dictated by a different genetic 

architecture. 

Regional plots show results from two-cohort (Cambridge and EUGENDA) GWAS meta-

analysis of FHR-4 and FH levels only for those variants that showed genome-wide significant 

(P-value ≤ 5 x 10-8) associations with levels of FHR-4 (Panel A) and FH (Panel B). The most 

associated variant (rs7535263 and rs74696321 for levels of FHR-4 and FH, respectively) is 

denoted by a purple circle and is labelled by its rsID. The other surrounding variants (811 and 

28 for Panel A and B, respectively) are shown by circles coloured to reflect the extent of D 

with the most associated variant (based on 1000 Genomes data, November 2014). A diagram 

of the genes within the relevant regions is depicted below each plot. Physical positions are 

based on NCBI RefSeq hg19 human genome reference assembly. 
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HHHHHHGSSENLYFQGSSGQEVKPCDFPEIQHGGLYYKSLRRLYFPAAAGQSYSYYCDQNF

VTPSGSYWDYIHCTQDGWSPTVPCLRTCSKSDIEIENGFISESSSIYILNKEIQYKCKPGYATAD

GNSSGSITCLQNGWSAQPICIKFCDMPVFENSRAKSNGMRFKLHDTLDYECYDGYEISYGNT

TGSIVCGEDGWSHFPTCYNSSEKCGPPPPISNGDTTSFLLKVYVPQSRVEYQCQSYYELQGSN

YVTCSNGEWSEPPRCIHPCIITEENMNKNNIQLKGKSDIKYYAKTGDTIEFMCKLGYNANTSV

LSFQAVCREGIVEYPRCE 

 

Supplementary Figure 9. Sequence of FHR-4 recombinant protein.  

Recombinant FHR-4 gene synthesis was carried out by GenScript using their gene synthesis 

and protein expression service and is based on the published sequence for the FHR-4B variant 

of the CFHR4 gene (UniProt identifier Q92496-3). The original recombinant protein included 

an N-terminal 6xHis tag (*) followed by, a linker region (**), and a TEV protease cleavage 

site (***). Removal of the N-terminal His tag results in two non-authentic N-terminal residues 

(****).  

 

* ** *** **** 
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Supplementary Figure 10. Specificity of anti-FHR-4 antibody.  

Panel A: the tissue staining specificity of anti-FHR-4 used in our IHC experiments (clone 150) 

was tested, where the normal 10μg/ml Ab mix used throughout the study was pre-incubated 

with pure recombinant FHR-4 at a final concentration of 100μg/ml (i.e. 10-fold excess). 

Staining from the pre-absorption experiments was strikingly similar to the blank controls, 

where no primary antibody is included. This was repeated with pure FHL-1 protein to 

demonstrate no cross-reactivity with the antibody existed. The specificity of FHL-1 staining 

itself with an in-house anti-FHL-1 antibody was also tested, as originally published 

previously.12 Panel B: Western blots of non-reduced whole human serum showing three 

separate clones of anti-FHR-4 antibody with strong reactivity for a band corresponding to FHR-

4A, and a faint band corresponding to FHR-4B: the larger FHR-4A has been reported to be the 

predominant form of FHR-4 in blood.13 The lanes designated ‘FH’ had pure factor H protein 
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loaded to investigate any potential cross-reactivity with the anti-FHR-4 Abs and the full length 

protein. Source data are provided as a Source Data file. 
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Supplementary Figure 11. Competition ELISA demonstrating specificity of anti-FHR4 

antibody clone 150 for FHR-4 over FH. 

Immobilised FHR-4 protein was detected by the addition of a saturating dose of the anti-FHR-

4 monoclonal antibody used in IHC experiments and ELISA (clone 150). Serial dilutions of 

either FH (black line) or FHR-4 (blue line) were added in solution together with the anti-FHR-

4 antibody. Bound anti-FHR-4 was detected by the addition of anti-mouse IgG HRP-

conjugated secondary antibody. Bound secondary antibody detected by addition of OPD 

substrate and measurement of absorbance at OD492nm. For each data point n=3 and error bars 

shown are standard error of the mean of the triplicates. Source data are provided as a Source 

Data file. 
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Supplementary Note 1 
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