Supplementary Information

A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction

Domingo-Rodriguez et al.

Supplementary Figures

Supplementary Figure 1. Glu-CB1-KO mice display resilience to food addiction. a, Mean of chocolate flavored-pellets intake in FR1 and FR5 comparing early and late periods (mean \pm S.E.M, t-test, **P<0.01, ***P<0.001). b-d, Behavioral tests of the three addiction-2

like criteria represented by individual values with the median and the interquartile range in both genotypes at the early period. **b**, Persistence to response. Total number of non-reinforced active responses during three consecutive daily 10-min of pellet free period. c, Motivation. Breaking point achieved in 5 h of PR schedule. The breaking point refers to the maximal effort that an animal is willing to do to earn one pellet. **d**, Compulsivity. Number of shocks that mice received in 50 min in the shock test in which each pellet delivery was associated with a footshock (0.18 mA) (U Mann-Whitney, *P<0.05). e-f, Behavioral tests of impulsivity and shock-induced suppression in the early and late period represented by individual values with the median and the interquartile range. e, Impulsivity. Number of non-reinforced active lever-presses during three consecutive daily time out (10 s) after each pellet delivery (U Mann-Whitney, **P<0.01). f, Shock-induced suppression. Number of non-reinforced active responses in 50 min in the following session after the shock test with the same discriminative stimulus (grid floor) as shock test in which pressing the active lever had no consequences: no shock, no chocolate-flavored pellets and no cue-light (U Mann-Whitney, *P<0.05, ***P<0.001). g-k, Behavioral tests of the three addiction-like criteria, impulsivity and shockinduced suppression in the late period represented by individual values and bars with median and the interquartile range for the four groups classified as addicted (A) and non-addicted (NA) mice in both genotypes. g, Persistence to response. h, Motivation. i, Compulsivity. j, Impulsivity. k, Shock-induced suppression (U Mann-Whitney, +P<0.05, +++P<0.001 WT NA vs WT A, #P<0.05, ###P<0.001 WT NA vs Glu-CB1-KO NA, &P<0.05, &&P<0.01 WT NA vs Glu-CB1-KO A, %%%P<0.001 WT A vs Glu-CB1-KO NA, \$P<0.05, \$\$P<0.01 Glu-CB1-KO NA vs Glu-CB1-KO A; n=56 for WT mice and n=58 for Glu-CB1-KO mice; statistical details are included in Supplementary Table 1).

Supplementary Figure 2. Decreased body weight in Glu-CB1-KO is not a predisposing factor in food addiction-like behavior. a, Weekly measurements of body weight in grams in basal conditions, FR1 and FR5 (repeated measures ANOVA, genotype effect, **P<0.01). b, Body weight (g) of both genotypes in the early and late periods under FR5 (mean \pm S.E.M, t-test, **P<0.01). c-e, Correlation between the body weight (g) and the three addiction-like criteria c, non-reinforced active responses in 10 min, d, breaking point in 5h, e, number of shocks in 50 min (n=56 for WT mice and n=58 for Glu-CB1-KO mice; statistical details are included in Supplementary Table 1).

Supplementary Figure 3. Blockade of WIN55,212-2 inhibitory effect in mPFC synaptic transmission by selective CB₁R antagonist rimonabant in WT animals. a, Representative recording of field postsynaptic potential (fPSP) in baseline conditions and in the presence of rimonabant (4 μ M) and rimonabant (4 μ M) + WIN55,212-2 (5 μ M) in WT mice (5 slices from 3 mice). b, Quantification of the fPSP slope in percentage variation respect to baseline conditions in response to rimonabant (4 μ M), and rimonabant (4 μ M) + WIN55,212-2 (5 μ M) in VT mice (5 slices from 3 mice). b, Quantification of the fPSP slope in percentage variation respect to baseline conditions in response to rimonabant (4 μ M), and rimonabant (4 μ M) + WIN55,212-2 (5 μ M). Data was presented as mean and individual values. Statistical details are included in Supplementary Table 2.

Supplementary Figure 4. Inhibition of glutamatergic PL neurons promotes food addiction-like behavior. a, Scheme of viral strategy for selective hM4Di-mCherry 6

expression in glutamatergic PL neurons. b, Representative immunofluorescence image of Cre-dependent hM4Di-mCherry detected at PL injection site. c, Representative recordings showing evoked (200 pA) action potential in visualized hM4Di-mCherry expressing neurons in L5 at baseline and after CNO (10 µM) application (left). Decreased firing rate after CNO application (mean and individual values, paired t-test, *P<0.05; 12 cells from 7 animals; right). d, Membrane resistance. Representative recordings showing decreased voltage response to a depolarizing current square pulse of 25 pA (1 s duration) after CNO (10 µM) application compared to baseline in L5 visualized neurons of Nex-Cre mice injected with AAV-hM4Di-mCherry in PL (left). Quantification of the membrane resistance (M Ω) (mean and individual values; Wilcoxon test, *P<0.05; 12 cells from 5 animals; right). e, Timeline of the experimental sequence of the early period of food addiction mouse model. f, Number of reinforcers during operant training maintained by chocolate-flavored pellets (mean \pm S.E.M). g-i, Behavioral tests of the three addiction-like criteria (individual values with the median and the interquartile range). g, Persistence to response. h, Motivation. i, Compulsivity. The 75th percentile of distribution of saline-treated mice is indicated by the dashed horizontal line. Addicted mice in grey filled circles for saline treated mice and red for CNO treated mice. j, Increased percentage of CNO treated mice classified as food addicted compared to saline treated animals (chi-square, **P<0.01). k-m, Pearson correlations between individual addiction-like criteria and k, non-reinforced active responses in 10 min, I, breaking point in 5 h, m, number of shocks in 50 min (n=13 in saline treated mice and n=14 in CNO treated mice; PL, prelimbic; NAc, nucleus accumbens; Amg, amygdala; Hip, hippocampus; VTA, ventral tegmental area; ACC, anterior cingulate cortex, IL, infralimbic; statistical details are included in Supplementary Table 3).

Supplementary Figure 5. CNO treatment do not affect food addiction-like behavior, body weight, food intake nor locomotor activity. a-d, Lack of CNO-induced effects in mice injected with AAV-control treated with saline (n=5) or CNO (n=5). a, Operant conditioning maintained by chocolate-flavored pellets. b, Persistence to response. c, Motivation. d, Compulsivity. e-g, Additional variables to measure the effects of chronically

CNO administration in Nex-Cre mice expressing hM4Di receptors in PL. **e**, Body weight. Weekly measures of body weight in grams for saline and CNO groups. **f**, Food intake. Weekly measures of regular chow food intake provided to mice in their home cage in grams per day for both groups. **g**, Kinetics of total activity. Locomotor activity measured by beam breaks represented in 10-min blocks during 2 h in both groups. **h-j**, Behavioral tests of the three addiction-like criteria represented by individual values and bars with median and the interquartile range for the four groups classified as addicted (A) and non-addicted (NA) mice in both experimental treatment groups. **h**, Persistence to response. **i**, Motivation. **j**, Compulsivity. (U Mann-Whitney, +P< 0.05 saline NA vs saline A; #P< 0.05 saline NA vs CNO NA, &P< 0.05, &&P< 0.01 saline NA vs CNO A, %P< 0.05 saline A vs CNO NA; @P< 0.05 saline A vs CNO A; \$P< 0.05, \$\$P< 0.01 CNO NA vs CNO A; n=13 for saline treated mice and n=14 for CNO treated mice; statistical details are included in Supplementary Table 3).

Supplementary Figure 6. Inhibition of PL-NAc core pathway leads to compulsivity without affecting body weight, food intake and locomotor activity. a-b, Membrane resistance. a, Representative recordings showing decreased voltage response in the PL to a depolarizing current square pulse of 25 pA (1 s duration) after CNO application in mice injected with AAV-control (left) and AAV-hM4Di (right). b, Quantification of the membrane resistance (M Ω) (mean with individual values; paired t-test, **P<0.01; 12 cells from 4 mice injected with AAV-control and 14 cells from 4 mice expressing hM4Di). c-d, Rheobase. c, Representative recordings showing the increased required current to elicit the first action potential in the PL after CNO application in mice injected with AAV-control (left) and AAV-hM4Di (right). The current ramp was of 150 pA and 1.5 s duration except for mice injected with AAV-hM4Di that was of 300 pA after CNO application. d, Quantification of the current required (pA) for firing (mean and individual values, 14 cells from 4 mice injected with AAV-control and 10 cells from 3 mice expressing hM4Di; paired t-test, **P<0.01). e, NAc core recorded neuron observed under bright field and green fluorescence conditions. fg, Changes of mEPSCs f, amplitude and g, resting membrane potential in NAc core in mice injected with AAV-control or AAV-hM4Di in baseline and after CNO application (mean and individual values, 8 cells from 6 mice injected with AAV-control and 8 cells from 7 mice expressing hM4Di). h-j, Additional variables to measure the effects of chronic CNO treatment in mice expressing hM4Di receptors in PL-NAc core projection neurons (mean \pm S.E.M). h, Body weight. Weekly measures of body weight in grams for saline and CNO groups. i, Food intake. Weekly measures of regular chow food intake provided to mice in their home cage in grams per day for both groups. j, Kinetics of total activity. Locomotor activity measured by beam breaks represented in 10-min blocks during 2 h in both groups.

k-m, Behavioral tests of the three addiction-like criteria represented by individual values and bars with median and the interquartile range for the four groups classified as addicted (A) and non-addicted (NA) mice in both treatment groups. **k**, Persistence to response. **l**, Motivation. **m**, Compulsivity. (t-test and U Mann-Whitney, ++P<0.01 saline NA vs saline A, #P<0.05 saline NA vs CNO NA; &&P<0.01 saline NA vs CNO A, %%P<0.01 saline A vs CNO NA, @P<0.05, \$P<0.05, \$\$P<0.01, CNO NA vs CNO A; n=12 for saline treated mice and n=22 for CNO treated mice; statistical details are included in Supplementary Table 4).

Supplementary Figure 7. a, Schematic diagram of the mPFC area extracted for RNA-seq analysis showing PL: AP +1.98 mm, L \pm 0.3 mm, DV -2.3 mm. b, Principle component analysis (PCA) showing variation between addicted and non-addicted mice. **c-e**, Ct values for housekeeping genes. ACC, anterior cingulate cortex; PL, prelimbic; IL, infralimbic. Statistical details are included in Supplementary Table 5.

Supplementary Figure 8. Colocalization of mRNA Drd2 and Cre recombinase in the PL and protein expression of D₂R, mVenus and Cre in the PL and NAc. a, Overview of Drd2 mRNA localization (red) in caudate putamen (CPu), NAc and PL at bregma of approximately: 1.54 mm, as detected by in situ hybridization. b, Enlarged view of area shown in panel **a**, revealing *Drd2* mRNA localization (red) in PL, and **c**, *Cre* mRNA (green). Arrows: Cells with colocalization of Drd2 and Cre mRNA; arrowheads: Cells expressing only Drd2 mRNA. Quantification of cells co-expressing Drd2 and Cre mRNA (n=2). About 50% of Drd2 mRNA expressing cells revealed co-expression with Cre mRNA. d, Overexpression of Drd2 gene in PL-NAc projections. Quantitative real time PCR in mPFC of Drd2 mRNA levels in control (n=7) and D₂R-overexpressing mice (n=10). e-r, Imunohistological analysis of brain sections from mice injected with AAVrg-Cre-GFP into NAc core and with AAV-D₂R-mVenus into PL, detecting D₂R (red) and mVenus/GFP (green). e, Overview of D_2R , mVenus and GFP distribution in the forebrain at the level of mPFC in D₂R overexpressing mice; f-h, enlarged areas from PL as indicated in panel e, showing overexpressed D_2R in the neuropil of PL neurons at dendritic postsynaptic site. **i-k**, enlarged areas from NAc as indicated in panel e, showing mVenus/GFP expression in NAc at axonal terminal sites of PL-NAc projections. I, Overview of D₂R and GFP distribution in the forebrain at the level of mPFC in control mice; m-o, enlarged areas from PL as indicated in in panel l, showing no D₂R overexpression in PL neurons. **p-r**, enlarged areas from NAc as indicated in panel l, showing GFP-Cre expression in NAc and the lack of overexpressed D₂R. Scale bars: 50 µm in b and c, 500 µm in e and l, and 20 µm in f-k and m-r. Statistical details are included in Supplementary Table 6.

Supplementary Figure 9. Electrophysiological recordings confirm *Drd2* overexpression in PL-NAc core pathway. Electrophysiological recordings from WT mice injected with AAV-control and overexpressing D_2R (injected with AAV- D_2R) in PL L5 visualized neurons and NAc core at baseline and after quinpirole (2 µM) or dopamine (10 µM) application represented as mean and individual data. a-b, Membrane resistance. a, Representative recordings showing decreased voltage response to a depolarizing current square pulse of 25 pA (1 s duration) after quinpirole application in mice injected with AAV-control (left) and AAV- D_2R (right). **b**, Quantification of the membrane resistance (M Ω) (9 cells from 3 mice injected with AAV-control and 9 cells from 3 mice overexpressing D₂R; paired t-test, *P<0.05). c-d, Rheobase. c, Representative recordings showing the increased required current to elicit the first action potential after quinpirole application in mice injected with AAV-control (left) and AAV-D₂R (right). The current ramp was of 150 pA and 1.5 s duration except for mice injected with AAV- D_2R that was of 250 pA after quippirole application. d, Quantification of the current required (pA) for firing (8 cells from 3 mice injected with AAVcontrol and 9 cells from 3 mice overexpressing D₂R; Wilcoxon test, **P<0.01). e-f, Changes of mEPSCs e, amplitude and f, resting membrane in the NAc core in mice injected with AAV-control or AAV-D₂R at baseline and after quinpirole application (7 cells from 5 mice injected with AAV-control and 10 cells from 5 mice overexpressing D₂R). g-h, Firing rate. g, Representative recordings showing evoked (150 pA) action potential after dopamine application in mice injected with AAV-control (left) and AAV- D₂R (right). h, Quantification of the firing rate (Hz) (Wilcoxon, *P<0.05; 10 cells from 3 mice injected with AAV-control and 10 cells from 3 mice overexpressing D₂R). i-j, Membrane resistance. i, Representative recordings showing decreased voltage response to a depolarizing current square pulse of 25 pA (1 s duration) after dopamine application in mice injected with AAV-control (left) and AAV- D₂R (right). **j**, Quantification of the membrane resistance (M Ω) (paired t-test, ***P<0.001; 10 cells from 3 mice injected with AAV-control and 11 cells from 3 mice overexpressing D₂R;). **k-l**, Rheobase. **k**, Representative recordings showing the increased required current to elicit the first action potential after dopamine application in mice injected with AAV-control (left) and AAV- D₂R (right). The current ramp was of 150 pA and 1.5 s duration except for mice injected with AAV-D₂R that was of 250 pA after dopamine application. **l**, Quantification of the current required (pA) for firing (right, Wilcoxon test, **P<0.01; 10 cells from 3 mice injected with AAV-control and 10 cells from 3 mice overexpressing D₂R; Wilcoxon test). Statistical details are included in Supplementary Table 6.

Supplementary Figure 10. *Drd2* overexpression in PL-NAc core pathway promotes compulsivity without affecting body weight, food intake and locomotor activity. a-c, Behavioral tests of the three addiction-like criteria represented by individual values and bars with median and the interquartile range for the four groups classified as addicted (A) and non-addicted (NA) mice in both injected groups. **a**, Persistence to response. **b**, Motivation. **c**, Compulsivity (U Mann-Whitney, +P<0.05 control NA vs control A, #P<0.05 control NA vs D₂R NA, &P<0.05 control NA vs D₂R A). **d-f**, Control variables to measure the effects of D₂R overexpression in mice overexpressing D₂R in PL-NAc core projection neurons. **d**, Body weight. Weekly measures of body weight in grams for both injected groups. **e**, Food intake. Weekly measures of regular chow food intake provided to mice in their home cage in grams per day for both groups. **f**, Kinetics of total activity. Locomotor activity measured by beam breaks represented in 10-min blocks during 2 hours in both injected groups (n=12 for

mice injected with AAV-control mice and n=13 for mice injected with AAV-D₂R mice; statistical details are included in Supplementary Table 6).

Supplementary Figure 11. Schematic summary of the PL-NAc core pathway regulation of resilience and vulnerability to develop food addiction. a, Resilient phenotype. Deletion of the CB₁R in dorsal telencephalic glutamatergic neurons increased glutamate release in local cortical networks increasing excitatory glutamatergic transmission in L5 prelimbic neurons projecting to NAc core. Subsequently, the increased glutamatergic transmission from cortical pyramidal neurons could stimulated D2-MSN indirect pathway (NO GO response) in NAc core facilitating the avoidance behavior. b, Vulnerable phenotype. Overexpression of hM4Di receptors or D₂Rs in PL neurons projecting to NAc core and the subsequent activation of these receptors by CNO and dopamine, respectively, produced a decreased excitatory transmission of this network, thereby possibly reducing the activation of D2-MSN indirect pathway in NAc core. The decreased activity of the indirect pathway suppressed the avoidance behavior (NO GO response) facilitating the D1-MSN direct pathway activity promoting the approach behavior (GO response). PL, prelimbic; IL, infralimbic; NAc, nucleus accumbens; VTA, ventral tegmental area; D1-MSN, dopaminergic D1 medium spiny neuron; D2-MSN, dopamine D2 medium spiny neuron; D2R, dopamine D2 receptor; hM4Di, human muscarinic 4 designer inhibitory G_i receptor; CB₁R, cannabinoid type-1 receptor.

Supplementary Tables Supplementary Table 1. Statistical details of experiments shown in Fig. 1 and Supplementary Figure 1 and 2

Glu-CB1-KO mice display resilience to food addiction					
Figure number	Statistical analysis	Factor name	Statistic value	P-value	
		FR1 (Sessions 1-6)			
		Genotype	$F_{(1,112)} = 0.33$	n.s	
		Sessions	$F_{(5,560)} = 29.00$	<i>P</i> < 0.001	
Fig. 1h	Repeated measures	Genotype x Sessions	$F_{(5,560)} = 0.62$	n.s	
11g. 10	ANOVA	FR5 (Sessions 1-112)			
		Genotype	$F_{(1,112)} = 36.72$	<i>P</i> < 0.001	
		Sessions	$F_{(111,12432)} = 5.38$	<i>P</i> < 0.001	
		Genotype x Sessions	$F_{(111,12432)} = 3.53$	<i>P</i> < 0.001	
		Late period			
	Kalmagaray Smirnay	Persistence to response	K-S = 0.25	<i>P</i> < 0.001	
	Konnogorov-Simmov	Motivation	K-S = 0.16	<i>P</i> < 0.001	
Fig. 1c.e		Compulsivity	K-S = 0.28	<i>P</i> < 0.001	
Fig. IC-C		Late period			
	U Monn Whitney	Persistence to response	U = 1043.50	P < 0.01	
	0 Mann-whitney	Motivation	U = 1035.50	<i>P</i> < 0.01	
		Compulsivity	U = 1071.00	P < 0.01	
Fig. 1f	Chi-square	Genotype	C-S = 7.06	<i>P</i> < 0.01	
	Pearson correlation	WT			
		Non-reinforced active responses in 10 min and addiction criteria	r = 0.74	<i>P</i> < 0.001	
		Breaking point in 5h and addiction criteria	r = 0.73	<i>P</i> < 0.001	
Fig 1g i		Compulsivity and addiction criteria	r = 0.46	P < 0.001	
11g. 1g-1		Glu-CB1-KO			
		Non-reinforced active responses in 10 min and addiction criteria	r = 0.53	<i>P</i> < 0.001	
		Breaking point in 5h and addiction criteria	r = 0.73	<i>P</i> < 0.001	
		Compulsivity and addiction criteria	r = 0.46	<i>P</i> < 0.001	
		Pellets intake			
	Kolmogorov-Smirnov	FR1	K-S = 0.10	P < 0.05	
	Ronnogorov Similiov	FR5 Early period	K-S = 0.08	n.s.	
Supplementary		FR5 Late period	K-S = 0.05	n.s.	
Fig. 1a		Pellets intake			
	U Mann-Whitney	FR1	U = 1545.5	n.s.	
	t-test (Equal variances	FR5 Early period	t = 3.06	<i>P</i> < 0.01	
	assumed)	FR5 Late period	t = 6.58	<i>P</i> < 0.001	
		Early period			
	Kolmogorov-Smirnov	Persistence to response	K-S = 0.15	P < 0.001	
	8	Motivation	K-S = 0.19	<i>P</i> < 0.001	
Supplementary		Compulsivity	K-S = 0.27	<i>P</i> < 0.001	
Fig. 1b-d		Early period			
	U Mann-Whitney	Persistence to response	U = 1320.00	n.s.	
		Motivation	U = 1384.50	n.s.	
		Compulsivity	U = 1242.50	P < 0.05	

Supplementary Fig. 1eKolmogorov-SmirnovImpulsivity $K-S = 0.22$ $P < 0.0$ Umann-WhitneyImpulsivity $Late period$ $K-S = 0.21$ $P < 0.0$ Umann-WhitneyImpulsivityLate period $U = 1464.00$ $n.s$ ImpulsivityImpulsivity $U = 1159.50$ $P < 0.0$	001 001
Supplementary Fig. 1eKolmogorov-SmirnovImpulsivityLate periodIn $S = 0.22$ I $V < X$ U Mann-WhitneyImpulsivityEarly period $U = 1464.00$ n.sImpulsivityImpulsivity $U = 1159.50$ $P < 0.0$	001
Supplementary Fig. 1eImpulsivityImpulsivityK-S = 0.21 $P < 0.0$ U Mann-WhitneyImpulsivityImpulsivity $U = 1464.00$ n.sImpulsivityImpulsivity $U = 1159.50$ $P < 0.0$	001
Supplementary Fig. 1eImpulsivityEarly period $U = 1464.00$ n.sU Mann-WhitneyImpulsivityLate period $U = 1159.50$ $P < 0.0$	501
U Mann-Whitney Impulsivity U = 1464.00 n.s Impulsivity U = 1159.50 P < 0.0	
U Mann-Whitney Impulsivity Late period $U = 1464.00$ h.s Impulsivity $U = 1159.50$ $P < 0.0$	
Late periodImpulsivity $U = 1159.50$ $P < 0.0$	
$U = 1159.50 \qquad P < 0.0$	
)]
Early period	
Kolmogorov-Smirnov Shock-induced suppression $K-S = 0.14$ $P < 0.0$	001
Late period	
SupplementaryShock-induced suppression $K-S = 0.20$ $P < 0.0$	001
Fig. 1f Early period	
U Mann-Whitney Shock-induced suppression $U = 1178.50$ $P < 0.0$)5
Late period	
Shock-induced suppression $U = 697.00$ $P < 0.0$	001
Persistence to response $K-S = 0.25$ $P < 0.0$	001
Motivation $K-S = 0.16$ $P < 0.0$	001
Kolmogorov-Smirnov Compulsivity $K-S = 0.28$ $P < 0.0$	001
Impulsivity $K-S = 0.21$ $P < 0.0$	001
Shock-induced suppression $K-S = 0.21$ $P < 0.0$	001
Persistence to response	
WT NA vs WT A $U = 40.50$ $P < 0.0$	001
$U = 86650 \qquad P < 0.000$)5
U = 500.50	,,
$U = 42.00 \qquad \text{II.s.}$	001
$WT A vs Chu CD1 KO A$ $U = 42.00 \qquad F < 0.0$ $WT A vs Chu CD1 KO A$	01
$U = 19.00 \qquad \text{II.s.}$	
$U = 57.30 \qquad \text{n.s.}$	
$\frac{U}{V} = 52.50 \qquad P < 0.0$	001
WT NA vs Glu-CB1-KO NA $U = 803.50$ $P < 0.0$)5
WT NA vs Glu-CB1-KO A $U = 10.00$ $P < 0.0$	01
WT A vs Glu-CB1-KO NA $U = 52.50$ $P < 0.0$	001
WT A vs Glu-CB1-KO A $U = 18.50$ n.s.	
$Glu-CB1-KO NA vs Glu-CB1-KO A \qquad U = 14.50 \qquad P < 0.0$	01
Supplementary Compulsivity	
Fig. 1g-k $WT NA vs WT A$ $U = 80.00$ $P < 0.0$	001
WT NA vs Glu-CB1-KO NA $U = 814.50$ $P < 0.0$)5
U Mann-Whitney WT NA vs Glu-CB1-KO A $U = 7.50$ $P < 0.0$	01
WT A vs Glu-CB1-KO NA $U = 61.50$ $P < 0.0$	001
WT A vs Glu-CB1-KO A $U = 21.50$ n.s.	
Glu-CB1-KO NA vs Glu-CB1-KO A $U = 4.00$ $P < 0.0$	01
Impulsivity	
WT NA vs WT A $U = 102.00$ $P < 0.0$	001
WT NA vs Glu-CB1-KO NA $U = 878.50$ n.s.	
WT NA vs Glu-CB1-KO A $U = 33.00$ $P < 0.0$)5
WT A vs Glu-CB1-KO NA $U = 107 00$ $P < 0.0$	001
$\begin{array}{c} U = 1700 \\ WT A vs Glu-CB1-KO A \\ U = 1700 \\ In s \end{array}$	
$Ght{U} = 37.00 \qquad P < 0.0$)5

		Shock-induced suppression	U = 185.50	P < 0.05
Supplementary		WT NA vs WT A		
Fig. 1g-k	U Mann-Whitney	WT NA vs Glu-CB1-KO NA	U = 439.50	P < 0.001
		WT NA vs Glu-CB1-KO A	U = 61.50	n.s.
		WT A vs Glu-CB1-KO NA	U = 125.00	P < 0.001
		WT A vs Glu-CB1-KO A	U = 26.00	n.s.
		Glu-CB1-KO NA vs Glu-CB1-KO A	<i>U</i> = 36.50	P < 0.05
		Body weight		
Supplementary	Repeated measures	Genotype	$F_{(1,112)} = 7.02$	P < 0.01
Fig. 2a	ANOVA	Sessions	$F_{(23,2576)} = 231.81$	P < 0.001
		Genotype x Sessions	$F_{(23,2576)} = 4.44$	<i>P</i> < 0.001
	Kolmogorov-Smirnov	Early period	K-S = 0.07	n.s.
Supplementary	Konnogorov-Simmov	Late period	K-S = 0.06	n.s.
Fig. 2b	t-test	Early period	<i>t</i> = 4.23	n.s
		Late period	<i>t</i> = 0.19	<i>P</i> < 0.01
		WT		
		Non-reinforced active responses in 10 min and addiction criteria	<i>r</i> = -0.16	n.s
		Breaking point in 5h and addiction criteria	r = 0.06	n.s
Supplementary Fig. 2c-e	Pearson correlation	Compulsivity and addiction criteria	<i>r</i> = -0.04	n.s
	I carson conclation	Glu-CB1-KO		
		Non-reinforced active responses in 10 min and addiction criteria	r = -0.11	n.s
		Breaking point in 5h and addiction criteria	r = -0.14	n.s
		Compulsivity and addiction criteria	<i>r</i> = -0.14	n.s

		Synaptic excitatory transmission is increased in Glu-CB1-KO		
Figure number	Statistical analysis	Factor name	Statistic value	P-value
		PL mPFC		
		mEPSC frequency	K-S = 0.14	n.s.
	Kolmogorov-Smirnov	mEPSC amplitude	K-S = 0.16	n.s.
		mIPSC frequency	K-S = 0.17	n.s.
Fig. 2c-d and f-g		mIPSC amplitude	K-S = 0.16	n.s.
1 ig. 20-0 and 1-g		PL mPFC		
	t test (Esual veriences	mEPSC frequency	t = -4.09	<i>P</i> < 0.01
	assumed)	mEPSC amplitude	t = 1.77	n.s.
	ussumedy	mIPSC frequency	t = 0.13	n.s.
		mIPSC amplitude	t = 0.09	n.s.
		NAc		
		mEPSC frequency	K-S = 0.12	n.s.
	Kolmogorov-Smirnov	mEPSC amplitude	K-S = 0.17	n.s.
		mIPSC frequency	K-S = 0.17	n.s.
Fig. 2: Is and my m		mIPSC amplitude	K-S = 0.13	n.s.
Fig. 2J-K and m-n		NAc		
	t-test (Equal variances	mEPSC frequency	t = -2.46	<i>P</i> < 0.05
		mEPSC amplitude	t = 0.73	n.s.
	assumed)	mIPSC frequency	t = -0.15	n.s.
		mIPSC amplitude	t = 1.23	n.s.
	Kolmogorov-	PPF	K-S = 0.13	n.s.
Fig. 2p	Smirnov			
	U Mann-Whitney	PPF	t = -3.28	<i>P</i> < 0.01
	Kolmogorov-Smirnov	WIN55,212-2	K-S = 0.16	n.s.
		fPSP amplitude (%)		
Fig. 2r	Paired t-test	WT	t = 8.38	<i>P</i> < 0.001
		Glu-CB1-KO	t = -1.75	n.s.
		WT vs Glu-CB1-KO	t = -7.28	<i>P</i> < 0.001
	Kolmogorov-Smirnov	WIN55,212-2	K-S = 0.13	n.s.
		EPSCs amplitude (%)		
Fig. 2t	Paired t-test	WT	t = 6.35	<i>P</i> < 0.001
		Glu-CB1-KO	t = 4.04	<i>P</i> < 0.01
		WT vs Glu-CB1-KO	t = -3.36	<i>P</i> < 0.01
		fPSP slope (%)		
		Baseline	K-S = 0.25	n.s
Supplementary	Kolmogorov-Smirnov	Rimonabant	K-S = 0.26	n.s
Fig. 3b		Rimonabant + WIN	K-S = 0.20	n.s
	Friedman test	fPSP slope (%)	C-S = 2.27	n.s

Supplementary Table 2. Statistical details of experiments shown in Fig. 2 and Supplementary Figure 3

Inhibition of glutamatergic PL neurons promotes food addiction-like behavior						
Figure number	Statistical analysis	Factor name	Statistic value	P-value		
		AAV-hM4Di	_	1		
Supplementary	Kolmogorov-Smirnov	Firing rate Baseline	K-S = 0.15	n.s.		
Fig. 4c	Konnogorov-Siminov	Firing rate CNO	K-S = 0.21	n.s.		
	Paired t-test	Firing rate	t = 2.66	P < 0.05		
Supplamentary	Kolmogorov-Smirnov	Resistance baseline	K-S = 0.21	n.s.		
Fig. 4d	Konnogorov Siminov	Resistance CNO	K-S = 0.25	<i>P</i> < 0.05		
8	Wilcoxon test	Resistance	<i>Z</i> = -2.12	P < 0.05		
		FR1 (Sessions 1-2)				
		Treatment	$F_{(1,25)} = 0.70$	n.s		
		Sessions	$F_{(1,25)} = 4.01$	n.s		
		Treatment x Sessions	$F_{(1,25)} = 4.16$	n.s		
		FR5 (Sessions 3-8)				
Supplementary	Repeated measures	Treatment	$F_{(1,25)} = 1.34$	n.s		
Fig. 4f	ANOVA	Sessions	$F_{(5,125)} = 29.85$	<i>P</i> < 0.001		
		Treatment x Sessions	$F_{(5,125)} = 1.69$	n.s		
		FR5 (Sessions 9-23)				
		Treatment	$F_{(1,24)} = 2.16$	n.s		
		Sessions	$F_{(14,350)} = 12.82$	P < 0.001		
		Treatment x Sessions	$F_{(14,350)} = 0.75$	n.s		
		Persistence to response	K-S = 0.25	<i>P</i> < 0.001		
	Kolmogorov-Smirnov	Motivation	K-S = 0.22	P < 0.01		
Supplementary		Compulsivity	K-S = 0.25	P < 0.001		
Fig. 4g-i		Persistence to response	<i>U</i> = 57.00	n.s		
	U Mann-Whitney	Motivation	U = 64.50	n.s.		
		Compulsivity	<i>U</i> = 61.50	<i>n.s.</i>		
Supplementary Fig. 4j	Chi square	Treatment	<i>C-S</i> = 8.12	P < 0.01		
		Saline				
		Non-reinforced active responses in 10 min and addiction criteria	r = 0.64	<i>P</i> < 0.05		
		Breaking point in 5h and addiction criteria	r = 0.32	n.s.		
Supplementary	Pearson correlation	Compulsivity and addiction criteria	<i>r</i> = 0.01	n.s.		
Fig. 4k-m	r carson correlation	CNO				
		Non-reinforced active responses in 10 min and addiction criteria	r = 0.61	P < 0.05		
		Breaking point in 5h and addiction criteria	r = 0.56	P < 0.05		
		Compulsivity and addiction criteria	r = 0.74	P < 0.01		
		FR1 (Sessions 1-2)				
		Treatment	$F_{(1,8)} = 0.14$	n.s		
		Sessions	$F_{(8,64)} = 0.87$	n.s		
		Treatment x Sessions	$F_{(8,64)} = 0.16$	n.s		
		FR5 (Sessions 6-9)				
Supplementary	Repeated measures	Treatment	$F_{(1,8)} = 0.03$	n.s		
Fig. 5a	ANOVA	Sessions	$F_{(8,64)} = 2.45$	P < 0.05		
		Treatment x Sessions	$F_{(8,64)} = 0.23$	n.s		

Supplementary Table 3. Statistical details of experiments shown in Supplementary Figure 4 and 5

a 1 .	D 1	FR5 (Sessions 10-23)		
Supplementary	ANOVA	Treatment	$F_{(1,8)} = 0.01$	n.s
Fig. 5a		Sessions	$F_{(13,104)} = 2.15$	P < 0.05
		Treatment x Sessions	$F_{(13,104)} = 0.45$	n.s
		Addiction criteria		
	KI Oʻ	Persistence to response	K-S = 0.33	P < 0.01
	Kolmogorov-Smirnov	Motivation	K-S = 0.16	n.s.
		Compulsivity	K-S = 0.28	P < 0.05
Fig. 5b-d	II Monn White or	Addiction criteria		
1 ig. 50-u	U Mann-whitney	Persistence to response	U = 12.50	n.s.
	t-test (Equal variances	Motivation	t = 0.89	n.s.
	LI Monn Whitnow	Compulaivity	<i>U</i> = 0.50	
	O Manii- w intiley		0 - 9.30	11.8.
		Body weight	$E_{\rm H} = -0.61$	nc
		Weeks	$F_{(1,27)} = 0.01$ $F_{(1,27)} = 7.46$	R < 0.001
		WEEKS	$F_{(4,108)} = 0.44$	P < 0.001
		Food Intaka	1 (4,108) 0.11	11.5
		rood intake	$E_{\rm H} = 0.16$	ne
Supplementary	Repeated measures	Weeks	$F_{(1,2/)} = 0.10$ $F_{(1,2/)} = 1.08$	n.s
Fig. Se-g	ANOVA	Treatment v Weeks	$F_{(3,81)} = 1.08$ $F_{(3,81)} = 0.45$	11.5 n s
			1 (3,81) 0.45	11.5
		Kinetics of total activity		
		Treatment	$F_{(1,16)} = 0.21$	n.s
		Time	$F_{(11,176)} = 11.20$	<i>P</i> < 0.001
		Treatment x Time	$F_{(11,176)} = 0.84$	n.s
	Kolmogorov-Smirnov	Persistence to response	K-S = 0.71	<i>P</i> < 0.001
		Motivation	K - S = 0.88	P < 0.01
	-		H D 0.00	
		Compulsivity	K-S = 0.68	<i>P</i> < 0.001
		Compulsivity Persistence to response	K-S = 0.68	<i>P</i> < 0.001
		Compulsivity Persistence to response Saline NA vs Saline A	K-S = 0.68 U = 00.00	P < 0.001 P < 0.05
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA	K-S = 0.68 $U = 00.00$ $U = 16.00$	P < 0.001 $P < 0.05$ $P < 0.05$
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s.
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO NA	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO NA Saline A vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$	P < 0.001 P < 0.05 P < 0.05 n.s. P < 0.05 n.s.
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$ $U = 5.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$
		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$ $U = 5.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$
Supplementary		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A CNO NA vs CNO A Saline NA vs Saline A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s.
Supplementary Fig. 5h-j		Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. n.s. n.s.
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$
Supplementary Fig. Sh-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO NA Saline NA vs CNO NA	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 1.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.01$ n.s. $P < 0.01$ n.s.
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO NA Saline A vs CNO NA Saline A vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 0.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.01$ n.s. n.s. n.s. n.s.
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO NA Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A CNO NA vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 10.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 10.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO NA Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A CNO NA vs Saline A Saline NA vs Saline A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 2.600$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 1.50$ $U = 1.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $n.s.$ n.s. $n.s.$ n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A Saline A vs CNO A Compulsivity Saline NA vs Saline A Saline NA vs CNO NA	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 2.50$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 1.50$ $U = 1.50$ $U = 36.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.01$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A Saline NA vs Saline A Saline NA vs Saline A Saline NA vs CNO NA Saline NA	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 40.50$ $U = 4.00$ $U = 4.50$ $U = 10.50$ $U = 1.50$ $U = 36.50$ $U = 8.50$ $U = 1.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.01$ n.s. n.s. n.s. n.s. n.s. $P < 0.01$ n.s. n.s. $P < 0.01$
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO NA Saline A vs CNO A CNO NA vs CNO A CNO NA vs CNO A Saline A vs CNO A Compulsivity Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 10.50$ $U = 1.50$ $U = 8.50$ $U = 1.50$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. $P < 0.01$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. $P < 0.05$
Supplementary Fig. 5h-j	U Mann-Whitney	Compulsivity Persistence to response Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Motivation Saline NA vs Saline A Saline NA vs CNO NA Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A Compulsivity Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO NA Saline A	K-S = 0.68 $U = 00.00$ $U = 16.00$ $U = 26.00$ $U = 26.00$ $U = 1.00$ $U = 1.00$ $U = 5.00$ $U = 2.50$ $U = 40.50$ $U = 7.50$ $U = 4.00$ $U = 4.50$ $U = 1.50$ $U = 36.50$ $U = 8.50$ $U = 1.50$ $U = 0.00$ $U = 0.00$	P < 0.001 $P < 0.05$ $P < 0.05$ n.s. $P < 0.05$ n.s. $P < 0.05$ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s

Figure number Statistical analysis Factor name Statistic	value P-value
PL mPFC AAV-control	
Kolmogorov-Smirnov Firing rate baseline $K-S = 0.19$	n.s.
Firing rate CNO $K-S = 0.18$	n.s.
Fig. 2d Paired t-test Firing rate $t = 1.50$	n.s.
PL mPFC AAV-hM4Di	
Kolmogorov Smirnov Firing rate baseline $K-S = 0.19$	n.s.
Firing rate CNO $K-S = 0.22$	n.s.
Paired t-test Firing rate $t = 2.94$	P < 0.05
NAc AAV-control	
mEPSCs frequency CNO $K-S = 0.22$	n.s.
Fig. 2 f Paired t-test mEPSCs frequency $t = -0.22$	n.s.
NAc AAV-hM4Di	
mEPSCs frequency CNO $K-S = 0.28$	n.s.
Paired t-testmEPSCs frequency $t = 3.48$	P < 0.05
FR1 (Sessions 1-2)	
Treatment $F_{(1,32)} = 0.15$	n.s
Sessions $F_{(8,256)} = 16$.11 $P < 0.001$
Treatment x Sessions $F_{(8,256)} = 0.0$	01 n.s
FR5 (Sessions 3-9)	
Fig. 21. Repeated measures Treatment $F_{(1,32)} = 0.22$	n.s
Fig. 5n ANOVA Sessions $F_{(8,256)} = 21$.62 $P < 0.001$
Treatment x Sessions $F_{(8,256)} = 1.6$	4 n.s
FR5 (Sessions 10-20)	
Treatment $F_{(1,15)} = 0.55$	n.s
Sessions $F_{(10,150)} = 6.2$	P < 0.001
Treatment x Sessions $F_{(10,150)} = 0.9$	91 n.s
Persistence to response $K-S = 0.09$	n.s
Kolmogorov-Smirnov Motivation K-S = 0.11	n.s
Compulsivity $K-S = 0.17$	P < 0.05
Fig. 31-K t-test (Equal variances Persistence to response $t = 1.16$	n.s.
assumed) Motivation $t = -0.56$	n.s.
U Mann-Whitney Compulsivity $U = 48.50$	P < 0.01
Fig. 31Chi squareTreatment $C-S = 17.60$	<i>P</i> < 0.001
Saline	
Non-reinforced active responses in 10 min and addiction criteria $r = 0.50$	n.s.
Breaking point in 5h and addiction criteria $r = 0.46$	n.s.
Eig. $2m$ of the particular particular compulsivity and addiction criteria $r = 0.60$	P < 0.05
rig. sm-o Pearson correlation CNO	
Non-reinforced active responses in 10 min and addiction criteria $r = 0.57$	P < 0.01
Breaking point in 5h and addiction criteria $r = 0.51$	P < 0.05
Compulsivity and addiction criteria $r = 0.45$	P < 0.05
PL mPFC AAV-control	
Resistance baseline $K-S=0.19$	n.s.
B (ATTAIATOTA) STATTAAA	
Supplementary Resistance CNO K-S = 0.17	n.s.
Supplementary Fig. 6bResistance CNO $K-S = 0.17$ Resistance $t = -1.50$	n.s.

Supplementary Table 4. Statistical details of experiments shown in Fig. 3 and Supplementary Figure 6

Supplementing Fig. 60 Kolongorov-Smirool Resistance baseline K-S = 0.19 n.s. Supplementing Fig. 60 Paired t-test Resistance CNO K-S = 0.17 n.s. Supplementing Fig. 60 Paired t-test Resistance Subscience K-S = 0.17 n.s. Supplementing Fig. 60 Paired t-test Resobase baseline K-S = 0.17 n.s. Resobase baseline K-S = 0.17 n.s. N.S. N.S. N.S. Supplementing Fig. 60 Paired t-test Resobase baseline K-S = 0.17 n.s. N.S. <td< th=""><th></th><th></th><th>PL mPFC AAV-hM4Di</th><th></th><th></th></td<>			PL mPFC AAV-hM4Di		
Pig. 6b Relating CNO K > = 0.19 n.x. Paired Heat Resistance CNO # - 0.01 # - 0.01 Supplementary Fig. 6d Resistance CNO K.S = 0.17 n.x. Supplementary Fig. 6d Net obase baseline K.S = 0.17 n.x. Kolmogerov-Smirov Ricobase CNO K.S = 0.17 n.x. Kolmogerov-Smirov Ricobase CNO K.S = 0.17 n.x. Ricobase CNO K.S = 0.17 n.x. n.x. Kolmogerov-Smirov Ricobase CNO K.S = 0.17 n.x. Ricobase CNO K.S = 0.17 n.x. n.x. Kolmogerov-Smirov mEPSCs amplitude CNO K.S = 0.12 n.x. Supplementary Not AAV-tootrol K.S = 0.12 n.x. Kolmogerov-Smirov mEPSCs Vm CNO K.S = 0.19 n.x. Kolmogerov-Smirov mEPSCs Vm CNO K.S = 0.19 n.x. Kolmogerov-Smirov mEPSCs Vm CNO K.S = 0.11 n.x. Welcoontest mEPSCs Vm CNO K.S = 0.11 n.x. Kolmogerov-Smirov	Supplementary	Kalmagaray Smirnay	Resistance baseline	K-S = 0.19	n.s.
Paired t-testResistance $I = 3.80$ $I = 5.001$ Supplementar Fig. 60NoNoNoNoSupplementar Fig. 60Paired treatRheobase CNO $K \le 0.17$ n.s.Number of treat dreatRheobase CNO $K \le 0.17$ n.s.Supplementari Fig. 61Malonorov-SmirnovmEPSCs amplitude CNO $K \le 0.12$ $P < 0.01$ Number of treat dreatneEPSCs amplitude CNO $K \le 0.12$ $P < 0.01$ Number of treat dreatneEPSCs amplitude CNO $K \le 0.12$ $R < 0.12$ Supplementari Fig. 61Number of treat dreatneEPSCs Vm CNO $K \le 0.12$ $R < 0.12$ Number of treat dreatneEPSCs Vm CNO $K \le 0.20$ $R < 0.20$ $R < 0.20$ Number of treat dreatneEPSCs Vm CNO $K \le 0.21$ $R < 0.21$ $P < 0.001$ Weiscore for dreat dreatmEPSCs Vm CNO $K \le 0.21$ $R < 0.20$ Weiscore for dreat dreatneEPSCs Vm CNO $K \le 0.21$ $R < 0.20$ Weiscore for dreat dreatneEPSCs Vm CNO $K \le 0.21$ $R < 0.20$ Weiscore for dreat dreatneEPSCs Vm CNO $K \le 0.21$ $R < 0.20$ Teament Treat dreatneEPSCs Vm CNO	Fig. 6b	Konnogorov-Simmov	Resistance CNO	K-S = 0.19	n.s.
Supplementary Fig. 60Kolmogorov-Smirnov Reloaded CNOReloaded CNO Reloaded CNOK-S = 0.17 K-S = 0.20n.s. n.s.Supplementary Fig. 61Paired LetstReloades CNO Reloades CNOK-S = 0.17 K-S = 0.17n.s. n.s.Supplementary Fig. 61Nacoson testReloades CNO Reloades CNOK-S = 0.17 K-S = 0.17n.s. 		Paired t-test	Resistance	<i>t</i> = 3.58	<i>P</i> < 0.01
Supplementari Fig. 60Kolmogorov.Smirner Necobase CNOK.S = 0.20n.s.Supplementari Fig. 61Paired 14:estRebobase CNOr=0.37n.s.NormanRebobase CNOK.S = 0.17n.s.NormanRebobase CNOK.S = 0.17n.s.Paired 14:estRebobase CNOK.S = 0.15n.s.NormanRebobase CNOK.S = 0.15n.s.Supplementari Fig. 61Kolmogorov.Smirner (Kolmogorov.Smirner)nEPSCs amplitude CNOK.S = 0.12P<0.05			PL mPFC AAV-control		
Komogorov-Smirnov Fig. 64 Rebobase CNO K.S = 0.20 n.s. Fig. 64 Rebobase CNO r = -0.37 n.s. Kolmogorov-Smirnov Rebobase CNO K.S = 0.17 n.s. Nack ANV-control K.S = 0.17 n.s. Rebobase CNO K.S = 0.15 n.s. Supplementary Fig. 61 Nack ANV-control K.S = 0.22 P < 0.05		V - 1 C	Rheobase baseline	K-S = 0.17	n.s.
Supplementing Fig. 6d Paired Lets Reclose costion (Reclose costion) PL mPTC AV-In/140i K-5 = 0.17 n.s. Reclose costion Reclose costion K-5 = 0.17 n.s. n.s. Reclose costion F-4.05 P < 0.010		Konnogorov-Simmov	Rheobase CNO	K-S = 0.20	n.s.
Fig. 6d Memogene Simina Relobase landina Relobase CNO S = 0.17 N.S. Paried 1-test Relobase CNO K.S = 0.15 N.S. Supplemental Relobase CNO K.S = 0.17 N.S. Supplemental Relobase CNO K.S = 0.17 K.S = 0.17 Nuicoxon ts mEPSC samplinde CNO K.S = 0.17 K.S = 0.17 K.S = 0.17 Supplemental Relocation (SC Vin CNO K.S = 0.17 K.S = 0.17 K.S = 0.17 Supplemental Relocation (SC Vin CNO K.S = 0.17 K.S = 0.17 K.S = 0.17 Supplemental Not (SC Vin CNO K.S = 0.10 K.S = 0.17 K.S = 0.17 Supplemental Mired 1-54 M.S C Vin CNO K.S = 0.17 K.S = 0.17 K.S = 0.17 Supplemental Mired 1-54 M.S C Vin CNO K.S = 0.11	Supplementary	Paired t-test	Rheobase	t = -0.37	n.s.
Kolmagorov-Smirnen Paired Hest Racobase CNO K-S = 0.17 (K-S = 0.15) n.s. (K-S = 0.16) n.s. (K-S = 0.16) n.s. (K-S = 0.17) n.s. (K-S = 0.12) n.s. (K-S = 0.	Fig. 6d		PL mPFC AAV-hM4Di		
Instantial Rehobase CNO $K.S = 0.15$ $n.s.$ Paired 1-test Rehobase CNO $r = 4.05$ $P < 0.01$ Supplementary Fig. 61 Kolmogorov.5mirno mlFPSCs amplitude CNO $KS = 0.02$ $P < 0.05$ Supplementary Fig. 61 Wilcoxon test mlFPSCs Vm CNO $KS = 0.19$ $n.s.$ Supplementary Fig. 61 Nate test mlFPSCs Vm CNO $KS = 0.20$ $n.s.$ Supplementary Fig. 61 Nate test mlFPSCs Vm CNO $KS = 0.20$ $n.s.$ Supplementary Fig. 61 Nate test mlFPSCs Vm CNO $KS = 0.20$ $n.s.$ Supplementary Fig. 61 Paired test mlFPSCs Vm CNO $KS = 0.31$ $P < 0.05$ Nuclean test mlFPSCs Vm CNO $KS = 0.01$ $R.S$ $P < 0.05$ $R.S$ Supplementary Fig. 61-7 mlFPSCs Vm CNO Nate AAV-buMdDi $R.S$ $R < 0.001$ $R < 0.001$ Teatment Weeks F 0.030 $R < 0.001$ $R < 0.001$ $R < 0.001$ $R < 0.001$ Teatment Weeks F 0.030 $R < 0.001$ $R < 0.001$ $R < $		Kolmogorov-Smirnov	Rheobase baseline	K-S = 0.17	n.s.
Image of the set of t		Konnogorov-Siminov	Rehobase CNO	K-S = 0.15	n.s.
NumberNational Kalmagorow-Smirm Mickow testNate Adv-control mitPSCs amplitude CNOKS > 0.20 mitPSCsP < mitPSCsFig. 61Mickow testmitPSCs amplitude CNOZ = 0.42n.s.Kalmagorow-Smirma Fig. 62mitPSCs Vm CNOZ = 0.27n.s.Supplemental Fig. 62MitoratestmitPSCs Vm CNOZ = 0.20n.s.MitoratestmitPSCs Vm CNOZ = 0.10N.s.N.s.MitoratestmitPSCs Vm CNOK = 0.21N.s.N.s.MitoratestmitPSCs Vm CNOK = 0.21N.s.N.s.Mitoratestmitoratest VmetsisN.s.N.s.N.s.MitoratestK = 0.01N.s.N.s.N.s.MitoratestK = 0.01N.s.N.s.N.s.MitoratestK = 0.01N.s.N.s.N.s.MitoratestK = 0.01N.s.N.s.N.s.MitoratestK = 0.01N.s.N.s.N		Paired t-test	Rehobase	t = -4.05	P < 0.01
Kolmogorov-Smirnov mEPSCs amplitude CNO K.S = 0.32 P < 0.05 Supplementary Fig. 61 Wilcoxon test mEPSCs amplitude X = 0.42 n.s. Nac AAV-MMDi Kolmogorov-Smirnov mEPSCs Vm CNO K = 0.19 n.s. Supplementary Fig. 60 Paired t-test mEPSCs Vm CNO K = 0.27 n.s. Supplementary Fig. 60 Paired t-test mEPSCs Vm CNO K = 0.20 n.s. Mongorov-Smirnov mEPSCs Vm CNO K = 0.31 P < 0.05			NAc AAV-control		
Supplementing Fig. 61 Wilcoxon test mEPSCs amplitude NAc AAV-hM4Di Z = -0.42 ns. Kolmogorov-Smirov mEPSCs Vm CNO K.5 = 0.19 ns. Marce AAV-inMage F2/SC Vm CNO K.5 = 0.20 ns. Supplementary Fig. 60 Marce AAV-inMage K.5 = 0.20 ns. Supplementary Fig. 60 Marce AAV-inMage K.5 = 0.20 ns. Supplementary Fig. 60 Marce AAV-inMage K.5 = 0.20 ns. Supplementary Fig. 60-rig Marce AAV-inMage K.5 = 0.20 ns. Supplementary Fig. 60-rig Marce AAV-inMage K.5 = 0.31 Not Supplementary Fig. 60-rig Marce AAV-inMage K.5 = 0.31 Not Supplementary Fig. 60-rig Teatment X Weeks F0.40 ns Supplementary Fig. 60-rig Teatment X Weeks F0.40 ns Teatment X Weeks F0.40 ns ns Teatment X Time F0.40 ns ns Teatment X Time F0.40 ns ns Teatment X Time F0.40 ns ns </td <td></td> <td>Kolmogorov-Smirnov</td> <td>mEPSCs amplitude CNO</td> <td>K - S = 0.32</td> <td>P < 0.05</td>		Kolmogorov-Smirnov	mEPSCs amplitude CNO	K - S = 0.32	P < 0.05
Fig. 6f Kolmogoro-Smirnov mEPSCs Vm CNO K.S = 0.19 n.s. Normal Methods nEPSCs Vm CNO n.S. n.s. Supplementary Fig. 6p Kolmogorov-Smirnov mEPSCs Vm CNO K.S = 0.20 n.s. Name AAV-batton K.S = 0.20 n.s. n.s. Paired Lets mEPSCs Vm CNO K.S = 0.31 P<000	Supplementary	Wilcoxon test	mEPSCs amplitude	Z = -0.42	n.s.
Kolmogorov-SmirnovmEPSCs Vm CNOK-S = 0.19n.s.Paired t-testmEPSCs Vm CNOr=0.27n.s.Supplementry Fig. 60NAc AAV-controlK-S = 0.20n.s.Paired t-testmEPSCs Vm CNOK-S = 0.31P < 0.05	Fig. 6f		NAc AAV-hM4Di		
Image: second		Kolmogorov-Smirnov	mEPSCs Vm CNO	K-S = 0.19	n.s.
Kolmogorov-Smire MCRONO Kolmogorov-Smire MCSCS Vm CNO Kolmogorov-Smire MCSCS Vm CNO Kolmogorov-Smire NAC AAV-bMDI Kolmogorov-Smire Kolmogorov-Smire MCSCS Vm CNO Kolmogorov-Smire Kolmogorov-Smire MCSCS Vm CNO Kolmogorov-Smire Kolmogorov-Smire MCSCS Vm CNO Kolmogorov-Smire Kolmogorov-Smire<		Paired t-test	mEPSCs Vm	t = 0.27	n.s.
Supplementar Fig. 6: Kolmogorov-Smirnov mEPSCs Vm CNO K-S = 0.20 n.s. Supplementar Fig. 6: Narc AAV-IM4Di r=1.48 n.s. Kolmogorov-Smirnov mEPSCs Vm CNO K-S = 0.31 P<0.05			NAc AAV-control		
Supplementary Fig. 69 Paired t-test nEPSCs Vm (r=1.48) n.s. Fig. 69 Nac AAV-IM4Di <td></td> <td>Kolmogorov-Smirnov</td> <td>mEPSCs Vm CNO</td> <td>K - S = 0.20</td> <td>n.s.</td>		Kolmogorov-Smirnov	mEPSCs Vm CNO	K - S = 0.20	n.s.
Fig. 6g Kolmogorov-Smirnov MEPSCs Vm CNO K-S = 0.31 P < 0.05 Wilcoxon test mEPSCs Vm CNO Z=-1.48 n.s. Body Weight F0.030 Kolmogorov-Smirnov F0.030 No.8 Supplementary Fig. 6h-j Repeated measures Treatment Weeks F0.001 n.s No.8 Supplementary Fig. 6h-j Repeated measures Treatment Weeks F0.001 Repeated measures P < 0.001	Supplementary	Paired t-test	mEPSCs Vm	t = -1.48	n.s.
Kolmogorov-Smirnov mEPSCs Vm CNO K-S = 0.31 P < 0.05 Wilcoxon test mEPSCs Vm Z = 1.48 n.s. Body Weight F (1,32) = 0.65 n.s Fig. 6h-j Treatment F (0,32) = 0.65 n.s Freatment X weeks F (0,30) = 43.38 P < 0.001	Fig. 6g		NAc AAV-hM4Di		
wileoxon test mEPSCs Vm Z = -1.48 n.s. Body Weight F (-1.32) = 0.65 n.s Note		Kolmogorov-Smirnov	mEPSCs Vm CNO	K-S = 0.31	<i>P</i> < 0.05
Supplementary Fig.6h; Repeated measure source is assumed in the source is a sourc		Wilcoxon test	mEPSCs Vm	Z = -1.48	n.s.
Supplementary Fig. 6h-j Kepeated measures ANOVA Treatment (weeks) Food Intake $F_{(1,2)}=0.65$ n.s Treatment x Weeks $F_{(3,00)}=43.38$ $P < 0.001$ n.s Treatment x Weeks $F_{(1,0)}=0.44$ n.s Treatment Weeks $F_{(1,0)}=0.44$ n.s Treatment Weeks $F_{(1,0)}=0.44$ n.s Treatment Weeks $F_{(1,0)}=0.04$ n.s Treatment X Weeks $F_{(1,0)}=0.04$ n.s Treatment X Time $F_{(1,17)}=0.07$ n.s Treatment Time $F_{(1,17)}=0.07$ n.s Treatment Time $F_{(1,187)}=9.044$ $P < 0.001$ Treatment Time $F_{(1,187)}=9.044$ $P < 0.001$ Treatment Time $F_{(1,187)}=0.07$ n.s Compulsivity $K > 0.09$ n.s Supplementary Kolmogorov-Smirov Motivation $K - S = 0.12$ n.s Saline NA vs Saline A saline NA vs CNO NA $t = -1.69$ n.s. Saline NA vs CNO NA $t = -1.69$ n.s. saline A vs CNO A $t = -2.97$ $P $			Body Weight		
Supplementary Fig. 6h-j Repeated measures ANOVA Weeks Treatment x Weeks Food Intake Food Intake $F_{(1,6)}=0.41$ n.s Kinetics of total activity Treatment x Weeks $F_{(3,6)}=0.41$ n.s Kinetics of total activity Treatment x Weeks $F_{(3,6)}=0.71$ n.s Treatment x Weeks $F_{(1,17)}=0.07$ n.s Treatment x Time $F_{(1,187)}=0.07$ n.s Compulsivity $K-S=0.09$ n.s Motivation $K-S=0.09$ n.s Saline NA vs Saline A $t=-1.69$ n.s. Saline NA vs Saline A $t=0.05$ n.s. Saline NA vs Saline A $t=-2.97$ $P < 0.01$ Saline A vs CNO A $t=-3.23$ $P < 0.01$ Saline A vs CNO A $t=-3.23$ $P < 0.01$ Saline A vs Saline A $t=-3.23$ $P < 0.01$			Treatment	$F_{(1,32)} = 0.65$	n.s
Supplementary Fig. 6h-j Repeated measures ANOVA Freatment x Weeks Food Intake n.s Treatment x Weeks F (1.16) = 0.44 n.s Yeeks F (3.80) = 4.68 P < 0.001			Weeks	$F_{(3,96)} = 43.38$	P < 0.001
Supplementary Fig. 6h-j Repeated measure ANOVA Treatment Weeks Food Intake F(1,16)=0.44 n.5 Treatment Weeks F(0,48)=4.68 P<0.001			Treatment x Weeks	$F_{(3,96)} = 0.41$	n.s
Supplementary Fig. 6h-j Repeated measures ANOVA Treatment (reatment x Weeks $F_{0,10} = 0.44$ n.s $F_{0,48} = 0.71$ n.s $F_{0,48} = 0.71$ n.s $F_{0,48} = 0.71$ n.s $F_{0,48} = 0.71$ n.s $F_{0,10} = 0.07$ n.s $F_{0,10} = 0.71$ n.s $F_{0,11} = 0.07$ n.s $F_{0,11} = 0.07$ n.s $F_{0,11,187} = 9.04$ $P < 0.001$ $P < 0.001$ $P < 0.001$ $Treatment x Time$ $F_{0,11,187} = 9.04$ $P < 0.001$ $P < 0.001$ $Treatment x Time$ $F_{0,11,187} = 9.04$ $P < 0.001$ $P < 0.001$ $Treatment x Time$ $F_{0,11,187} = 1.14$ $P < 0.001$ $P < 0.001$ $F_{0,11,187} = 0.07$ $P < 0.05$ $P < 0.01$ $P < 0.01$ $F_{0,11,187} = 0.07$ $P < 0.05$ $P < 0.01$ $P < 0.01$ $F_{0,11,187} = 0.07$ $P < 0.05$ $P < 0.01$ $P < 0.01$ $F_{0,11,187} = 0.07$ $P < 0.01$ $P < 0.01$ $P < 0.01$ $F_{0,11,187} = 0.07$ $P < 0.01$ $P < 0.01$ $P = 0.01$ <t< td=""><td></td><td rowspan="2"></td><td>Food Intake</td><td></td><td></td></t<>			Food Intake		
Supplementary Fig. 6h-j Repeated measures ANOVA Weeks F (3.48) = 4.68 P < 0.001 Iteratment x Weeks F (3.48) = 0.71 n.s Iteratment x Weeks F (3.48) = 0.71 n.s Iteratment x Time F (1.19) = 0.07 n.s Treatment x Time F (1.19) = 0.07 n.s Treatment x Time F (1.19) = 0.07 n.s Kolmogorov-Smirov Motivation K-S = 0.09 n.s Motivation K-S = 0.12 n.s n.s Compulsivity K-S = 0.12 n.s n.s Saline Na vs Saline A t = -1.69 n.s. Saline Na vs CNO NA t = 0.05 n.s. Saline Na vs CNO NA t = 0.05 n.s. Saline A vs CNO A t = -2.97 P < 0.01			Treatment	$F_{(1,16)} = 0.44$	n.s
Fig. 6h-j ANOVA Treatment x Weeks $F_{(3,48)} = 0.71$ n.s Kinetics of total activity $F_{(1,17)} = 0.07$ n.s Treatment $F_{(1,187)} = 9.04$ $P < 0.001$ Treatment x Time $F_{(1,187)} = 9.04$ $P < 0.001$ Treatment x Time $F_{(1,187)} = 1.14$ n.s Kolmogorov-Smirnov Motivation $K - S = 0.09$ n.s Motivation $K - S = 0.12$ n.s Compulsivity $K - S = 0.17$ $P < 0.05$ Saline NA vs Saline A $t = -1.69$ n.s. Saline NA vs Saline A $t = -2.97$ $P < 0.01$ Saline NA vs CNO NA $t = -0.19$ n.s. Saline NA vs CNO NA $t = -0.19$ n.s. Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline A vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs Saline A $t = -3.23$ $P < 0.01$ Saline NA vs Saline A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$	Supplementary	Repeated measures	Weeks	$F_{(3,48)} = 4.68$	P < 0.001
Kinetics of total activity F (1,1) = 0.07 n.s Treatment Time F (1,1),187) = 0.04 P < 0.001	Fig. 6h-j	ANOVA	Treatment x Weeks	$F_{(3,48)} = 0.71$	n.s
Supplementary Fig. 6k-m Featment (1,187) = 0.07 n.s Supplementary Fig. 6k-m Treatment Time $F_{(1,187)} = 0.04$ (1,187) = 1.14 $P < 0.001$ n.s Supplementary Fig. 6k-m Kolmogorov-Smirnov Persistence to response Motivation $K-S = 0.09$ n.s Supplementary Fig. 6k-m K-se 0.09 n.s $K-S = 0.17$ $P < 0.05$ Supplementary Fig. 6k-m Fersistence to response $K-S = 0.17$ $P < 0.05$ Supplementary Fig. 6k-m $F = 0.05$ n.s. Supplementary Fig. 6k-m Saline NA vs Saline A $t = -0.19$ n.s. Saline NA vs Saline A $t = -3.23$ $P < 0.01$ $P < 0.01$ Saline NA vs CNO NA $t = -3.23$ $P < 0.01$ $P < 0.01$ Saline NA vs Saline A $t = -3.23$ $P < 0.01$ Saline NA vs CNO NA $t = -3.23$ $P < 0.01$ Saline NA vs CNO NA $t = -3.20$ $P < 0.01$ Saline NA vs CNO NA $t = -3.20$ $P < 0.01$ Saline NA vs CNO NA $t = -3.20$ $P < 0.01$ Saline NA vs CNO NA $t = -3.20$ $P < 0.05$ <			Kinetics of total activity		
Supplementary Fig. 6k-m t-test (Equal variances assumed) Time Treatment x Time Providence (response) Providence Providence Pro			Treatment	$F_{(1,17)} = 0.07$	n.s
Supplementary Fig. 6k-m t-test (Equal variances assumed) CNO NA vs CNO A Motivation K-S 0.09 n.s Supplementary Fig. 6k-m t-test (Equal variances assumed) Persistence to response K=0.09 n.s Supplementary Fig. 6k-m t-test (Equal variances assumed) Persistence to response K=0.05 n.s. Supplementary Fig. 6k-m t-test (Equal variances assumed) Saline NA vs CNO A t=0.05 n.s. Supplementary Fig. 6k-m t-test (Equal variances assumed) CNO NA vs CNO A t=-3.23 P < 0.01			Time	$F_{(11,187)} = 9.04$	P < 0.001
Supplementary Fig. 6k-mPersistence to response $K-S = 0.09$ n.sNotivation $K-S = 0.12$ n.sCompulsivity $K-S = 0.17$ $P < 0.05$ Persistence to response $K-S = 0.17$ $P < 0.05$ Saline NA vs Saline A $t = -1.69$ n.s.Saline NA vs CNO NA $t = 0.05$ n.s.Saline NA vs CNO NA $t = -2.97$ $P < 0.01$ Saline NA vs CNO A $t = -2.97$ $P < 0.01$ Saline A vs CNO A $t = -0.19$ n.s.SupplementaryCNO NA vs CNO A $t = -3.23$ Fig. 6k-mSaline NA vs Saline A $t = -3.23$ SupplementarySaline NA vs Saline A $t = -3.23$ SupplementarySaline NA vs Saline A $t = -3.23$ SupplementarySaline NA vs Saline A $t = -3.23$ Fig. 6k-mSaline NA vs Saline A $t = -3.23$ SupplementarySaline NA vs Saline A $t = -3.23$ Fig. 6k-mSaline NA vs Saline A $t = -3.23$ SupplementarySaline NA vs Saline A $t = -3.23$ Saline NA vs Saline A $t = -3.23$ $P < 0.01$ Saline NA vs CNO NA $t = -3.23$ $P < 0.01$ Saline NA vs CNO NA $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs CNO A $t = -3.23$ $P < 0.01$ Saline A vs CNO A $t = $			Treatment x Time	$F_{(11,187)} = 1.14$	n.s
Kolmogorov-SmirnovMotivation $K-S = 0.12$ n.sCompulsivity $K-S = 0.17$ $P < 0.05$ Compulsivity $K-S = 0.17$ $P < 0.05$ Persistence to response $t = -1.69$ n.s.Saline NA vs Saline A $t = 0.05$ n.s.Saline NA vs CNO NA $t = 0.05$ n.s.Saline NA vs CNO A $t = -2.97$ $P < 0.01$ Saline A vs CNO A $t = -0.19$ n.s.Saline A vs CNO A $t = -0.19$ n.s.Saline A vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs Saline A $t = -1.49$ n.s.Saline NA vs CNO NA $t = -1.49$ n.s.Saline NA vs CNO NA $t = -1.49$ n.s.Saline A vs CNO NA $t = -1.49$ n.s.Saline A vs CNO NA $t = -2.30$ $P < 0.01$ Saline A vs CNO NA $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$		V 1 0 1	Persistence to response	K-S = 0.09	n.s
Supplementary Fig. 6k-m $Compulsivity$ Persistence to response $K-S = 0.17$ $P < 0.05$ Supplementary Fig. 6k-m Saline NA vs Saline A saline NA vs CNO NA $t = -1.69$ n.s. Supplementary Fig. 6k-m t-test (Equal variances assumed) Saline NA vs CNO A Saline NA vs CNO A $t = -2.97$ $P < 0.01$ Supplementary Fig. 6k-m t-test (Equal variances assumed) CNO NA vs CNO A $t = -3.23$ $P < 0.01$ Saline NA vs Saline A Saline NA vs CNO NA t = -3.50 $P < 0.01$ n.s. Supplementary Fig. 6k-m Saline NA vs CNO NA t = 0.92 n.s. Saline NA vs CNO NA t = -1.49 n.s. n.s. Saline A vs CNO NA t = -1.49 n.s. n.s. Saline A vs CNO NA t = -2.30 $P < 0.05$ $P < 0.05$		Kolmogorov-Smirnov	Motivation	K - S = 0.12	n.s
Supplementary Fig. 6k-m t-test (Equal variances assumed) Saline NA vs Saline A t= -1.69 n.s. Supplementary Fig. 6k-m t-test (Equal variances assumed) Saline NA vs CNO NA t= -2.97 P < 0.01			Compulsivity	K - S = 0.17	P < 0.05
Salme NA vs Salme A $t = -1.69$ n.s.Salme NA vs Salme A $t = 0.05$ n.s.Saline NA vs CNO NA $t = 0.05$ n.s.Saline NA vs CNO A $t = -2.97$ $P < 0.01$ Saline A vs CNO NA $t = 1.91$ n.s.Saline A vs CNO A $t = -0.19$ n.s.Saline A vs CNO A $t = -3.23$ $P < 0.01$ SupplementaryFig. 6k-mSaline NA vs Saline A $t = -3.50$ SupplementarySaline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs CNO NA $t = 0.92$ n.s.Saline NA vs CNO NA $t = -1.49$ n.s.Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO NA $t = 2.30$ $P < 0.05$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ Saline A vs CNO A $t = -2.46$ $P < 0.05$			Persistence to response	1.60	
Supplementary Fig. 6k-mt-test (Equal variances assumed)Saline NA vs CNO NA Saline A vs CNO A CNO NA vs CNO A Saline A vs CNO A CNO NA vs CNO A Saline NA vs Saline A Saline NA vs CNO NA Saline NA vs CNO NA Saline NA vs CNO NA Saline NA vs CNO NA Saline A vs CNO A Saline A			Saline NA vs Saline A	t = -1.69	n.s.
Supplementary Fig. 6k-m Fig. 6k-m Saline A vs CNO A Saline A vs C			Saline NA vs CNO NA	t = 0.05	n.s.
Supplementary Fig. 6k-m $t = 1.91$ n.s.Supplementary Fig. 6k-m $t = -0.19$ n.s.Supplementary Fig. 6k-m $CNO NA vs CNO A$ $t = -3.23$ $P < 0.01$ Supplementary Fig. 6k-mSaline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs CNO NA $t = -3.50$ $P < 0.01$ Saline NA vs CNO NA $t = -1.49$ n.s.Saline NA vs CNO NA $t = -1.49$ n.s.Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO NA $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$			Saline NA vs CNO A	t = -2.97	P < 0.01
Supplementary Fig. 6k-mt-test (Equal variances assumed)Saline A vs CNO A $t = -0.19$ n.s.Supplementary Fig. 6k-mCNO NA vs CNO A $t = -3.23$ $P < 0.01$ Supplementary Fig. 6k-mSaline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs CNO NASaline NA vs CNO NA $t = 0.92$ n.s.Saline NA vs CNO A $t = -1.49$ n.s.Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$			Saline A vs CNO NA	t = 1.91	n.s.
t-test (Equal variances assumed)CNO NA vs CNO A $t = -5.23$ $P < 0.01$ Supplementary Fig. 6k-mSaline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs CNO NAsaline NA vs CNO NA $t = 0.92$ n.s.Saline NA vs CNO A $t = -1.49$ n.s.Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO NA $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$			Saline A vs CNO A	t = -0.19	n.s.
Supplementary Fig. 6k-mSaline NA vs Saline At = -3.50P < 0.01Saline NA vs CNO NAt = 0.92n.s.Saline NA vs CNO At = -1.49n.s.Saline A vs CNO NAt = 4.32P < 0.01		t-test (Equal variances	CNO NA VS CNO A	t = -3.23	P < 0.01
Supplementary Fig. 6k-mSaline NA vs Saline A $t = -3.50$ $P < 0.01$ Saline NA vs CNO NA $t = 0.92$ n.s.Saline NA vs CNO A $t = -1.49$ n.s.Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$	a 1	assulled)	Motivation	2.50	
Fig. 0K-m Salme NA vs CNO NA $t = 0.92$ n.s. Saline NA vs CNO A $t = -1.49$ n.s. Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$	Supplementary		Saline NA vs Saline A	t = -3.50	P < 0.01
Saline NA vs CNO A $t = -1.49$ n.s. Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$	ту. ок-т		Saline NA vs UNO NA	t = 0.92	n.s.
Saline A vs CNO NA $t = 4.32$ $P < 0.01$ Saline A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$			Saline NA VS UNU A	t = -1.49	n.s.
Satine A vs CNO A $t = 2.30$ $P < 0.05$ CNO NA vs CNO A $t = -2.46$ $P < 0.05$			Saline A vs CNO NA	t = 4.32	P < 0.01
CNU NA VS CNU A $t = -2.46$ $P < 0.05$			Saline A vs CNO A	t = 2.30	P < 0.05
			UNU INA VS UNU A	l = -2.40	P < 0.05

		Compulsivity		
Supplementary		Saline NA vs Saline A	U = 5.50	n.s.
Fig. 6k-m		Saline NA vs CNO NA	U = 27.00	<i>P</i> < 0.05
	U Mann-Whitney	Saline NA vs CNO A	U = 10.0	<i>P</i> < 0.01
		Saline A vs CNO NA	U = 8.0	n.s.
		Saline A vs CNO A	U = 3.50	n.s.
		CNO NA vs CNO A	<i>U</i> = 43.00	n.s.

Drd2 gene expression is upregulated in mPFC of addicted mice					
Figure number	Statistical analysis	Factor name	Statistic value	P-value	
		Persistence to response	K-S = 0.26	P < 0.01	
	Kalmagaray Smirnay	Motivation	K-S = 0.17	n.s.	
	Konnogorov-Simmov	Compulsivity	K-S = 0.29	<i>P</i> < 0.001	
		Pellets intake in the last FR5 session	K-S = 0.14	n.s .	
		Persistence to response			
		WT NA vs WT A	U = 0.00	P < 0.01	
		WT NA vs Glu-CB1-KO NA	U = 7.50	n.s.	
	U Mann-Whitney	WT NA vs Glu-CB1-KO A	U = 3.50	n.s.	
		WT A vs Glu-CB1-KO NA	U = 0.00	P < 0.01	
		WT A vs Glu-CB1-KO A	U = 9.00	n.s.	
		Glu-CB1-KO NA vs Glu-CB1-KO A	U = 2.50	P < 0.05	
		Motivation			
		WT NA vs WT A	t = -3.52	P < 0.01	
	t toot (Equal variances	WT NA vs Glu-CB1-KO NA	t = 1.06	n.s.	
	assumed)	WT NA vs Glu-CB1-KO A	t = -3.70	P < 0.01	
Fig. 4a d	abbanne a)	WT A vs Glu-CB1-KO NA	t = 4.20	P < 0.01	
Fig. 4a-u		WT A vs Glu-CB1-KO A	t = -0.52	n.s.	
		Glu-CB1-KO NA vs Glu-CB1-KO A	t = 4.33	P < 0.01	
		Compulsivity			
	U Mann-Whitney	WT NA vs WT A	U = 2.50	P < 0.05	
		WT NA vs Glu-CB1-KO NA	U = 12.50	n.s.	
		WT NA vs Glu-CB1-KO A	U = 0.00	P < 0.01	
		WT A vs Glu-CB1-KO NA	U = 2.50	P < 0.05	
		WT A vs Glu-CB1-KO A	U = 10.50	n.s.	
		Glu-CB1-KO NA vs Glu-CB1-KO A	U = 0.00	P < 0.01	
		Pellets intake in the last FR5 session			
		WT NA vs WT A	t = -1.20	n.s.	
	t toot (Earral vanian aaa	WT NA vs Glu-CB1-KO NA	t = 2.81	P < 0.05	
	assumed)	WT NA vs Glu-CB1-KO A	t = 1.10	n.s.	
	assumed)	WT A vs Glu-CB1-KO NA	t = 4.47	P < 0.01	
		WT A vs Glu-CB1-KO A	t = 2.51	P < 0.05	
		Glu-CB1-KO NA vs Glu-CB1-KO A	t = 2.20	n.s.	
		Drd2	K-S = 0.27	<i>P</i> < 0.01	
	Kolmogorov-Smirnov	Adora2a	K-S = 0.27	P < 0.001	
	Konnogorov-Smirnov	Gpr88	K-S = 0.22	P < 0.05	
Fig. 4f		Drd1	K-S = 0.25	P < 0.01	
1 ig. +i	t-test (Equal variances	Drd2	t = -2.56	P < 0.05	
	assumed)	Adora2a	t = -2.30	P < 0.05	
	t-test (Equal variances	Gpr88	t = -2.11	P < 0.05	
	not assumed)	Drd1	t = -2.51	P < 0.05	
		Cnr1	K - S = 0.15	n.s.	
	Kolmogorov-Smirnov	Fos	K - S = 0.33	P < 0.001	
		Npas4	K-S = 0.18	n.s.	
Fig. 4h	t-test (Equal variances			P < 0.001	
÷	assumed)		t = 7.78	D 0.0-	
	U Mann-Whitney	Fos	U = 22	P < 0.05	

Supplementary Table 5. Statistical details of experiments shown in Fig. 4 and Supplementary Figure 7

Fig. 4h	t-test (Equal variances			
	assumed)	Npas4	t = 1.49	n.s.
		Tbp	K-S = 0.10	n.s.
	Kolmogorov-Smirnov	Usp11	K-S = 0.17	n.s.
Supplementary		Actb	K-S = 0.17	n.s.
Fig. 7c-e	t test (Esual veniences	Tbp	t = -0.27	n.s.
	t-test (Equal variances	Usp11	t = 0.94	n.s.
	ussumed)	Actb	t = 0.38	n.s.

	Drd	2 overexpression in PL-NAc core pathway promotes compulsivity	7	
Figure number	Statistical analysis	Factor name	Statistic value	<i>P</i> -value
		PL mPFC AAV-control		
	Kolmogorov-Smirnov	Firing rate baseline	K-S = 0.14	n.s.
	Konnogorov-Siminov	Firing rate Quinpirole	K-S = 0.24	n.s.
Fig. 5d	Paired t-test	Firing rate	t = -0.37	n.s.
rig. 5u		PL mPFC AAV-D2R		
	Kolmogoroy-Smirnoy	Firing rate baseline	K-S = 0.30	P < 0.05
	Konnogorov-Siminov	Firing rate Quinpirole	K-S = 0.30	P < 0.05
	Paired t-test	Firing rate	<i>Z</i> = -2.41	P < 0.05
		NAc AAV-control		
		mEPSCs frequency Quinpirole	K-S = 0.21	n.s.
Fig. 5f	Paired t-test	mEPSCs frequency	t = 0.18	n.s.
11g. 51		NAc AAV-D2R		
		mEPSCs frequency Quinpirole	K-S = 0.27	P < 0.05
	Wilcoxon test	mEPSCs frequency	Z = -2.80	P < 0.01
		FR1 (Sessions 1-2)		
		AAV PL	$F_{(1,23)} = 0.01$	n.s
		Sessions	$F_{(1,23)} = 12.19$	P < 0.001
		AAV PL x Sessions	$F_{(1,23)} = 0.72$	n.s
	Repeated measures ANOVA	FR5 (Sessions 3-9)		
Fig. 5h		AAV PL	$F_{(1,23)} = 0.07$	n.s
F1g. 511		Sessions	$F_{(6,184)} = 25.58$	P < 0.001
		AAV PL x Sessions	$F_{(6,184)} = 0.43$	n.s
		FR5 (Sessions 10-24)		
		AAV PL	$F_{(1,23)} = 0.25$	n.s
		Sessions	$F_{(14,322)} = 20.23$	P < 0.001
		AAV PL x Sessions	$F_{(14,322)} = 0.45$	n.s
		Persistence to response	K-S = 0.19	P < 0.05
	Kolmogorov-Smirnov	Motivation	K-S = 0.16	n.s
Fig. 5: 1		Compulsivity	K-S = 0.17	n.s
гі <u>д</u> . 51-к	U Mann-Whitney	Persistence to response	U = 47.00	n.s.
	t-test (Equal variances	Motivation	t = -0.52	n.s.
	assumed)	Compulsivity	t = -2.77	P < 0.05
Fig. 51	Chi square	AAV PL	<i>C-S</i> = 8.57	P < 0.001
		Control		
		Non-reinforced active responses in 10 min and addiction criteria	r = 0.34	P < 0.05
		Breaking point in 5h and addiction criteria	r = 0.66	P < 0.05
F:- 5	D	Compulsivity and addiction criteria	r = 0.06	n.s.
F1g. 5m-0	Pearson correlation	D2R		
		Non-reinforced active responses in 10 min and addiction criteria	r = -0.03	P < 0.05
		Breaking point in 5h and addiction criteria	r = 0.40	n.s.
		Compulsivity and addiction criteria	r = 0.40	n.s.
		qPCR		
Supplementary	Kolmogorov-Smirnov	Drd2 mRNA	K-S = 0.23	P < 0.05
1 ig. ou	U Mann-Whitney	Drd2 mRNA	U = 0.00	P < 0.01
	1		1	1

Supplementary Table 6. Statistical details of experiments shown in Fig. 5 and Supplementary Figure 8-10

		PL mPFC AAV-control	1	
	Kalmagaray Smirnay	Resistance baseline	K-S = 0.27	n.s.
Supplementary	Konnogorov-Simmov	Resistance Quinpirole	K-S = 0.16	n.s.
	Paired t-test	Resistance	t = 0.23	n.s.
Fig. 9b		PL mPFC AAV-D2R		
	V -1 C	Resistance baseline	K-S = 0.18	n.s.
	Kolmogorov-Smirnov	Resistance Quinpirole	K-S = 0.24	n.s.
	Paired t-test	Resistance	t = 2.79	P < 0.05
		PL mPFC AAV-control		
	Kolmogoroy-Smirnoy	Rheobase baseline	K-S = 0.25	n.s.
	nennegeret simmet	Rheobase Quinpirole	K - S = 0.38	P < 0.01
Supplementary	Wilcoxon test	Rheobase	Z = -0.70	n.s.
Fig. 9d		PL mPFC AAV-D2R		
	Kolmogorov-Smirnov	Rheobase baseline	K-S = 0.35	P < 0.01
	fieldingeret Similet	Rheobase Quinpirole	K-S = 0.34	P < 0.01
	Wilcoxon test	Z = -2.67	P < 0.01	
		NAc AAV-control		
	Kolmogorov-Smirnov	mEPSCs amplitude CNO	K-S = 0.26	n.s.
Supplementary	Paired t-test	mEPSCs amplitude	t = -0.15	n.s.
Fig. 9e		NAc AAV-D2R		
	Kolmogorov-Smirnov	mEPSCs Vm CNO	K-S = 0.20	n.s.
	Paired t-test	mEPSCs Vm	<i>t</i> = 1.75	n.s.
		NAc AAV-control		
	Kolmogorov-Smirnov	mEPSCs Vm CNO	K-S = 0.29	n.s.
Supplementary	Paired t-test	mEPSCs Vm	<i>t</i> = -1.15	n.s.
Fig. 9f		NAc AAV-D2R		
	Kolmogorov-Smirnov	mEPSCs Vm CNO	K-S = 0.12	P < 0.05
	Paired t-test	mEPSCs Vm	t = 1.48	n.s.
		PL mPFC AAV-control		
	Kolmogorov-Smirnov	Firing rate baseline	K-S = 0.17	n.s.
		Firing rate Dopamine	K-S = 0.12	n.s.
Supplementary	Paired t-test	Firing rate	<i>t</i> = 1.13	n.s.
Fig. 9h		PL mPFC AAV-D2R		
	Kolmogorov-Smirnov	Firing rate baseline	K-S = 0.35	P < 0.01
	6	Firing rate Dopamine	K-S = 0.35	P < 0.01
	Wilcoxon test	Firing rate	Z = -2.01	P < 0.05
		PL mPFC AAV-control		
	Kolmogorov-Smirnov	Resistance baseline	K-S = 0.19	n.s.
		Resistance Dopamine	K-S = 0.20	n.s.
Supplementary	Paired t-test	Resistance	t = -1.37	n.s.
F1g. 9j		PL mPFC AAV-D2R		
	Kolmogorov-Smirnov	Resistance baseline	K-S = 0.16	n.s.
	~	Resistance Dopamine	K-S = 0.21	n.s.
	Paired t-test	Resistance	t = 6.00	<i>P</i> < 0.001
		PL mPFC AAV-control		
	Kolmogorov-Smirnov	Rheobase baseline	K-S = 0.18	n.s.
	b t t	Rheobase Dopamine	K-S = 0.16	n.s.
Supplementary	Paired t-test	Kheobase	Z = -0.70	n.s.
119.91		PL mPFC AAV-D2R	K G 0.22	D c O O C
	Kolmogorov-Smirnov	Rheobase baseline	K-S = 0.33	P < 0.01
	TT 7'1	Rheobase Dopamine	K-S = 0.15	n.s.
	Wilcoxon test	Kheobase	Z = -2.80	P < 0.01

		Persistence to response	K-S = 0.19	P < 0.05
	Kolmogorov-Smirnov	Motivation	K-S = 0.16	n.s
		Compulsivity	K-S = 0.17	n.s
		Persistence to response		
		Control NA vs Control A	U = 1.00	n.s.
		Control NA vs D2R NA	U = 33.00	n.s.
	U Mann-Whitney	Control NA vs D2R A	U = 13.00	n.s.
		Control A vs D2R NA	U = 1.00	n.s.
		Control A vs D2R A	U = 0.00	n.s.
		D2R NA vs D2R A	U = 14.50	n.s.
		Motivation		
Supplementary		Control NA vs Control A	t = -2.66	P < 0.05
Fig. 10a-c		Control NA vs D2R NA	t = -0.20	n.s.
		Control NA vs D2R A	t = -2.80	P < 0.05
	T-test (Equal variances assumed)	Control A vs D2R NA	t = 1.34	n.s.
		Control A vs D2R A	t = 2.63	n.s.
		D2R NA vs D2R A	t = -1.37	n.s.
		Compulsivity		
		Control NA vs Control A	t = 0.57	n.s.
	t-test (Equal variances	Control NA vs D2R NA	t = -2.27	P < 0.05
	t-test (Equal variances assumed)	Control NA vs D2R A	t = -2.70	P < 0.05
		Control A vs D2R NA	t = -1.05	n.s.
		Control A vs D2R A	t = -0.94	n.s.
		D2R NA vs D2R A	t = -0.96	n.s.
		Body Weight		
		AAV PL	$F_{(1,23)} = 0.00$	n.s
		Weeks	$F_{(3,69)} = 11.29$	<i>P</i> < 0.001
		AAV PL x Weeks	$F_{(3,69)} = 0.53$	n.s
		Food Intake		
Supplementary	Repeated measures	AAV PL	$F_{(1,23)} = 1.24$	n.s
Fig. 10d-f	ANOVA	Weeks	$F_{(3,69)} = 4.23$	<i>P</i> < 0.05
		AAV PL x Weeks	$F_{(3,69)} = 0.65$	n.s
		Kinetics of total activity		
		AAV PL	$F_{(1,22)} = 1.33$	n.s
		Time	$F_{(11,242)} = 28.15$	<i>P</i> < 0.001
		AAV PL x Time	$F_{(11,242)} = 1.09$	n.s

	Gene ID	Mean read counts (Non-addicted)	Mean read counts (Addicted mice)	Log2 Fold Change	p-value	Adjusted p-value
1	Drd2	56.6018054	160.8662034	1.506941284	3.58E-38	7.74E-34
2	Ecel1	77.64410956	197.9691909	1.350327543	2.43E-35	2.62E-31
3	Adora2a	168.7859333	369.9244864	1.132036126	7.78E-35	5.60E-31
4	Syndig11	113.1561661	243.6965918	1.106770872	1.60E-28	5.77E-25
5	Gpr88	687.0699975	1234.927885	0.845897805	7.12E-27	2.20E-23
6	Lrrc10b	142.2415661	282.6513973	0.990680716	3.03E-25	6.54E-22
7	Gpr6	45.39651027	111.9463932	1.302154743	1.03E-24	2.02E-21
8	Drd1	459.6024675	798.510399	0.796924652	1.22E-22	2.02E-19
9	Ppp1r1b	1067.424527	1790.865452	0.746522884	6.36E-22	9.81E-19
10	Rgs9	885.8954502	1478.582089	0.739005989	1.26E-21	1.81E-18
11	Sh3rf2	34.41122537	84.85534273	1.302126232	6.75E-21	8.09E-18
12	Slc5a7	39.33052903	91.35561709	1.215843845	2.13E-19	2.42E-16
13	Penk	783.6319634	1248.165147	0.671560683	1.88E-18	1.76E-15
14	Pde10a	2323.670729	3646.993164	0.650301846	3.85E-18	3.46E-15
15	Hspalb	203.4111568	349.4882397	0.780845099	1.25E-17	1.08E-14
16	Prkcd	205.4579881	341.5377357	0.733201564	2.10E-15	1.68E-12
17	Chat	17.06759663	45.10123577	1.401907044	1.00E-14	7.22E-12
18	Hspala	163.1024926	271.3450752	0.734349895	1.63E-14	1.14E-11
19	Glp1r	18.56124092	47.49588207	1.355509271	4.50E-14	2.78E-11
20	Cd4	24.91278103	55.88781781	1.165647765	5.74E-13	3.02E-10
21	Dlk1	23.52272328	52.46635936	1.157337591	4.78E-12	2.29E-09
22	Thbs4	94.63048848	155.0216073	0.712092339	9.42E-11	3.51E-08
23	Clic6	37.33055701	67.52640259	0.855094666	1.50E-09	4.37E-07
24	Foxj1	73.1750867	118.3823861	0.694029985	4.57E-09	1.17E-06
25	Serpina9	48.4000399	81.37900834	0.749648463	1.01E-08	2.25E-06
26	Top2a	38.44465301	67.87621159	0.820123087	1.12E-08	2.44E-06
27	Mid1	110.7074736	169.3693633	0.613420316	8.95E-08	1.57E-05
28	4932418E24Rik	56.84999912	87.98192951	0.630046914	6.01E-07	8.31E-05
29	Spint1	35.135819	55.35830752	0.655857308	1.33E-05	1.37E-03
30	Ttc21a	24.7930007	40.92264726	0.722966584	4.20E-05	3.61E-03
31	Gpr101	33.72793119	51.42627896	0.60856194	7.37E-05	5.81E-03

Supplementary Table 7. List of differentially expressed upregulated genes between addicted and non-addicted mice

The differentially expressed genes have a fold change > 1.5 fold, P< 0.01 and average read counts > 40.

	GeneID	Mean read counts (Non-addicted)	Mean read counts (Addicted mice)	Log2 Fold Change	p-value	Adjusted p-value
1	Dct	109.3353486	39.12531022	-1.48258581	3.62E-29	1.56E-25
2	Tyrp1	45.84567001	20.33049298	-1.173140283	1.64E-11	6.96E-09
3	H2-Eb1	55.9586155	26.10119876	-1.100244201	7.17E-12	3.29E-09
4	Maff	55.44815072	25.93006392	-1.096513583	9.39E-11	3.51E-08
5	Flnc	194.7909403	91.29721647	-1.093283799	3.02E-23	5.43E-20
6	H2-Aa	57.47972395	27.76640275	-1.049712851	1.49E-11	6.57E-09
7	Slc47a1	72.18625099	34.90031642	-1.048483963	3.39E-13	1.87E-10
8	Slc22a6	242.0156839	117.7981031	-1.038784237	4.62E-26	1.11E-22
9	Slc13a4	339.8016262	172.4680299	-0.9783638	1.24E-26	3.35E-23
10	Cd74	122.1143353	64.54366117	-0.919885251	5.78E-15	4.30E-12
11	Cdh1	48.69093854	25.85653509	-0.91312435	9.11E-09	2.05E-06
12	H2-Ab1	49.11280784	26.13346893	-0.910200666	2.85E-08	5.65E-06
13	Crabp2	50.73144363	27.01937017	-0.908886169	2.21E-08	4.54E-06
14	Wnt6	65.68513716	35.32180676	-0.895007822	3.93E-10	1.26E-07
15	Ptgds	10011.69697	5410.76253	-0.8877827	2.72E-34	1.47E-30
16	Aldh1a2	232.6670426	126.0162471	-0.884657116	4.61E-19	4.98E-16
17	Cyp1b1	128.3799703	70.54725679	-0.863758243	1.57E-13	9.17E-11
18	Fmod	342.9951115	189.2917796	-0.857576255	2.06E-21	2.61E-18
19	Slc6a12	46.43178292	25.9133909	-0.841414868	3.46E-07	5.12E-05
20	Mpzl2	48.36084501	27.11436907	-0.834781852	1.68E-07	2.72E-05
21	Foxd1	47.4052797	26.73721804	-0.826198383	3.19E-07	4.79E-05
22	Fgl2	94.23828715	53.16059862	-0.825955967	1.01E-10	3.69E-08
23	Aebp1	511.1484958	290.7724936	-0.813851675	1.73E-21	2.33E-18
24	Trdn	43.31476733	24.6837131	-0.811299536	2.57E-06	3.11E-04
25	S100a5	54.44701074	31.65568349	-0.782388298	2.51E-07	3.87E-05
26	Gjb2	210.8534879	124.3091354	-0.762308563	3.04E-14	2.05E-11
27	Slc6a20a	341.0821537	201.5841543	-0.758737032	8.88E-17	7.37E-14
28	Ppm1j	71.79725655	42.46683504	-0.757592126	8.15E-08	1.46E-05
29	Prg4	49.23929615	29.14340148	-0.756640867	4.31E-06	5.00E-04
30	Crispld2	73.28988348	43.39205162	-0.756183271	5.27E-08	9.72E-06
31	Sphk1	94.2171474	55.80844351	-0.755506242	1.82E-09	5.09E-07
32	Ptgis	70.5704174	41.96466995	-0.749888309	6.50E-08	1.18E-05
33	Igfbp2	723.1413825	430.3393791	-0.748802875	5.45E-19	5.60E-16
34	Ogn	216.4040394	128.8282767	-0.748278142	4.99E-15	3.85E-12
35	Thbs 1	127.2322628	76.07600904	-0.741951078	3.35E-10	1.11E-07
36	8430408G22Rik	41.1893236	24.74797268	-0.734960088	6.25E-05	5.06E-03
37	Igf2	757.0006486	461.1674896	-0.715003724	1.64E-18	1.61E-15
38	Svep1	128.6590445	79.28488577	-0.698435106	7.11E-10	2.19E-07
39	Shisa8	335.4081077	206.8997684	-0.696985533	1.98E-13	1.12E-10
40	Gpnmb	125.3062407	77.4453185	-0.69420833	1.61E-09	4.64E-07
41	Col13a1	49.8281176	30.98051054	-0.685599154	1.47E-05	1.49E-03

Supplementary Table 8. List of differentially expressed downregulated genes between addicted and non-addicted mice

42	Adamts13	122.068845	76.0663507	-0.682364737	4.36E-09	1.15E-06
43	Npffr2	53.16796688	33.22963043	-0.678087052	2.07E-05	2.01E-03
44	Trh	180.8000167	113.215686	-0.675320954	1.56E-10	5.35E-08
45	Lrrc32	85.01959703	54.10889665	-0.651929598	1.47E-06	1.90E-04
46	Mrc2	314.9115026	200.8114313	-0.649105057	1.11E-12	5.63E-10
47	Slc6a13	380.1193637	242.8111063	-0.646618107	1.28E-13	7.68E-11
48	Osrl	46.57377963	29.81019679	-0.643712068	3.29E-05	2.97E-03
49	Itih2	157.7098947	101.3681152	-0.637669246	1.05E-09	3.11E-07
50	F13a1	94.48726878	60.76323428	-0.636921291	4.31E-07	6.20E-05
51	Myh11	576.2763205	372.2260338	-0.630581778	4.01E-14	2.62E-11
52	Adamts19	297.2769742	192.7192529	-0.625307016	1.76E-11	7.29E-09
53	Aqp1	119.8855643	77.87373835	-0.622449161	2.96E-08	5.80E-06
54	Col3a1	129.4019559	84.4385093	-0.615886409	2.67E-08	5.35E-06
55	Postn	68.0255026	44.54221997	-0.610902247	1.39E-05	1.42E-03
56	Fosb	340.5819776	223.0156766	-0.610856969	6.30E-10	1.97E-07
57	Муос	316.2675853	207.1324891	-0.610591839	4.82E-11	1.89E-08
58	Fibin	71.39925111	46.88618106	-0.606746168	1.33E-05	1.37E-03
59	Acta2	452.4502944	297.5415379	-0.60466822	1.91E-12	9.35E-10
60	Mgp	275.7014721	181.6124811	-0.602243617	1.06E-10	3.82E-08
61	Frmd7	624.8698447	411.6566515	-0.602114182	4.40E-13	2.37E-10
62	Hpse	44.43219398	29.27935274	-0.601721719	2.79E-04	1.77E-02
63	Shisa3	178.8309727	117.915563	-0.600842483	6.72E-09	1.56E-06
64	Ctxn3	48.30369443	31.91896819	-0.59771952	2.84E-04	1.78E-02
65	Mrc1	189.9957818	125.5506139	-0.597698306	4.63E-09	1.18E-06
66	Vipr2	183.3122265	121.2102772	-0.596790986	1.56E-08	3.34E-06
67	Nupr1	80.02454085	53.11965367	-0.591196754	5.76E-06	6.44E-04
68	Cyp26b1	130.0908159	86.56031261	-0.587741501	1.02E-07	1.78E-05
69	Tspan11	41.8793429	27.89117847	-0.586429913	4.75E-04	2.71E-02
70	Emilin1	93.11204912	62.14299767	-0.583376035	3.76E-06	4.39E-04

The differentially expressed genes have a fold change > 1.5 fold, P<0.01 and average read counts > 40.

	GeneID	Mean read counts (WT)	Mean read counts (Glu-CB1-KO)	Log2 Fold Change	p-value	Adjusted p-value
1	Spaca1	2.5818864	413.8064362	7.324386749	0	0
2	Dnah6	92.49892452	244.4641197	1.402114238	1.74E-40	1.88E-36
3	Gm3279	6.618737271	44.03495206	2.734021185	1.53E-34	1.10E-30
4	Nmbr	97.70806547	178.6976333	0.870970965	3.44E-15	7.43E-12
5	Ndst4	448.7878526	703.0002903	0.647491658	6.58E-14	1.18E-10
6	Strip2	979.6659127	1482.008864	0.597192329	7.73E-14	1.28E-10
7	Dnah11	406.0169287	628.0292637	0.629291903	9.22E-14	1.42E-10
8	Shisa8	215.4570524	339.2279093	0.654854547	6.90E-12	8.28E-09
9	Gcnt1	178.8801351	276.1143757	0.62627282	9.30E-11	8.03E-08
10	Scgn	95.00994668	156.610498	0.72103046	1.69E-10	1.40E-07
11	Snora68	191.4693955	293.7446511	0.617448771	3.17E-10	2.45E-07
12	Snora78	174.099957	264.3890279	0.60274646	1.16E-09	7.62E-07
13	Htra4	45.3640974	78.59586393	0.792902439	1.02E-08	5.23E-06
14	Snora70	80.99417938	124.2918029	0.617841015	2.11E-07	7.46E-05
15	Snord8	72.76571116	111.7793	0.61932236	5.29E-07	1.73E-04
16	S100a5	33.96215186	54.16036354	0.673309551	7.76E-06	1.78E-03
17	Snora31	40.12685021	61.55568439	0.617324174	4.39E-05	7.45E-03
18	Rhcg	28.99370161	44.15639058	0.606882715	5.05E-04	5.02E-02

Supplementary Table 9. List of differentially expressed upregulated genes between WT and Glu-CB1-KO mice

The differentially expressed genes have a fold change > 1.5 fold, P<0.01 and average read counts > 40.

	GeneID	Mean read counts (WT)	Mean read counts (Glu-CB1-KO)	Log2 Fold Change	p-value	Adjusted p-value
1	Egr2	219.1145629	111.0433213	-0.980562748	6.97E-20	3.20E-16
2	Neurod6	1184.883595	702.1656958	-0.754861912	7.41E-20	3.20E-16
3	Cnr1	4713.295932	2917.140044	-0.692181618	7.31E-19	2.54E-15
4	Fos	695.9900747	406.8582808	-0.774540378	8.23E-19	2.54E-15
5	Igf2	742.0334482	446.5903835	-0.732532034	4.17E-17	1.13E-13
6	Nr4a1	1921.816765	1219.182576	-0.6565566	2.36E-16	5.67E-13
7	Flnc	180.1639633	97.67533014	-0.883244338	1.79E-14	3.51E-11
8	Myh11	564.7140441	363.6854509	-0.634829298	1.47E-12	1.98E-09
9	Acta2	446.5915513	287.4901399	-0.635443482	5.49E-12	6.97E-09
10	Dusp1	557.9952555	369.6287871	-0.594175736	9.38E-12	9.76E-09
11	Fosb	338.2003962	212.8635759	-0.667949245	9.44E-12	9.76E-09
12	Adamts1	333.3179029	210.9272924	-0.660153027	1.51E-11	1.48E-08
13	Tagln	340.9161734	226.7480564	-0.58832686	8.94E-10	6.43E-07
14	Bgn	229.3193043	146.8568425	-0.64294732	9.31E-10	6.48E-07
15	Fmod	314.3889502	207.1767176	-0.601688629	1.74E-09	1.07E-06
16	Gjb2	198.8190975	129.4017956	-0.619598704	1.25E-08	6.28E-06
17	Maff	52.53188811	26.21459745	-1.002823047	1.31E-08	6.42E-06
18	Serping1	142.336893	89.53989395	-0.668707135	1.37E-08	6.58E-06
19	Dct	90.51008653	54.33284849	-0.736253892	3.39E-08	1.46E-05
20	Lrrc32	84.98337226	50.71864912	-0.744664273	8.10E-08	3.30E-05
21	Cd74	111.1725017	71.52027186	-0.636375858	3.85E-07	1.32E-04
22	Lrrc17	46.24384681	26.44909033	-0.80604331	4.97E-06	1.29E-03
23	Wnt6	59.53434242	39.4657414	-0.593121276	1.32E-04	1.78E-02
24	Cd6	44.91230009	28.93651197	-0.63421958	2.98E-04	3.34E-02
25	Osrl	44.91944846	29.96953679	-0.583843428	8.69E-04	7.55E-02
26	Cdh1	44.06864161	28.96885318	-0.605249855	1.11E-03	8.78E-02

Supplementary Table 10. List of differentially expressed downregulated genes between WT and Glu-CB1-KO mice

The differentially expressed genes have a fold change > 1.5 fold, P < 0.01 and average read counts > 40.

Supplementary Methods:

Animals. Male mice, aged 2-4 months, were housed individually in a temperature- and humidity-controlled laboratory conditions (21 ± 1°C, 55 ± 10%) maintained with food and water *ad libitum*. Mice were tested during the dark phase of a reverse light cycle (lights off at 8.00 a.m and on at 20.00 p.m). Firstly, we used Glu-CB1-KO mice (CB1 floxed/floxed; Nex-Cre/+ mice), lacking CB₁R in dorsal telencephalic glutamatergic neurons, and their wild-type (WT) littermates in C57BL/6N background¹⁻⁴. Secondly, we used Nex-Cre/+ mice expressing Cre recombinase in dorsal telencephalic glutamatergic neurons⁵ and also WT JAXTM C57BL/6J (C57BL/6J) mice purchased from Charles River (France). All experimental protocols were performed in accordance with the guidelines of the European Communities Council Directive 2010/63/EU and approved by the local ethical committee (Comitè Ètic d'Experimentació Animal-Parc de Recerca Biomèdica de Barcelona, CEEA-PRBB, agreement N°9687). In agreement, maximal efforts were made to reduce the suffering and the number of mice used.

Behavioral experiments. *Operant behavior apparatus*. Mouse operant chambers (Model ENV-307A-CT, Med Associates, Georgia, VT, USA) were used for operant responding maintained by chocolate-flavored pellets. The operant chambers were equipped with two retractable levers, one randomly selected as the active lever and the other as the inactive. Pressing on the active lever resulted in a food pellet delivery paired with a stimulus-light (associated-cue), located above the active lever, and while pressing on the inactive lever had no consequences. A food dispenser equidistant between the two levers permitted the delivery of food pellets when required. The floor of the chambers was a grid floor that served to

deliver electric food shocks in the session of shock-test and served as a contextual cue in the session of shock-associated cue the day after the shock session. During the rest of self-administration sessions, a metal sheet with holes was placed above the grid floor. Thus, mice could discriminate between different contexts. The chambers were made of aluminum and acrylic and were housed in sound- and light-attenuated boxes equipped with fans to provide ventilation and white noise.

Food pellets. During the operant conditioning sessions, after active responding by lever pressing, animals received a 20 mg chocolate-flavored pellet, which is a highly palatable isocaloric pellet (TestDiet, Richmond, IN, USA). These pellets had a similar caloric value (3.44 kcal/g: 20.6% protein, 12.7% fat, 66.7% carbohydrate) of standard maintenance diet provided to mice in their home cage (3.52 kcal/g: 17.5% protein, 7.5% fat, 75% carbohydrate) with some slight differences in their composition: addition of chocolate flavor (2% pure unsweetened cocoa) and modification in the sucrose content. Indeed, although the carbohydrate content was similar in standard diet (75%) and in highly palatable isocaloric pellets (66.7%), the proportion of sucrose content in standard diet food was 8.3% and in highly palatable isocaloric pellets 50.1%.

Impulsivity. Non-reinforced active responses during the time-out periods (10 s) after each pellet delivery were measured as impulsivity-like behavior indicating the inability to stop a response once it is initiated⁶. The three consecutive days before the progressive ratio were considered.

Shock-induced conditioned suppression. Non-reinforced active responses during the following session after the shock-test were measured for the aversive associative learning.

Mice were placed in the self-administration chamber during 50 min with the same grid floor used during the shock-test. However, during this session, pressing the active lever had no consequences, no shock, no chocolate-flavored pellets and no cue-light.

Locomotor activity. Locomotor activity was evaluated by using individual locomotor activity boxes $(10.8 \times 20.3 \times 18.6 \text{ cm}, \text{Imetronic}, \text{Pessac}, \text{France})$ equipped with infrared sensors to detect locomotor activity and an infrared plane to detect rearings. The boxes were provided with a removable cage, a sliding floor, a trough and a bottle. Mice were placed in the boxes during 2 h and the kinetics of the total activity (number of beam breaks) was recorded in blocks of 10 min.

Drugs. For the surgery procedure, ketamine hydrochloride (Imalgène; Merial Laboratorios S.A.) and medetomidine hydrochloride (Domtor; Esteve, Spain) were mixed and dissolved in sterile 0.9% physiological saline and administered intraperitoneally (i.p., 75 mg/kg and 1 mg/kg of body weight respectively) to anesthetize the mice. After surgery, anesthesia was reversed by a subcutaneous (s.c.) injection of atipamezole hydrochloride (Revertor; Virbac, Spain; 2.5 mg/kg of body weight) dissolved in sterile 0.9% physiological saline. In addition, mice received an i.p. injection of gentamicine (Genta-Gobens; LaboratoriosNormon, Spain; 1 mg/kg of body weight) and a s.c. injection of meloxicam (Metacam; BoehringerIngelheim, Rhein; 2 mg/kg of body weight) both dissolved in sterile 0.9% physiological saline.

For the activation of the inhibitory designer receptors exclusively activated by designer drugs (hM4Di-DREADD), clozapine N-oxide (CNO) (Enzo Life Sciences, NY) was administered using Alzet osmotic minipumps (Model 2004; alzet, Cupertino, CA) filled previously with CNO (diluted in 0.9% sterile saline; 5 mg/mL) or saline. The osmotic minipump was

implanted s.c. in the back of the mice under brief isofluorane anesthesia. Minipumps delivered a constant s.c. flow rate of 0.25 μ l/h for 28 days.

For electrophysiological studies, we used WIN55,212-2 5 μ M (Sigma-Aldrich, Spain), rimonabant 4 μ M (Sanofi-Aventis, Spain), quinpirole hydrochloride 2 μ M (Sigma-Aldrich, Spain) and dopamine hydrochloride 10 μ M (Sigma-Aldrich, Spain).

RT-PCR validation. RNA was reverse transcribed using High Capacity RNA-to-cDNA kit (Applied Biosystems, 4390778). Primers for Taqman® Gene Expression Assay were purchased from Applied Biosystems. Real time PCR analysis was carried out with the following primers (gene name: probe code): Actb: Mm02619580 g1; Adora2a: Mm00802075 m1; Mm00432621 s1; Mm00438545 m1; Cnr1: Drd2: Drd1: Mm01302932 g1; Mm02620146 s1; Fos: *Gpr88*: Mm02620353 s1; Npas4: Mm01227866 g1; Tbp: Mm01277042 m1; Usp11: Mm00455198 m1. Relative expression of mRNAs was determined after normalization with housekeeping genes using the $\Delta\Delta Ct$ method. We measured the gene expression of three different housekeeping genes (Tbp, Usp11, actin) in these samples using qPCR in order to verify that the expression of these genes was not affected by the operant model of food addiction used, as represented in Supplementary Material (Supplementary Figure 7c-e). Regarding the normalization of differentially expressed genes in qPCR validation, all validated differentially expressed genes were normalized using Tbp as housekeeping gene, although the same significant changes were also found using the other two housekeeping genes (Usp11, actin).

Furthermore, we measured the Drd2 mRNA levels in the mPFC of control and D₂Roverexpressing mice by qPCR. qPCR analysis was carried out using designed specific forward (TGCAGACCACCACCAACTAC) and reverse (GGAGGTGGTAGGTGAGTGGAAA) primers to target both mouse and human Drd2coding sequence and specific designed specific forward (CTCTGCTCCTCCTGTTCC) and reverse (TCCCTAGACCCGTACAGTGC) primers for mouse Gapdh coding sequence. Designed primers and cDNA extracted from brain samples were used to carry the qPCR experiments following the same procedure and experimental conditions as described above, except that here SYBR Green methodoloy was applied (Life Technologies). Relative mRNA levels were determined after normalization with Gapdh as housekeeping gene using the $\Delta\Delta$ Ct method.

Immunofluorescence studies. *Tissue preparation for immunofluorescence:* Mice were deeply anesthetized by i.p. injection (0.2 ml/10 g of body weight) of mixture of ketamine/medetomidine prior to intracardiac perfusion with 4% paraformaldehyde (PFA) in 0.1 M Na₂HPO₄/ 0.1 M NaH₂PO₄ buffer (PB), pH 7.5, delivered with a peristaltic pump at 30 ml per min for 2 min. Subsequently, brains were extracted and post-fixed with 4% PFA for 24 h and transferred to a solution of 30% sucrose at 4 °C. Coronal frozen sections (30 µm) of the PL and NAc core were obtained on a freezing microtome and stored in a 5% sucrose solution at 4°C until use.

Immunofluorescence: Free-floating slices were rinsed in 0.1 M PB, blocked in a solution containing 3% normal goat serum and 0.3% Triton X-100 in 0.1M PB (NGS-T-PB) at room temperature for 2 h, and incubated overnight at 4°C in the same solution with the primary antibody to anti-Cre recombinase (1:500, mouse, MAB3120, Merck Millipore), anti-D₂R (1:1000, rabbit, D2R-Rb-Af96, Frontier Institute), anti-mVenus/GFP (1:1000, chicken,

ab13970, Abcam) or anti-GFP (1:500, rabbit, GTX20290, GeneTex).On the next day, after 3 rinses in 0.1 M PB, sections were incubated with the secondary antibody AlexaFluor-488 donkey anti-mouse (1:500, Life Technologies) or AlexaFluor-488 donkey anti-rabbit (1:500, Life Technologies) at room temperature in NGS-T-PB for 2 h. After incubation, sections were rinsed and mounted immediately after onto glass slides coated with gelatine in Fluoromount mounting medium.

Confocal microscope: The stained sections of the brain were analyzed with Leica TCS SP5 CFS (fixed stage) upright confocal microscope with two non-descanned HyD detectors.

Confocal imaging of mVenus and D₂R was performed using Visiscope 5-Elements spinning disk confocal system (Visitron Systems, Germany), equipped with Yokogawa CSU-W1 scan head and Prime BSI sCMOS camera (2048 x 2048 pixels, 6.5 μ m pixel size, Photometrics). The laser lines of 488 nm and 561 nm were used for the fluorescence excitation and the fluorescence emission was filtered using filters 525/30 bandpass (Chroma) and 570 longpass (Chroma) for GFP and Alexa Fluor 546 respectively. The imaging was performed sequentially to minimize the spectral crosstalk. The large overview of the whole brain sections was imaged in tile scan mode using CFI Plan Apo Lambda 10x/ 0.45 NA air (Nikon) objective (effective pixel size of 665 nm). The zoomed-in regions were imaged using CFI Plan Apo VC 60x/ 1.2 NA Water immersion objective and an extra 2x magnification lens in the emission beam path (effective pixel size of 56 nm). The images were processed using the ImageJ analysis software

Fluorescence *in situ* hybridization. Double fluorescence *in situ* hybridization experiments were performed on coronal cortical sections and mPFC (PL and IL) and NAc were analyzed

using FITC labeled riboprobe for *Cre* recombinase and digoxigenin labeled riboprobe for dopamine D₂ receptor gene (*Drd2*) to detect *Cre/Drd2* double positive neurons to confirm the presence of both the endogenous *Drd2* mRNA and the mRNA of the injected *Cre* recombinase gene in the targeted cells. This cell population in the mPFC was analyzed in three AAV-retrograde-Cre injected WT C57BL/6J animals to determine overlapping expression *of Drd2* and of retrogradely travelled *Cre* recombinase-expressing virus. Slides with 6 parallel coronal sections of 3 animals, injected with AAV-retrograde-Cre were analyzed, containing NAc, PL and IL cortex (and striatum), the sections covering cortical region 2.10 - 1.18 mm anterior to bregma.

Adult WT C57BL/6J mice, injected in week 10-14 were sacrificed 4 weeks after injection by cervical dislocation. Brains were removed, snap-frozen on dry ice and stored at -80°C. After removing from -80°C, brains were mounted on Tissue Freezing Medium (Leica Biosystems) and 18 µm-thick coronal sections were cut from the frozen forebrain on a cryostat Leica CM3050 S, dried on a 42°C warming plate and stored at -20°C until used.

Both digoxigenin (DIG) and fluorescein isothiocyanate (FITC) labeled riboprobes were used. The DNA template for *Drd2* probe was originally generated by RT-PCR from cDNA derived from total mouse brain, previously reported⁷. GenBank accession number, primer sequences and length of probe are listed therein. For a riboprobe specific for *Cre* recombinase RNA, we isolated the stretch of cDNA from *Cre* recombinase sequence of the AAV-retrograde-Cre (Addgene vector AAV pmSyn1-EBFP-Cre) using a forward primer which contains at the 5' end also the EcoR1 recognition sequence as well as 5 nucleotides at the very 5'end (fw primer 5'-ACTATGAATTCCGAGTGATGAGGTTCGCAAG-3') and the reverse primer containing at the 5' end the XhoI recognition sequence preceded by 5 nucleotides (rev primer 48 5'-AACTACTCGAGCCGGTATTGAAACTCCAGCG-3') resulting in a 867 bp product. PCR products were cloned into pBluescript KS⁻ and used as templates for riboprobe synthesis as described. The identity of subcloned fragments was checked by sequencing. Linearized template DNA was column purified (PCR purification kit, Invitrogen), resuspended in diethyl pyrocarbonate (DEPC)-treated H₂O at a concentration of 1 μ g/ μ l, and stored at -20°C. For both probes *in vitro* transcription was carried out for 3 h at 37°C in a total volume of 20 μ l containing 2 μ g of linearized plasmid with inserts of desired genes *Drd2* or *Cre recombinase*. Restriction enzymes (New England Biolabs) used for linearization and RNA polymerases used for each probe were as described⁷: *Cre* recombinase antisense: EcoRI, T3; *Cre* recombinase sense: XhoI, T7; *Drd2* antisense: BamHI, T3; Drd2 sense: Eco RI, T7. Pretreatment, hybridization and visualization of signals in fluorescent *in situ* hybridization procedure was carried out as described⁸. Digoxigenin labeled *Drd2*riboprobe was used at a final concentration of 1000 ng/ml hybridization mix, FITC-labeled *Cre* recominase riboprobe at 800 ng/ml.

Supplementary Notes:

Glu-CB1-KO mice display resilience to food addiction

Two additional phenotypic traits considered as a factors of vulnerability to addiction, impulsivity and sensitivity to aversive associative learning, were also evaluated. First, the impulsivity was measured by the inability to stop an action once initiated (responding during the time-out period after each pellet delivery, 10 sec). Glu-CB1-KO mice showed significantly less impulsivity than WT mice only in the late period (U Mann-Whitney, P<0.01, Supplementary Figure 1e). Secondly, the aversive associative learning was tested by the ability of the shock-associated cue to suppress pellets seeking the day after the shock-test. Here, in both early and late periods, Glu-CB1-KO mice showed a significantly increased learning with high suppression of food seeking compared to WT mice (U Mann-Whitney, P<0.01, Supplementary Figure 1f).

Inhibition of glutamatergic PL neurons promotes food addiction-like behavior

Based on our above observations of decreased development of food addiction in Glu-CB1-KO and increased excitatory transmission in mPFC of these mutants, we hypothesized that on the other hand hypoactivity of glutamatergic transmission in mPFC would promote addictive-like behavior in WT mice when exposed to the palatable food addiction model. To this end, we used a chemogenetic approach to selectively reduce the activity of all the glutamatergic neurons in the PL. We selectively expressed the hM4Di-DREADD in glutamatergic neurons by bilateral injections of a Cre-dependent AAV expressing hM4Di-DREADD (AAV8-hSyn-DIO-hM4D(Gi)-mCherry) into the PL of Nex-Cre mice (Supplementary Figure 4a). Nex-Cre mice express the Cre recombinase specifically in dorsal 50 telencephalic glutamatergic neurons. Monitoring of mCherry expression allowed to verify injection sites (Supplementary Figure 4b). Next, we aimed at validating our approach by using whole-cell current clamp recordings in L5 of visually identified hM4Di-mCherry-expressing PL neurons in the presence of the selective exogenous ligand clozapine-N-oxide (CNO). We observed reduced excitability of identified hM4Di-expressing PL glutamatergic neurons. CNO application blocked current-evoked action potential firing caused by a decreased membrane resistance (paired t-test, P<0.05, Supplementary Figure 4c and Wilcoxon test, P<0.05, Supplementary Figure 4d). No significant differences in the firing rate, membrane resistance nor in rheobase were found when CNO was applied in mPFC slices of mice not expressing the hM4Di receptors, suggesting that these CNO-induced effects were selectively mediated by hM4Di receptor activation (Fig. 3d, Supplementary Figure 6b-d).

Therefore, we expected to induce a vulnerable phenotype in those mice expressing inhibitory DREADD in PL when chronically induced hypoactivity of excitatory glutamate transmission using CNO minipumps, leading to the development of food addiction already in the early training period. We trained Nex-Cre mice (n=27) to self-administer chocolate-flavored pellets in the operant chambers under FR1 (2 sessions) and FR5 (3 sessions) schedule of reinforcement before AAV injection and under FR5 (4 sessions) after injection to recover the basal levels of responding (Supplementary Figure 4e). Then, an osmotic minipump filled with CNO (n=14) or saline (n=13) was subcutaneously implanted in the back of each mouse. During the chronic CNO exposure (4 weeks, $0.25 \,\mu$ l/h) with the subsequent inhibition of the glutamatergic PL neurons, mice underwent FR5 sessions for four weeks, and the three food addiction-like criteria were evaluated in the last week. No significant differences between CNO and saline treated mice without inhibitory DREADD expression were found in operant 51

responding (Supplementary Figure 5a-d), discarding unspecific effects of CNO. In addition, no effect of CNO was found in other parameters, such as body weight, food intake and locomotor activity in mice expressing the inhibitory DREADD (Supplementary Figure 5eg). Nex-Cre mice expressing hM4Di receptor activated chronically by CNO showed the same number of reinforcers obtained in the daily sessions of the operant conditioning maintained by chocolate-flavored pellets compared to saline treated animals (Supplementary Figure 4f). With regards to the three addiction-like criteria, no differences were obtained in persistence to response, motivation or compulsivity between CNO and saline treated animals (Supplementary Figure 4g-i). Even so, when analyzing the distribution of the individual values, 60% of hM4Di expressing mice were above or equal to the 75th percentile threshold of the control group in motivation and compulsivity criteria. In agreement, 42.8% of mice with the inhibition of glutamatergic PL neurons accomplished the criteria of addiction as compared to 15.4% of saline treated mice (chi-square, P < 0.01, Supplementary Figure 4i), suggesting that a decreased excitability of glutamatergic transmission in PL neurons which most likely project to other distinct brain areas is involved in the development of this addictive behavior towards highly palatable food. Positive correlations showed that the intensity of the three food addiction-like criteria was proportional to the number of criteria obtained by the mouse in CNO group and in the persistence to response in saline group (Supplementary Figure 4k-m and the classification od addicted mice showed higher values in both saline and CNO treated mice (Supplementary Figure 5 h-j).

Quantification of cells co-expressing Drd2 and Cre mRNA

For quantification of cells co-expressing *Drd2* and *Cre* mRNA in PL, we counted about 500 cells each on sections from AAV-retrograde-Cre (AAVrg-pmSyn-EBFP-Cre) injected animals. Sections were hybridized with riboprobes for *Drd2* and *Cre*. There were less *Cre*-positive than *Drd2*-positive cells, showing that the injected *Cre*-expressing virus into NAc targeted the region of interest, i.e., PL, but not all *Drd2* expressing cells in PL.

Supplementary References

- 1. Bellocchio, L. *et al.* Bimodal control of stimulated food intake by the endocannabinoid system. *Nat. Neurosci.* **13**, 281–3 (2010).
- Martín-García, E. *et al.* Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. *Neuropsychopharmacology* 41, 2192–2205 (2016).
- Monory, K. *et al.* The endocannabinoid system controls key epileptogenic circuits in the hippocampus. *Neuron* 51, 455–466 (2006).
- Marsicano, G. *et al.* The endogenous cannabinoid system controls extinction of aversive memories. *Nature* 418, 530–4 (2002).
- Goebbels, S. *et al.* Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. *genesis* 44, 611–621 (2006).
- Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. *Neuropsychopharmacology* 35, 217–38 (2010).
- Hermann, H., Marsicano, G. & Lutz, B. Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. *Neuroscience* 109, 451–460 (2002).
- Zimmermann, T. *et al.* Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus. *Cereb. Cortex* 28, 4454–4471 (2018).