Supporting Information

Cu–Pd Single-Atom Alloy Catalyst for Efficient NO reduction

Feilong Xing,† Jaewan Jeon,† Takashi Toyao,†,‡

Ken-ichi Shimizu,†,‡ Shinya Furukawa,*,†,‡

† *Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan* ‡*Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan*

> *E-mail: furukawa@cat.hokudai.ac.jp, Tel: +81-11-706-9162, Fax: +81-11-706-9163*

sample	shell	N	$R(\AA)$	ΔE (eV)	$\sigma^2(\AA^2)$	R-factor
Pd black	$Pd-Pd$	12(fix)	2.74 ± 0.00	6.1 ± 0.3	0.006	0.002
Pd/Al_2O_3	$Pd-Pd$	8.1 ± 0.7	2.73 ± 0.00	4.7 ± 0.6	0.009	0.010
$CuPd/Al_2O_3$	Pd–Cu	4.6 ± 0.6	2.60 ± 0.02	4.7 ± 2.5	0.004	0.004
	$Pd-Pd$	6.0 ± 0.5	2.65 ± 0.01	3.9 ± 0.8	0.009	
$Cu5Pd/Al2O3$	Pd-Cu	8.4 ± 0.9	2.57 ± 0.01	21 ± 13	0.007	0.010

Table S1. Summary of EXAFS curve fitting for Pd-based catalysts.

Figure S1. XRD patterns of Cu/Al₂O₃, Pd/Al₂O₃, and Cu–Pd/Al₂O₃. The Cu–Pd solid-solution alloy phases with bimetallic composition close to that of the fed ratio were formed: $Cu/Pd = 1$, $Cu_{0.5}Pd_{0.5}$; $Cu/Pd = 3$, $Cu_{0.75}Pd_{0.25}$; $Cu/Pd = 5$, $Cu_{0.83}Pd_{0.17}$. The diffraction peak intensity changes depending on the metal loadings as summarized Table 1.

Figure S2. HAADF-STEM images of (a) $Cu₅Pd/Al₂O₃$ and (b) $Cu/Al₂O₃$.

Figure S3. Pd K-edge XANES spectra of Pd-based catalysts.

Figure S4. Pd K-edge *k* 3 -weighted EXAFS oscillations of Pd-based catalysts.

Figure S5. Fourier-filtered EXAFS oscilations (solid curve) and the curve fit (dashed line) for (a) Pd/Al_2O_3 , (b) CuPd/Al₂O₃E ,and (c) Cu₅Pd/Al₂O₃.

Figure S6. (a) NO conversion and (b) N_2 selectivity in NO+CO reaction over Pd/Al₂O₃, Cu/Al₂O₃, and Cu_xPd/Al₂O₃ catalysts.

Figure S7. C_{N_2} and C_{N_2O} in NO+CO+O₂ and NO+CO+O₂+C₃H₆ reactions over Cu₅Pd/Al₂O₃, $Cu/Al₂O₃$, and $Pd/Al₂O₃$ catalysts.

Figure S8 Dependence of reaction rate on NO and CO partial pressures (P_{NO} and P_{CO} , respectively) in NO reduction by CO over $Cu/Al₂O₃$ and $Cu₅Pd/Al₂O₃$.

Figure S9. Optimized structures of adsorbates and the corresponding transition states during (NO)₂ dimer formation and its subsequent decomposition to N_2O and O over (a) Cu(211) and (b) Pd substituted Cu(211). For clarity, metal atoms in the sub-surface region are shown as small dots.

Figure S10. Energy diagrams of CO oxidation over Cu(111) and Pd-substituted Cu(111) surfaces. Total energy of the slab plus free $CO₂$ was set zero. TS search was performed with the intermediate structure $(CO \cdot O)$ as a tentative final state.

Figure S11. Energy diagrams of N₂O bending (IS \rightarrow MS) and its subsequent decomposition to N₂ and O ($MS \rightarrow FS$) over (a) Cu(111) and (b) Cu(211) surfaces. For Cu(211), conversion from IS to MS was barieer-less. Total energy of slab and free N_2O was set to zero.

Figure S12. Optimized structures of adsorbates (IS, MS, and FS) and the corresponding transition states (TS1 and TS2) during N₂O bending and its subsequent decomposition to N₂ and O over (a) Cu(111) and (b) Cu(211) surfaces. For clarity, metal atoms in the sub-surface region are shown as small dots.

Kinetic Analysis

A Langmuir-Hinshelwood type mechanism

with an $(NO)_2$ dimer formation and decomposition was considered for NO–CO reaction over Cubased catalysts as follows:

where, σ indicates an adsorption site. Each step can be regarded to be in equilibrium except when it is the rate-determining step. Therefore, the equilibrium constants are generally defined as follows:

$$
K_1 = \theta_{NO} / P_{NO} (1 - \theta)
$$

\n
$$
K_2 = \theta_{CO} / P_{CO} (1 - \theta)
$$

\n
$$
K_3 = \theta_{(NO)_2} / \theta_{NO}^2
$$

\n
$$
K_4 = \theta_{N_2 O} \theta_O / \theta_{(NO)_2}
$$

\n
$$
K_5 = P_{N_2} \theta_O / \theta_{N_2 O}
$$

\n
$$
K_6 = P_{CO_2} (1 - \theta)^2 / \theta_{CO} \theta_O
$$

\n
$$
K_7 = P_{N_2 O} (1 - \theta) / \theta_{N_2 O}
$$

where, P_{X} , θ_{X} , and $1 - \theta$ are the partial pressure of *X*, coverage of *X*, and percentage of vacant site: $1 - (\theta_{NQ} + \theta_{CO} + \theta_{(NO)_2} + \theta_{N_2O} + \theta_{O})$, respectively.

Assuming that NO adsorption (1) is the rate determining step, the overall reaction rate can be expressed using a rate constant *k* as follows:

$$
r = kP_{NO}(1 - \theta)
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed as follows: $a = K_3^{-0.5} K_4^{-1.5} K_5^{-1.5} K_7^{-2} P_{N_2}^{-1.5} P_{N_2 0}^2$ $c = -1$

$$
b = K_7{}^{-1}P_{N_2}o(K_3{}^{-0.5}K_4{}^{-0.5}K_5{}^{0.5}P_{N_2}{}^{-0.5} + K_5{}^{-1}K_6{}^{-1}K_7{}^2P_{CO_2}P_{N_2}P_{N_2}o^{-2} + K_3P_{N_2}{}^{-1} + 1) + 1
$$

Based on these, the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be described as follows: $x = 1$, $y = 0$.

This indicates the first- and zero-order dependences of *r* on P_{NQ} and P_{CQ} , respectively. This does not agree with the experimental results.

Assuming that CO adsorption (2) is the rate determining step, the overall reaction rate can be expressed using a rate constant *k* as follows:

$$
r = kP_{CO}(1 - \theta)
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed those shown in the solution for (1).

Based on these, the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be described as follows: $x = 0$, $y = 1$.

This indicates the zero- and first-order dependences of r on P_{N0} and P_{C0} , respectively, which is inconsistent with the experimental results.

Next, we assume that NO dimerization (3) is the rate determining step: the overall reaction rate can be expressed using a rate constant *k* as follows:

$$
r = kK_1 P_{NO}^2 (1 - \theta)^2
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed as follows: $a = K_4^{-1} K_5 K_7^{-2} P_{N_2}^{-1} P_{N_2}^{ }^2$

$$
b = K_1 P_{NO} + K_2 P_{CO} + K_7{}^{-1} P_{N_2O}(K_5 P_{N_2}{}^{-1} + 1) + 1
$$

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: $2 < x < 4$, $0 < y < 2$. This does not agree with the experimental results with negative *x*.

Assuming that N–O bond scission of $(NO)_2$ dimer (4) is the rate determining step, the overall reaction rate can be expressed using a rate constant *k* as follows:

$$
r = kK_1^2 K_3 P_{NO}^2 (1 - \theta)^2
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed as follows: $a = K_1^2 K_3 P_{N0}^2$

$$
b = K_1 P_{NO} + K_2 P_{CO} + K_7^{-1} P_{N_2 O}(K_5 P_{N_2}^{-1} + 1) + 1
$$

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: $-2 < x < 0$, $0 < y < 2$, which is well consistent with the experimental orders for both $Cu/Al₂O₃$ and $Cu₅Pd/Al₂O₃$.

Then, we assume that N_2O decomposition (5) is the rate determining step, affording the overall reaction rate expressed as follows:

$$
r = kK_7{}^{-1}P_{N_2}o(1-\theta)
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed as follows: $a = K_2^{-1}K_4^{-1}K_6^{-1}K_7^{-1}P_{N_20}P_{CO_2}P_{CO}^{-1}$

$$
b = K_1 P_{NO} + K_2 P_{CO} + K_7{}^{-1} P_{N_2O}(K_5 P_{N_2}{}^{-1} + 1) + 1
$$

Based on these, the ranges of the reaction orders for $P_{N0}(x)$ and $P_{C0}(y)$ on the overall reaction rate should be as follows: $0 < x < 1$, $0 < y < 2$, which is inconsistent with the experimental results with negative *x*.

When CO oxidation (6) is assumed as the rate determining step, the overall reaction rate is expressed as follows:

$$
r = kK_2K_5K_7{}^{-1}P_{N_2}{}^{-1}P_{N_20}P_{CO}(1-\theta)^2
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed those shown in the solution for (3).

Based on these, the ranges of the reaction orders for $P_{NO}(x)$ and $P_{CO}(y)$ on the overall reaction rate should be as follows: $0 < x < 2$, $1 < y < 3$. This does not agree with the experimental results.

When $N₂O$ desorption (7) is assumed as the rate determining step, the overall reaction rate is expressed as follows:

$$
r = kK_2^{-1}K_5^{-1}K_6^{-1}P_{N_2}P_{CO_2}P_{CO}^{-1}(1-\theta)
$$

here, $1 - \theta$ is expressed using the equilibrium constants and P_X as follows:

$$
1 - \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

where, a, b, and c are expressed as follows: $a = K_2^{-1}K_4^{-1}K_5^{-1}K_6^{-1}P_{N_2}P_{CO_2}^{2}P_{CO_2}^{2}$

$$
b = K_1 P_{NO} + K_2 P_{CO} + K_2^{-1} K_6^{-1} P_{CO_2} (K_5^{-1} P_{N_2} + 1) P_{CO}^{-1} + 1
$$

Based on these, the ranges of the reaction orders for $P_{N0}(x)$ and $P_{C0}(y)$ on the overall reaction rate should be as follows: $0 < x < 1$, $1 < y < 3$. This does not agree with the experimental results.

Thus, assuming N–O bond scission of $(NO)_2$ dimer (4) as the rate-determining step exclusively gave the reaction order ranges consistent with the experiment. On the basis of these results, we concluded that the rate-determining step of NO–CO reaction over Cu-based catalysts is N–O bond scission of $(NO)₂$ dimer.

<i>reponding Table 1. Building y of Raction Gracis</i>						
$r = k P_{\text{NO}}^x P_{\text{CO}}^y$						
$x=1$	$y=0$					
$x=0$	$y=1$					
2 < x < 4	$0 < y < -2$					
$-2 < x < 0$	0 < y < 2					

Appendix Table 1. Summary of reaction orders

