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APPENDIX 

Individual estimates of lifetime risk of prostate cancer from data on polygenic 
susceptibility 

 
This appendix outlines the calculation of lifetime risk of a disease for an individual at a given 
age from genetic information on presence or absence of number of risk alleles and population 
data on mortality and disease incidence. The approach taken here is based on the life-table 
methods for heterogeneous populations introduced in Vaupel, Manton & Stallard (1979) and 
further developed in Hougaard (1984). The methods presented can easily be adapted to 
computation of other absolute risks, e.g. the risk of disease in the next 10 years.  

First, the basic notation and a formula for lifetime risk in a homogeneous population are 
introduced and a general formula for the lifetime risk in a heterogeneous population is then 
derived using the concept of a frailty. Useful formulas are available if the frailty follows an 
inverse Gaussian frailty distribution. The polygenic susceptibility model is described next and 
simulations are used to generate a large sample from the susceptibility distribution predicted 
by the model. We show that an inverse Gaussian distribution fitted to the frailty distribution 
derived from the susceptibility model provides an adequate description of the heterogeneity. 
Finally, implementation of the approach based on the inverse Gaussian distribution is outlined 
and some individual lifetime risk estimates are presented using recent Danish population data.  
 
Calculation of lifetime risk of a disease 

In a homogeneous population let ( )tλ  denote the disease incidence rate and let ( )tµ  denote 

the mortality rate. The corresponding integrated rates are denoted ( )tΛ  and ( )tΜ . This is 
basically a competing risk situation with two events: disease and death. We assume that the 
disease has to be diagnosed before death, so the mortality rate represents all causes of death 
except the disease in question. The following identities are easily established 

P(alive, disease-free at age a) ( )( ) ( )0
exp ( ) ( ) exp ( ) ( )

a
s s ds a M aλ µ Λ= − + = − −∫  (1) 
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∫
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If the population is heterogeneous with respect to disease incidence the apparent disease rate, 
computed as if the population was homogeneous, no longer represents the incidence rate of an 
individual. The most susceptible individuals in the population become diseased at younger 
ages and the susceptibility distribution of the healthy population therefore change with age. 
To describe this effect is convenient to describe the heterogeneity with respect to disease risk 
by a random variable Z such the disease incidence rate of an individual with Z = z has the 
form ( | ) ( )t z z tλ λ= . The random variable Z is usually denoted the frailty. Individuals with 
large values of the frailty will have and increased disease incidence. Let ( )f z denote the 
probability density function of Z; we assume that ( ) 1E Z =  such that ( )tλ  is the disease rate 
for an individual with 1Z = . We assume moreover that the population is homogeneous with 
respect to mortality from causes other than the disease. Let ( )tµ  denote the common 
mortality rate (all causes except the disease). For an individual with frailty equal to z we have 
from the result above 

P(alive, disease-free at age a | Z = z) ( )exp ( ) ( )z a M aΛ= − −  (3) 

The population average of this probability is obtained by integrated over the distribution of Z  

( ) ( )

( ) ( )

alive,  disease-free at age exp ( ) ( ) ( )

exp ( ) ( )
z

P a z a M a f z dz

M a L a

Λ

Λ

= − −

= −

∫
 (4) 

where ( )L s  is the Laplace transform of the density function ( )f z , i.e. 

( ) ( ) ( )
0

expL s f z sz dz
∞

= −∫ , 

and let ( )( )( ) logg s L s= .  

A comparison of formula (1) and (4) shows that the apparent disease rate in the population 
differs from the disease rate of an average individual, a person with Z = 1, at birth. This 
discrepancy reflects the ongoing selection in the population with increasing age. The most 
susceptible individuals become diseased and the distribution of the frailty in the healthy 
population therefore changes with age.  

From population data we can estimate the average probability of being disease-free and the 
factor reflecting mortality, ( )exp ( )M a , so if the Laplace transform can be inverted the 

integrated disease rate ( )tΛ  can be recovered from this relation.  
The distribution of Z among individuals alive and disease-free at age a becomes 

( )
( ) ( )

( )
( )

exp ( ) ( ) ( ) exp ( ) ( )
exp ( ) ( ) ( )

z a M a f z z a f z
M a L a L a
Λ Λ

Λ Λ
− − −

=
−

, 

and the average frailty among individuals alive, and disease-free at age a is obtained as 
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Moreover, the lifetime risk of disease for an a years old with frailty z becomes 

( )

( ) ( ){ }
ever diseased | alive,  disease-free at age ,  

( ) exp ( ) ( ) ( ) ( )
a

P a Z z

z t z t a t a dtλ Λ Λ Μ Μ
∞

= =

− − − −∫
 

In the present application the frailty distribution reflects the genetic variation in susceptibility 
to prostate cancer. A normal distribution would be an obvious candidate to describe the 
variation in susceptibility, since the variation mirrors the result of a sum of a large number of 
small random contributions from different sites. This suggests that a log-normal frailty 
distribution would work well. Unfortunately, lifetime risk calculations with a log-normal 
frailty distribution is analytically intractable, so we shall instead consider an inverse Gaussian 
distribution for which the general approach to lifetime risk calculation outlined above allows 
easy identification of individual disease rates from population level data.  

The inverse Gaussian distribution is a two-parameter distribution on the positive real line. 
Here we consider a parametrization of the form 

( ) ( ) { } { }1 3 2| , exp 2 expf z f z z z zψ θ ψπ ψθ θ ψ− −= = − −  

The mean and variance are given by ( ) ( ) ( ) 1 and  2E Z Var Zψ θ θ ψ θ−= = , see e.g. 

Johnson et al (1994). A frailty distribution must have mean 1, implying that ψ θ= , and the 

variance then becomes ( ) 12θ − . 

When the mean is fixed as 1 the Laplace transform for inverse Gaussian distribution becomes  

( ) ( ){ }exp 2 1 1L s sθ θ= − +  

and  

( ) ( ){ } { }( ) log ( ) 2 1 1 ( )g a L a aΛ Λ θ Λ θ= = − + . 

When the frailty distribution is an inverse Gaussian distribution the average probability of 
being alive and disease-free at age a becomes 

( ){ }exp ( ) 2 1 1 ( )M a aθ Λ θ− + − +  

The frailty distribution among individuals alive and disease-free at age a is again an inverse 
Gaussian distribution and the parameters are ( ) ( ), , ( )aψ θ θ θ Λ= + . The average frailty 

among disease-free at age a is therefore 
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( )a
θ

θ Λ+
, 

which is a decreasing function of age.  

Formula (1) and (4) both describe the same population level probability and for an inverse 
Gaussian frailty distribution we therefore have the following identity 

( ) ( ){ }exp ( ) exp 2 1 1 ( )a aΛ θ Λ θ− = − +  

This equation can be solved for ( )aΛ  such that the individual rate can be obtained from the 
population rate: 

( ){ }1( ) ( ) 1 ( ) 4a a aΛ Λ Λ θ −= +  

and consequently 

 ( ) ( ) ( )( ){ }11 2a a aλ λ Λ θ −= +  (5) 

This relation can also be expressed as  

 ( )
( ) ( ) ( )1 Var
a

a Z
a

λ
Λ

λ
= + , (6) 

showing that the disease rate of an average individual (at birth) is always larger than the 
disease rate seen in at population level. These relationships can be used to obtain lifetime risk 
estimates for individuals with a given value of z from population data. 
 
Distribution of polygenic susceptibility 

For prostate cancer a number of common susceptibility variants have been identified through 
GWAS. Table 1 below shows the 32 SNPs used in the present study. Under suitable 
assumptions these data can be translated into a frailty distribution.  
We assume that the published allele frequencies also apply in Denmark and that there is no 
interaction between risk alleles both within and between loci. The contributions from each 
allele to the overall risk can then be added on a log-odds-ratio scale resulting in an aggregated 
susceptibility distribution, which is back-transformed to a frailty distribution on the original 
odds-ratio scale and standardized to have mean 1.  
Let ip  denote the frequency of the i’th risk allele and let ix  denote the logarithm of the 

corresponding odds ratio. For each variant introduce two random variables 1 2 and i iy y  such 

that ij iy x=  with probability ip  and 0 with probability 1 ip− . The total susceptibility of a 

person then  

,
ij

i j
S y=∑ , 

and from the assumptions above it follows that  
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2( ) 2  and ( ) 2 (1 )i i i i i
i i

E S x p Var S x p p= = −∑ ∑  

with an obvious modification if the allele is situated on a sex chromosome.  
 

Internal ID dbSNP no (VIC/FAM) Locus/gene
Risk 

allele

Risk-allele 
frequency in 

Europeans

Odds ratio 
per allele

Reference

SNP-02  rs721048 (A/G) 2p15 A 0.19 1.15 Gudmundsson et al  (2008)
SNP-03  rs1465618 (C/T) 2p21/THADA T 0.23 1.08 Eeles et al  (2009)
SNP-04  rs2660753 (C/T) 3p12 T 0.11 1.18 Eeles et al  (2008)
SNP-05  rs10934853 (A/C) 3q21.3 A 0.28 1.12 Gudmundsson et al  (2009)
SNP-06  rs7679673 (A/C) 4q24 /TET2 A 0.55 1.09 Eeles et al  (2009)
SNP-07  rs17021918 (C/T) 4q22/PDLIM5 C 0.66 1.10 Eeles et al  (2009)
SNP-08  rs12500426 (A/C) 4q22/PDLIM6 A 0.46 1.08 Eeles et al  (2009)
SNP-09  rs9364554 (C/T) 6q25 T 0.29 1.17 Eeles et al  (2008)
SNP-10  rs6465657 (C/T) 7q21 C 0.46 1.12 Eeles et al  (2008)
SNP-11  rs10486567 (A/G) 7p15 /JAZF1 G 0.77 1.12 Thomas et al  (2008)
SNP-12  rs2928679 (A/G) 8p21 T 0.42 1.05 Eeles et al  (2009)
SNP-13  rs1512268 (C/T) NKX3.1 T 0.45 1.18 Eeles et al  (2009)
SNP-15A  rs1016343 (C/T) 8q24 T 0.18 1.37 Al Olami et al (2009)
SNP-17  rs16902094 (A/G) 8q24 G 0.15 1.21 Gudmundsson et al  (2009)
SNP-18  rs6983267 (G/T) 8q24 G 0.50 1.26 Yeager et al  (2007)
SNP-19  rs1447295 (A/C) 8q24 A 0.10 1.62 Amundadottir et al  (2006)
SNP-20  rs16901979 (A/C) 8q24 A 0.03 2.10 Gudmundsson et al  (2007a)
SNP-21  rs4962416 (C/T) 10q26 /CTBP2 C 0.27 1.17 Thomas et al  (2008)
SNP-22  rs10993994 (C/T) 10q11/MSMB T 0.24 1.25 Eeles et al  (2008), Thomas et al  (2008)
SNP-23  rs7127900 (A/G) 11p15 A 0.20 1.22 Eeles et al  (2009)
SNP-24  rs7931342 (G/T) 11q13 G 0.51 1.16 Eeles et al  (2008), Thomas et al  (2008)
SNP-25  rs4430796 (G/A) 17q12 /HNF1B A 0.49 1.24 Gudmundsson et al  (2007b)
SNP-26  rs11649743 (A/G) HNF1B G 0.80 1.28 Sun et al  (2008)
SNP-27  rs1859962(G/T) 17q24.3 G 0.46 1.24 Gudmundsson et al  (2007b)
SNP-28  rs2735839 (A/G) 19q13/KLK2,KLK3 G 0.85 1.20 Eeles et al  (2008)
SNP-29  rs8102476 (C/T) 19q13.2 C 0.54 1.12 Gudmundsson et al  (2009)
SNP-33  rs7584330 (A/G) 2q37 G 0.22 1.06 Kote-Jarai et al (2011)
SNP-34  rs6763931 (A/G) 3q23/ZBTB38 A 0.45 1.04 Kote-Jarai et al (2011)
SNP-38  rs130067 (G/T) 6p21/CCHCR1 (G/T) G 0.21 1.05 Kote-Jarai et al (2011)
SNP-39  rs10875943 (C/T) 12q13/alpha-tubulin,PRPH C 0.31 1.07 Kote-Jarai et al (2011)
SNP-40 ChrX  rs5919432 (C/T) Xq12/AR T 0.81 1.16 Kote-Jarai et al (2011)
SNP-41  rs12543663 (A/C) 8q24 C 0.29 1.28 Al Olami et al (2009)  

Table 1. The SNPs used in the susceptibility model  
 
Comprehensive data on the distribution of the total susceptibility in the Danish population are 
not available, but the distribution of S is easily derived by a computer simulation. The frailty 
distribution is then obtained by applying an exponential transformation and then scaling the 
result such that the mean value is 1, i.e. ( ) ( ){ }exp expZ S E S= . Figure 1 shows the 

distribution of Z based on 500,000 simulations together the best fitting inverse Gaussian 
distribution with mean 1. The best-fitting inverse Gaussian distribution was found by 

maximum likelihood estimation and had ˆ 1.324θ = . Minor systematic deviations can be 
identified in Figure 1, but overall the inverse Gaussian distribution seems to provide a very 
good approximation to the distribution derived from the simulations.  
 
Implementation of the methodology 

In the formulas above, the age is a continuous variable, but population data on mortality and 
disease incidence are usually only available with age categorized in 1-year or 5-years 
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intervals, so the calculations have to be adapted to categorical population data. In this section 
the basic steps of this implementation are described when age is categorized in 1-year 
intervals. Obvious modifications are needed, if 5-years age intervals are used.  

 
 

Figure 1. The frailty distribution derived from the 500,000 simulations of the susceptibility 
model. Superimposed is the probability density function of the best fitting inverse Gaussian 
distribution with mean 1. 
 

Population data on mortality is often summarized by a life table that describes how a 
hypothetical cohort of 100,000 newborns is reduced by mortality. The number of surviving 
individuals in this cohort at age x is usually denoted xl  with 0 100000l = . Published Danish 

life tables gives xl  for 0,1, 2, ,99x =   (StatBank Denmark 2017, Table HISB8). 

The probability of surviving until age x is ( ) 0T xS x l l= , where the subscript T indicates that 

survival is from all causes of mortality, i.e. Total mortality. The integrated total mortality rate 
is obtained as ( ) ( )log ( )T TM x S x= − , and the mortality rate at age x becomes  

( ) ( )( ) 1T T Tm x M x M x= + −  

Vital statistics also include information on cause of death (StatBank Denmark 2017, Table 
DOD1). Let ( )P xπ  denote the proportion of all deaths at age x with prostate cancer as cause 

of death, then  
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( )( )
( )

P
P

T

d xx
d x

π = , 

Where ( ) and ( )P Td x d x  denote the number of death from prostate cancer and the total 

number of death at age x. The mortality rate from all causes except prostate cancer is then 

( )( ) ( ) 1 ( )T PPm x m x xπ= − , and let ( )PM x  denote the corresponding integrated mortality rate 

( )
1

0
( )

x

P P
y

M x m y
−

=
= ∑  

For a number of cancers, including prostate cancer, the cancer registry each year publishes the 
number of cases and the incidence rate by age and sex (Cancerregisteret 2017). Let ( )P xλ  

denote the population prostate cancer incidence rate at age x and let ( )P xΛ  denote the 

corresponding integrated rate  

( )
1

0
( )

x

P P
y

x yΛ λ
−

=
= ∑  

The prostate cancer incidence rate for an individual with 1Z =  is then obtained from (5) as 

( ) ( ) ( ) ( ) ( )( ){ }11 2 1.324 1 2P P P Px x x xλ λ Λ Λ−= + ⋅ + + , 

where the average value of the integrated rate has been used to account for the fact that the 
rate ( )P xλ  applies to the age interval from  to 1x x + . The prostate cancer rate for an 

individual with frailty z is then ( | ) ( )P Px z z xλ λ= . We now consider the composite event 

diagnosis of prostate cancer or death from all causes except prostate cancer. The event rate 
at age x for an individual with frailty z becomes  

 ( | ) ( ) ( )E P Pm x z z x m xλ= +  (9) 

The probability of a composite event before age 1x +  given that the individual is alive and 
event free at the x year birthday is then obtained as  

 ( )( | ) 1 exp ( | )E Eq x z m x z= − − . (10) 

Moreover, the probability that a composite event is a prostate cancer diagnosis given that the 
composite event is experienced by an individual with frailty z at age x is estimated by  

 ( )( | )
( | )
P

P
E

z xx z
m x z
λρ =  (11) 

Finally, compute the unconditional probability of event-free survival until age x by 
recursively using 
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 ( ) ( ){ }1| | 1 ( | )E E ES x z S x z q x z+ = −  (12) 

starting with ( )0 1ES = . 

The lifetime risk of prostate cancer for an individual with frailty z and event-free at age a can 
now be obtained as  

 ( ) ( ) ( ), | ( | ) ( | ) |E E P E
x a

LR a z S x z q x z x z S a z
ω

ρ
=

= ∑  (13) 

The risk of prostate cancer before age t for an individual with frailty z who is alive and 
disease-free at age a is obtained by restricting the summation to x t . 

Figure 2 shows the lifetime risk of prostate cancer as a function of age a at which the 
individual is alive and disease free. Predictions for three individuals with frailty 0.29, 1, and 
2.67, respectively, are shown. The values 0.29 and 2.67 correspond approximately to the 
lower and upper 2.5 percentile of the frailty distribution at birth. The results in Figure 2 are 
based on Danish population data for the years 2008-9 (StatBank Denmark 2017, 
Cancerregisteret 2017). The lifetime calculations used 5-years intervals, the last interval 
included the ages from 95 and above. The calculations have been implemented in a 
spreadsheet. 

 
Figure 2. Lifetime risk of prostate cancer as a function of age for individuals with frailty 0.29, 1, 
and 2.67. 
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