Supporting Information for:

Block Copolymer Nanoparticles Prepared via Polymerization-Induced Self-Assembly Provide Excellent Boundary Lubrication Performance for Next-Generation Ultralow Viscosity Automotive Engine Oils

Matthew J. Derry, *,† Timothy Smith,[‡] Paul S. O'Hora,[‡] and Steven P. Armes*,†

[†] Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield,S3 7HF, South Yorkshire, UK.

[‡] Lubrizol Ltd., The Knowle, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK.

*E-mail: m.derry@sheffield.ac.uk; s.p.armes@sheffield.ac.uk

Figure S1. Assigned ¹H NMR spectra for (a) poly(stearyl methacrylate) (S_{31}) macro-CTA in CD₂Cl₂, (b) poly(stearyl methacrylate)-poly(benzyl methacrylate) (S_{31} - B_{200}) diblock copolymer in CDCl₃ and (c) poly(stearyl methacrylate)-poly(benzyl methacrylate)-poly(ethylene glycol dimethacrylate) (S_{31} - B_{200} - E_{20}) triblock copolymer in CDCl₃.

Figure S2. Transmission electron micrograph of cross-linked poly(stearyl methacrylate)-poly(benzyl methacrylate)-poly(ethylene glycol dimethacrylate) (S_{31} - B_{200} - E_{20}) spheres dried from a 0.10% w/w dispersion in THF.

Figure S3. Shear rate vs. viscosity for mineral oil alone at 20 °C (open black squares) and 100 °C (open black circles), and a 0.5% w/w dispersion of S_{31} - B_{200} - E_{20} spheres in mineral oil at 20 °C (open blue triangles) and 100 °C (open red stars).

SAXS Models

In general, the X-ray intensity scattered by a dispersion of particles [usually represented by the scattering cross section per unit sample volume, $\frac{d\Sigma}{d\Omega}(q)$] can be expressed as:

$$\frac{d\Sigma}{d\Omega}(q) = NS(q) \int_{0}^{\infty} \dots \int_{0}^{\infty} F(q, r_{1,\dots,r_{k}})^{2} \Psi(r_{1,\dots,r_{k}}) dr_{1} \dots dr_{k} \qquad SI$$

where $F(q,r_1,...,r_k)$ is their form factor, $r_1,...,r_k$ is a set of *k* parameters describing the particle structural morphology, $\Psi(r_1,...,r_k)$ is the distribution function, S(q) is the structure factor (for 1.0% w/w dispersions it can be assumed that there are no inter-particle interactions and thus S(q) = 1) and *N* is the particle number density per unit sample volume expressed as:

$$N = \frac{\varphi}{\int_0^\infty \dots \int_0^\infty V(r_{1,\dots,r_k}) \Psi(r_{1,\dots,r_k}) dr_1 \dots dr_k}$$
 S2

where $V(r_1,...,r_k)$ is volume of the particle and φ is their volume fraction in the dispersion.

The spherical micelle form factor for Equation S1 can be expressed as:¹

$$F_{s_mic}(q) = N_s^2 \beta_s^2 A_s^2(q,R_s) + N_s \beta_c^2 F_c(q,R_g) + N_s(N_s-1)\beta_c^2 A_c^2(q) + 2N_s^2 \beta_s \beta_c A_s(q)$$

$$A_c(q) = N_s^2 \beta_s^2 A_s^2(q,R_s) + N_s \beta_c^2 F_c(q,R_g) + N_s(N_s-1)\beta_c^2 A_c^2(q) + 2N_s^2 \beta_s \beta_c A_s(q)$$

where R_s is the radius of the spherical micelle core, R_g is the radius of gyration of the PSMA coronal block. The core block and the corona block X-ray scattering length contrast is given by $\beta_s = V_s(\xi_s - \xi_{sol})$ and $\beta_c = V_c(\xi_c - \xi_{sol})$, respectively. Here ξ_s , ξ_c and ξ_{sol} are the X-ray scattering length densities of the core block ($\xi_{PBZMA_{200}} = 10.38 \times 10^{10} \text{ cm}^{-2}$ or $\xi_{PBZMA_{200} - PEGDMA_{20}} = 10.36 \times 10^{10} \text{ cm}^{-2}$), the corona block ($\xi_{PSMA_{31}} = 9.26 \times 10^{10} \text{ cm}^{-2}$) and the mineral oil solvent ($\xi_{sol} = 7.63 \times 10^{10} \text{ cm}^{-2}$), respectively. V_s and V_c are volumes of the core block ($V_{PBZMA_{200}}$ or $V_{PBZMA_{200} - PEGDMA_{20}}$) and the corona block ($V_{PSMA_{31}}$), respectively. The volumes were obtained from $V = \frac{M_{n,pol}}{N_A \rho}$ using the densities of PBZMA ($\rho_{PBZMA} = 1.15 \text{ g}$ cm⁻³),² PEGDMA ($\rho_{PEGDMA} = 1.10 \text{ g cm}^{-3}$) and the solid-state homopolymer density of PSMA determined by helium pycnometry ($\rho_{PSMA} = 0.97 \text{ g cm}^{-3}$), where $M_{n,pol}$ corresponds to the number-average molecular weight of the block determined by ¹H NMR spectroscopy. The scattering amplitude of the micelle core is expressed via sphere form factor amplitude:

$$A_{\rm c}(q,R_{\rm s}) = \Phi(qR_{\rm s})\exp\left(-\frac{q^2\sigma^2}{2}\right)$$
 S4

where $\Phi(qR_s) = \frac{3[\sin(qR_s) - qR_s\cos(qR_s)]}{(qR_s)^3}$. A sigmoidal interface between the two blocks was assumed for the spherical micelle form factor (Equation *S4*). This is described by the exponent term with a width σ accounting for a decaying scattering length density at the membrane surface. This σ value was fixed at 0.22 nm during fitting.

The scattering amplitude of the spherical micelle corona is:

$$A_{\rm c}(q) = \frac{\int_{R_{\rm s}}^{R_{\rm s}+2s} \mu_{\rm c}(r) \frac{\sin{(qr)}}{qr} r^2 dr}{\int_{R_{\rm s}}^{R_{\rm s}+2s} \mu_{\rm c}(r) r^2 dr} \exp\left(-\frac{q^2 \sigma^2}{2}\right)$$
 S5

The radial profile, $\mu_c(r)$, can be expressed by a linear combination of two cubic b splines, with two fitting parameters *s* and *a* corresponding to the width of the electron density corona profile and the function weight coefficient, respectively. This information can be found elsewhere,³⁻⁴ as can the approximate integrated form of Equation *S5*. The self-correlation term for the corona block is given by the Debye function:

where R_g is the radius of gyration of the PSMA coronal block. The aggregation number of the spherical micelle is:

$$N_{\rm s} = (1 - x_{\rm sol}) \frac{\frac{4}{3} \pi R_{\rm s}^3}{V_{\rm s}}$$
 S7

where x_{sol} is the volume fraction of solvent in the PBzMA or PBzMA-PEGDMA micelle core. A polydispersity of the micelle core radius (R_s) was incorporated in the structural model (Equation *S1*) assuming a Gaussian distribution:

$$\Psi(r_1) = \frac{1}{\sqrt{2\pi\sigma_{Rs}^2}} \exp\left(-\frac{(r_1 - R_s)^2}{2\sigma_{Rs}^2}\right)$$
 S8

where σ_{Rs} is the standard deviation for R_s . In accordance with Equation S2 the number density per unit sample volume for the micelle model is expressed as:

$$N = \frac{\varphi}{\int_0^\infty V(r_1)\Psi(r_1)dr_1}$$

where φ is the volume fraction of copolymer in a sample and $V(r_1)$ is the total *volume* of copolymer in a spherical micelle $[V(r_1) = (V_s + V_c)N_s(r_1)]$.

Table S1. Summary of parameters after fitting SAXS patterns obtained for 1.0% w/w dispersions in mineral oil using a spherical micelle model.¹ φ is the volume fraction of copolymers obtained from the fitting, D_s is the spherical micelle core diameter (equal to $2R_s$, where R_s is the spherical micelle core radius), R_g is the radius of gyration of the PSMA stabilizer block, x_{sol} is the volume fraction of solvent within the core domain and N_s is the mean aggregation number.

Sample	φ	$D_{\rm s}(=2R_{\rm s})/{\rm nm}$	R _g / nm	x _{sol}	N _s
S ₃₁ -B ₂₀₀ , 20 °C	0.00594	27.6 ± 2.1	1.4	0	218
S ₃₁ -B ₂₀₀ -E ₂₀ , 20 °C	0.00742	29.4 ± 2.4	1.4	0	234
S ₃₁ -B ₂₀₀ -E ₂₀ , 100 °C	0.00630	29.5 ± 2.3	1.4	0	237

References

 Pedersen, J. S. Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. *Journal of Applied Crystallography* 2000, *33*, 637-640.
 Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. Thermo-

2. Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. Thermoresponsive diblock copolymer worm gels in non-polar solvents. *Journal of the American Chemical Society* **2014**, *136*, 5790-5798.

 Pedersen, J. S.; Gerstenberg, M. C. The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering. *Colloids and Surfaces a-Physicochemical and Engineering Aspects* 2003, *213*, 175-187.
 Pedersen, J. S.; Svaneborg, C.; Almdal, K.; Hamley, I. W.; Young, R. N. A small-angle neutron and X-ray contrast variation scattering study of the structure of block copolymer micelles: Corona shape and excluded volume interactions. *Macromolecules* 2003, *26*, 416, 433 36, 416-433.