Science Advances

advances.sciencemag.org/cgi/content/full/6/6/eaay2669/DC1

Supplementary Materials for

Phosphoregulation of Rad51/Rad52 by CDK1 functions as a molecular switch for cell cycle–specific activation of homologous recombination

Gyubum Lim, Yeonji Chang, Won-Ki Huh*

*Corresponding author. Email: wkh@snu.ac.kr

Published 7 February 2020, *Sci. Adv.* **6**, eaay2669 (2020) DOI: 10.1126/sciadv.aay2669

This PDF file includes:

Fig. S1. Deletion of either RAD51 or RAD52 impairs DNA damage repair process.

Fig. S2. Deletion of either *CLB2* or *CLB3* affects the phosphorylation of Rad51 and Rad52 in cells.

Fig. S3. CDK1 phosphorylates S125 and S375 of Rad51 and T412 of Rad52 in cells.

Fig. S4. Nonphosphorylatable mutation of Rad51 impairs the strand invasion process even in the G₂/M phase–arrested cells.

Fig. S5. CDK1-dependent phosphorylation regulates the DNA binding affinity of Rad51.

Fig. S6. Nonphosphorylatable mutation of Rad52 impairs ligation process even in the G₂/M phase–arrested cells.

Fig. S7. Both wild-type Rad52 and Rad52-T412A form ring structures.

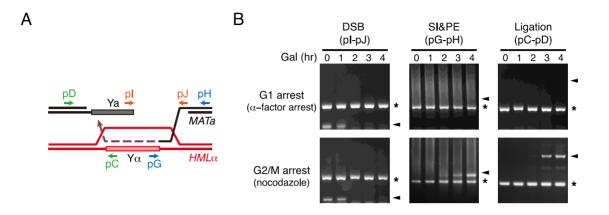
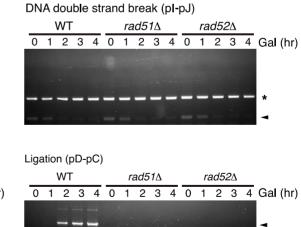
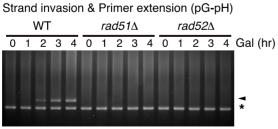

Fig. S8. Rapamycin treatment does not restore the defect in the ligation process in cells that express Rad52-T412A protein without FKBP or FRB attachment.

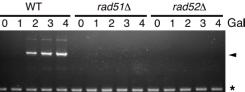
Fig. S9. Full images of Western blots.

Table S1. Yeast strains used in this study.

Supplementary Figure Legends


Figure S1




	Mock			0.01% MMS						
WT	۲	0	۲	1	* *	۰	•	۲		3
rad51∆	۲	۲	۲	泰	۲.	۲				
rad51∆+RAD51	۲	۲	۲	*	з	۲	•	•	-	
rad52∆	•	۲	۲	602		۲				
rad52∆+RAD52	•	•	۲	٩	-2.2	۲	•	۲	\$	• •

D

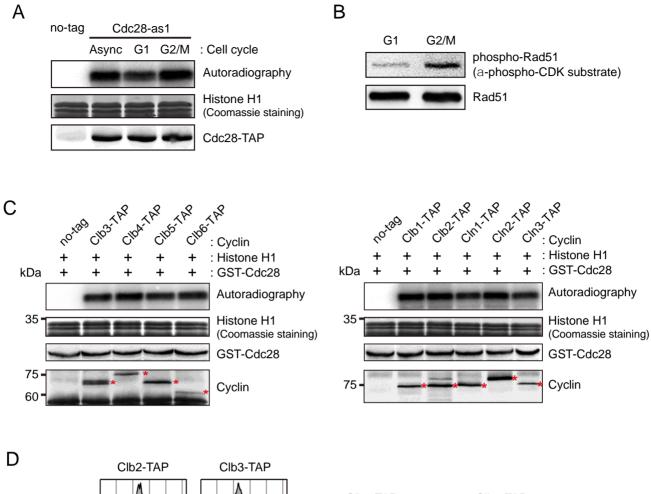

С



Fig. S1. Deletion of either *RAD51* or *RAD52* impairs DNA damage repair process. (A) The D-loop structure at the *MAT* locus with the binding positions of primers for PCR-based homologous recombination efficiency test. (B) Homologous recombination efficiency test in the G1- or G2/M-arrested cells. Cells were arrested for 3 hr with α-factor (150 µM) for G1 arrest and nocodazole (15 µg ml⁻¹) for G2/M arrest. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. SI&PE indicates strand invasion and primer extension. Arrowheads indicate the PCR products of the homologous recombination intermediates. Asterisks indicate the PCR products of the control region (*ARG5,6*). (C) Serial dilution assay used to assess MMS sensitivity of *rad51*Δ and *rad52*Δ cells. All strains were serially diluted on SC agar plates in the absence or presence of 0.01% MMS. (D) Homologous recombination efficiency test of *rad51*Δ and *rad52*Δ cells. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. Arrowheads indicate the PCR products of the homologous recombination recombination efficiency test of *rad51*Δ and *rad52*Δ cells. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. Arrowheads indicate the PCR products of the homologous recombination efficiency test of *rad51*Δ and *rad52*Δ cells. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. Arrowheads indicate the PCR products of the homologous recombination intermediates. Asterisks indicate the PCR products of the control region (*ARG5,6*).

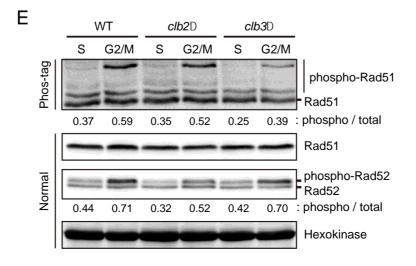
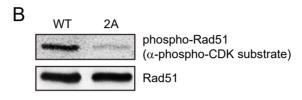
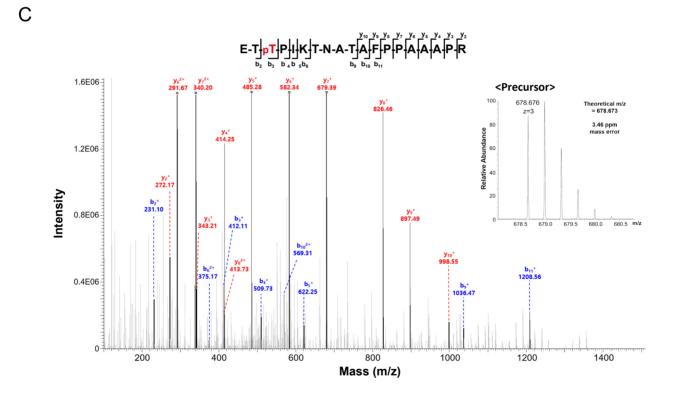




Fig. S2. Deletion of either CLB2 or CLB3 affects the phosphorylation of Rad51 and Rad52 in cells. (A) Results from the kinase assay for the phosphorylation of histone H1 using Cdc28 extracted from cell cycle-arrested cells in vitro. The cell cycle was arrested for 3 h with α -factor (150 µM) to arrest G1 and nocodazole (15 µg ml⁻¹) to arrest G2/M. (B) Identification of cell cycle-dependent phosphorylation of Rad51 by using the phospho-CDK substrate antibody. The cell cycle was arrested as described in (A). Rad51 proteins were immunoprecipitated by anit-HA beads, and analyzed by immunoblot assay. (C) Results from the kinase assay for the phosphorylation of histone H1 using purified Cdc28 and cyclins in vitro. Each cyclin was purified by anti-TAP immunoprecipitation from asynchronous cells. Red asterisks indicate bands of corresponding cyclins. (D) Analysis of the expression level of Clb2 and Clb3 through the cell cycle. The cell cycle was arrested for 3 h with α -factor (150 μ M) to arrest G1, Hydroxyurea (200 mM) to arrest S, and nocodazole (15 μ g ml⁻¹) to arrest G2/M. The DNA content data were analyzed by flow cytometry (left panel). 1C and 2C indicate single and double DNA haploid content, respectively. (E) Analysis of the in vivo phosphorylation level of Rad51 and Rad52 in *clb*2 Δ or *clb*3 Δ cells. The cell cycle was arrested as described in (D). 50 μ M Phos-tag and 100 μ M MnCl₂ were mixed with 6% separating gel for analysis of phospho-Rad51 (upper panel). The relative ratio of phosphorylated proteins to total proteins is shown below each lane.

А

Protein	Residue	Sequence	Kinase	Score	Cutoff
Rad51	S125	¹¹⁸ LLEIKGI <mark>S</mark> EAKADKL ¹³²	Cdc28	9.806	9.411
Rad51	S375	368 RLCKVVDSPCLPEAE 382	Cdc28	11.833	9.411
Rad52	T412	⁴⁰⁶ QVPRET <mark>T</mark> PIKTNAT ⁴¹⁹	Cdc28	17.25	9.411

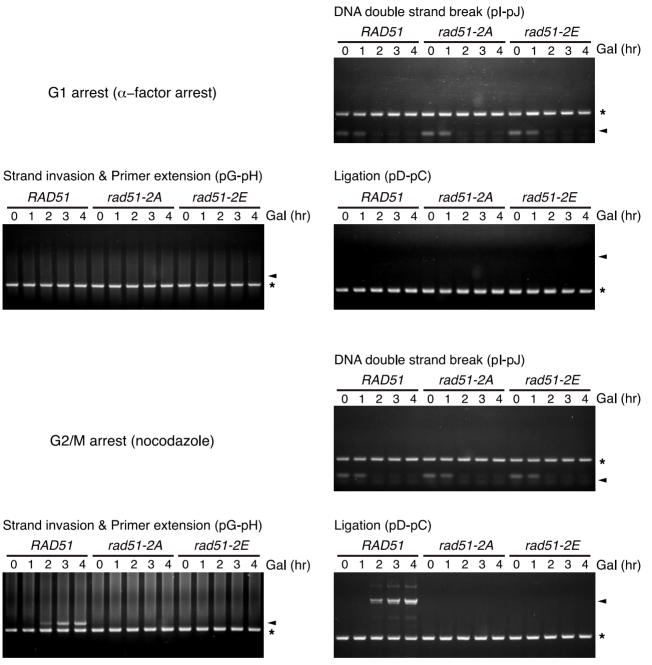
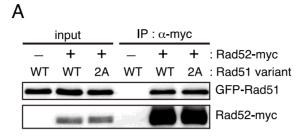
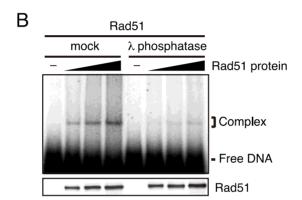
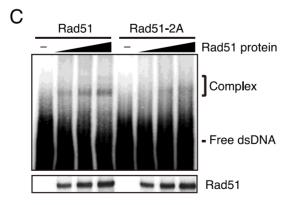


Fig. S3. CDK1 phosphorylates S125 and S375 of Rad51 and T412 of Rad52 in cells. (A)

The prediction of Cdc28-dependent phosphorylated residues of Rad51 and Rad52 by GPS 3.0. S and T in red indicate serine and threonine residues that were predicted to be phosphorylated. (**B**) Identification of Cdc28-dependent phosphorylated residues of Rad51 by using the phospho-CDK substrate antibody. WT and 2A indicate wild-type Rad51 and Rad51-2A, respectively. Rad51 proteins were immunoprecipitated by anti-HA beads, and analyzed by immunoblot assay. (**C**) Identification of Cdc28-dependent phosphorylated residues of Rad52 by mass spectrometry.

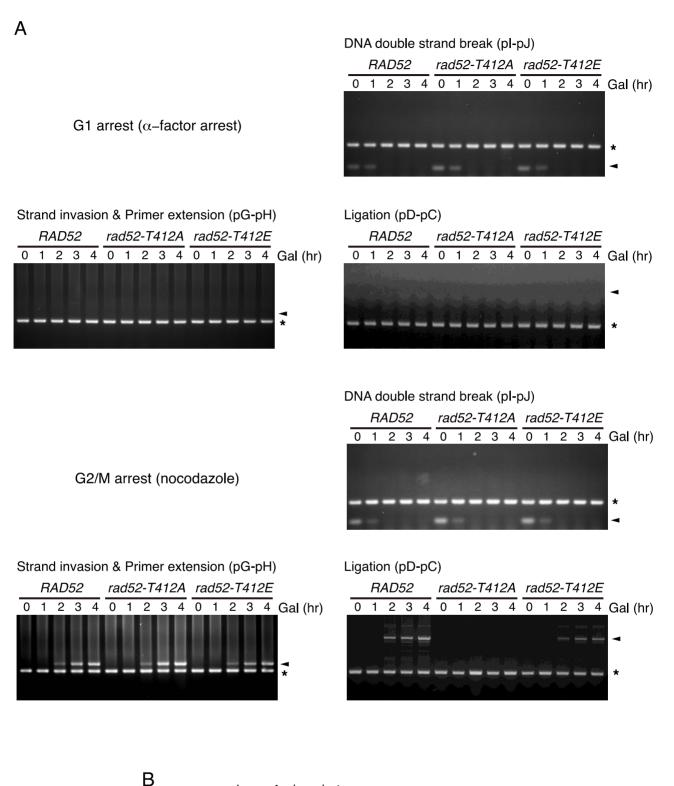

G1 arrest (α -factor arrest)


RAD51


RAD51

0 1 2 3 4 0

Fig. S4. Nonphosphorylatable mutation of Rad51 impairs the strand invasion process even in the G₂/M phase–arrested cells. Homologous recombination efficiency of *rad51-2A* cells was examined under cell cycle-arrested conditions. All strains were grown in YP media containing 2% raffinose to $OD_{600} = 1.0$ and diluted to $OD_{600} = 0.5$. 150 µM α -factor and 15 µg ml⁻¹ nocodazole were treated to synchronize cell cycle to the G1 and G2/M phase, respectively. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. Arrowheads indicate the PCR products of the homologous recombination intermediates. Asterisks indicate the PCR products of the control region (*ARG5,6*).



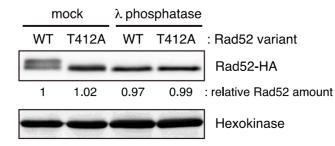
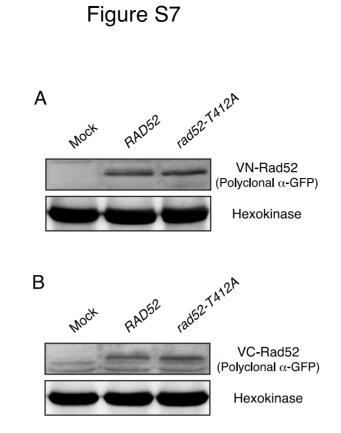


Fig. S5. CDK1-dependent phosphorylation regulates the DNA binding affinity of Rad51.


(A) Coimmunoprecipitation assay used to assess the binding affinity between Rad52 and Rad51 variants. Protein complexes with Rad52-myc were precipitated using anti-myc antibody. Rad51 and Rad51-2A were detected by anti-GFP immunoblotting. (B) Results from the EMSA used to assess the effect of dephosphorylation on the ssDNA-binding affinity of Rad51. 800 units of λ phosphatase were directly added to Rad51 protein. EMSA was performed using a binding buffer that includes 35 mM Tris-Cl, pH 7.5, 5 mM ATP, 5 mM MgCl₂, 50 mM KCl, 100 µg/ml bovine serum albumin, and 1 mM dithiothreitol. (C) Results from the EMSA used to assess the dsDNA-binding affinity of Rad51 and Rad51-2A.

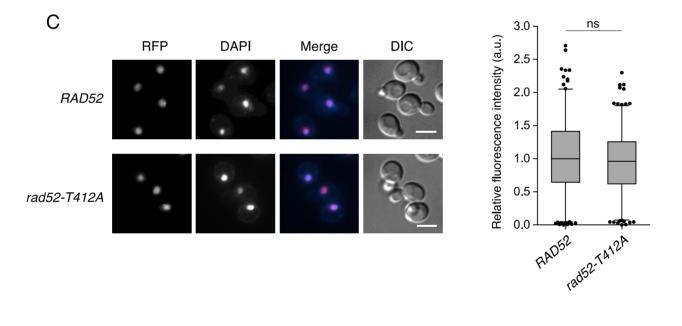
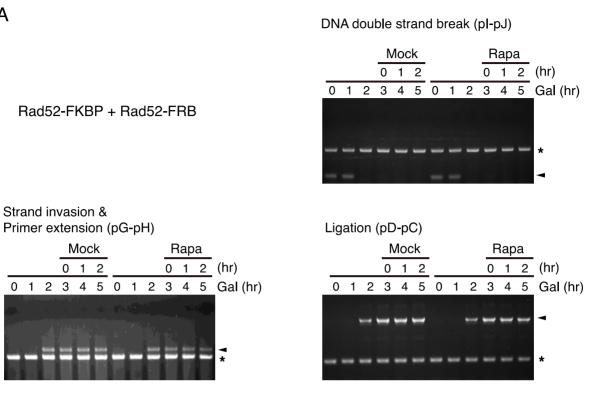
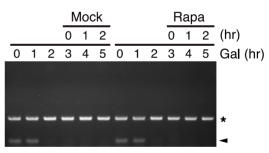
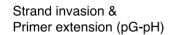
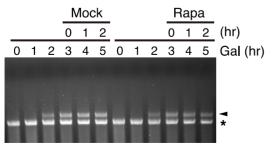


Fig. S6. Nonphosphorylatable mutation of Rad52 impairs ligation process even in the


G₂/**M** phase–arrested cells. (A) Homologous recombination efficiency test of *rad52-T412A* cells under cell cycle-arrested conditions. Experiments were performed as described in fig. S1B (B) λ phosphatase treatment used to assess the protein amount of Rad52 and Rad52-T412A. 400 units of λ phosphatase were directly treated to each cell lysate. The relative amount of Rad52, normalized against that of wild-type Rad52 without λ phosphatase treatment, is shown below each lane. Hexokinase was used as a loading control.


D Rad52 Rad52-T412A


Fig. S7. Both wild-type Rad52 and Rad52-T412A form ring structures. (A) Western blot analysis used to assess the protein amount of VN-tagged Rad52 and Rad52-T412A. RAD52 indicates the MATa cells expressing VN-Rad52 and rad52-T412A indicates the MATa cells expressing VN-Rad52-T412A. Immunoblotting for the detection of VN-tagged Rad52 was performed using the polyclonal anti-GFP antibody. Hexokinase was used as a loading control. (B) Western blot analysis used to assess the protein amount of VC-tagged Rad52 and Rad52-T412A. RAD52 indicates the MAT α cells expressing VC-Rad52 and rad52-T412A indicates the MATa cells expressing VC-Rad52-T412A. Immunoblotting for the detection of VC-tagged Rad52 was performed using the polyclonal anti-GFP antibody. Hexokinase was used as a loading control. (C) Comparison of the efficiency of nuclear transport of Rad52 and Rad52-T412A. RAD52 and rad52-T412A indicate cells expressing Rad52-mCherry and Rad52-T412AmCherry, respectively. Nuclei were visualized by 1 µg ml⁻¹ DAPI staining (left panel). Scale bars are 4 um. The fluorescence intensity was calculated by subtracting the background intensity from the RFP signal intensity (right panel). A box plot is represented with whiskers from the 5th to the 95th percentile, and the data were normalized to the median of RAD52 cells (N > 200). Pvalues were determined by the Mann-Whitney U test (ns, not significant). (**D**) The protein complex of Rad52 and Rad52-T412A analyzed by transmission electron microscopy. Rad52 proteins were negatively stained by uranyl acetate. Scale bars are 10 nm.


В

Rad52-T412A

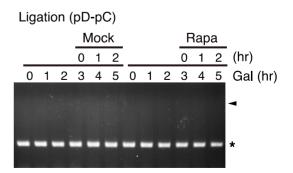
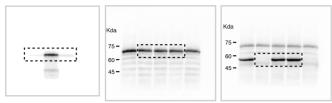
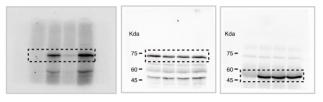
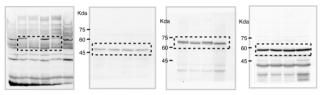
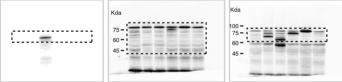
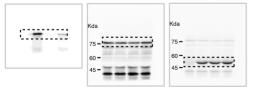




Fig. S8. Rapamycin treatment does not restore the defect in the ligation process in cells that express Rad52-T412A protein without FKBP or FRB attachment. (A) Homologous recombination efficiency test of cells expressing both wild-type Rad52 proteins attached to either FKBP or FRB. (B) Homologous recombination efficiency test of cells expressing Rad52-T412A protein without FKBP or FRB attachment. Genomic DNA was extracted every 1 hr after 2% galactose addition and analyzed by PCR. 1 μ M rapamycin or DMSO was added to cell cultures at 3 hr after galactose addition. Arrowheads indicate the PCR products of the homologous recombination intermediates. Asterisks indicate the PCR products of the control region (*ARG5,6*).

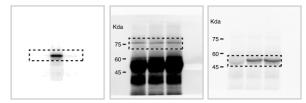

For Figure 1A left

For Figure 1B left


For Figure 1C

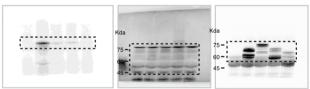

For Figure 2A right

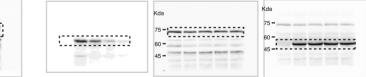
For Figure 2B right


For Figure 2E

For Figure 4E

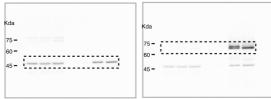
For Figure 1A right


For Figure 1B right

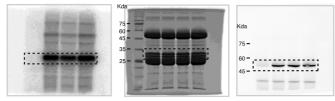

For Figure 2A left

For Figure 2B left

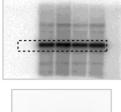
For Figure 2C

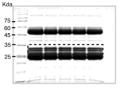

For Figure 3E

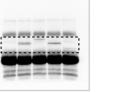
For Figure 3F



For Figure 4F

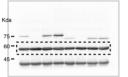

For Figure S2A


For Figure S2B



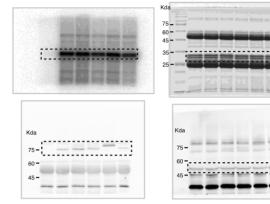
Kda

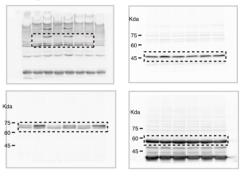
For Figure S2C left


For Figure S2D

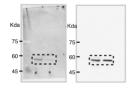
Kd

75


60 ·




For Figure S2C right


For Figure S2E

For Figure S5A

For Figure S3B

For Figure S5B

Kda

100

75 **-**

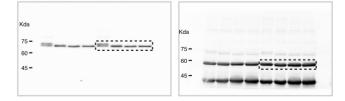
60 -

45

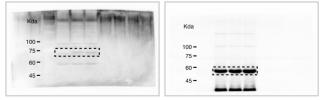
For Figure S7A

5

100


75 **-**60 **-**

45-


For Figure S5C

For Figure S6B

For Figure S7B

Fig. S9. Full images of Western blots.

Supplementary Table

Strain	Genotype	Source
BY4741	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	EUROSCARF
BY4742	MAT a his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0	EUROSCARF
HY1912	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 ura3::pGAL1-HO:URA3	This study
HY1913	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 rad51 Δ ::kanMX4 ura3::pGAL1-HO:URA3	This study
HY1914	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 rad52 Δ ::kanMX4 ura3::pGAL1-HO:URA3	This study
HY1915	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-GFP-RAD51:HIS3 ura3::pGAL1-HO:URA3	This study
HY1916	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52-mCherry:LEU2 ura3::pGAL1-HO:URA3	This study
HY1262	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 cdc28-as1	Bishop et al. (2000)
HY1917	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 cdc28-as1-TAP:Leu2	This study
TL16A05	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLN1-TAP:HIS3	Ghaemmaghami et al. (2003)
TL16F05	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLN2-TAP:HIS3	Ghaemmaghami et al. (2003)
TL14E08	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLN3-TAP:HIS3	Ghaemmaghami et al. (2003)
TL20E04	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLB1-TAP:HIS3	Ghaemmaghami et al. (2003)
TL19B03	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLB2-TAP:HIS3	Ghaemmaghami et al. (2003)
TL23A06	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 CLB3-TAP:HIS3	Ghaemmaghami et al. (2003)
TL21B02	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLB4-TAP:HIS3	Ghaemmaghami et al. (2003)
TL22A11	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 CLB5-TAP:HIS3	Ghaemmaghami et al. (2003)
TL26D06	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 CLB6-TAP:HIS3	Ghaemmaghami et al. (2003)
HY1918	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-GFP-RAD51(S125A, S375A):HIS3 ura3::pGAL1-HO:URA3	This study
HY1919	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-GFP-RAD51(S125E, S375E):HIS3 ura3::pGAL1-HO:URA3	This study
HY1920	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-GFP-RAD51:HIS3 ura3::pGAL1-HO:URA3 RAD52-myc:LEU2	This study
HY1921	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-GFP-RAD51(S125A, S375A):HIS3 ura3::pGAL1-HO:URA3 RAD52-myc:LEU2	This study
HY1922	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 rad51 Δ ::kanMX4 his3::pADH1-HA-TEV site-RAD51:HIS3 ura3::pGAL1-HO:URA3	This study
HY1923	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 his3::pADH1-HA-TEV site- RAD51(S125A, S375A):HIS3 ura3::pGAL1-HO:URA3	This study
HY1924	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412A)- mCherry:LEU2 ura3::pGAL1-HO:URA3	This study

Table S1. Yeast strains used in this study.

HY1925	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412E)- mCherry:LEU2 ura3::pGAL1-HO:URA3	This study
HY1926	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52-mCherry:LEU2 ura3::pGAL1-HO:URA3 RFA1-GFP:HIS3	This study
HY1927	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412A)- mCherry:LEU2 ura3::pGAL1-HO:URA3 RFA1-GFP:HIS3	This study
HY1928	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412E)- mCherry:LEU2 ura3::pGAL1-HO:URA3 RFA1-GFP:HIS3	This study
HY1929	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52-HA:LEU2	This study
HY1930	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412A)-HA:LEU2	This study
HY1931	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52-TAP:LEU2 ura3::pGAL1-HO:URA3	This study
HY1932	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pADH1-RAD52(T412A)- TAP:LEU2 ura3::pGAL1-HO:URA3	This study
HY1933	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pRPL7B-VN-RAD52:LEU2	This study
HY1934	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 rad52Δ::URA3 leu2::pRPL7B-VC-RAD52:LEU2	This study
HY1935	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 leu2::pRPL7B-VN- RAD52(T412A):LEU2	This study
HY1936	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 rad52Δ::URA3 leu2::pRPL7B-VC-RAD52(T412A):LEU2	This study
HY1937	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 fpr1∆::MET15 ura3::pGAL1-HO:URA3 his3::pCET1-RAD52-mCherry-FKBP:HIS3 leu2::pCET1-RAD52-GFP-FRB:LEU2	This study
HY1938	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 fpr1∆::MET15 ura3::pGAL1-HO:URA3 his3::pCET1-RAD52(T412A)-mCherry-FKBP:HIS3 leu2::pCET1-RAD52(T412A)-GFP- FRB:LEU2	This study
HY1939	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad52∆::kanMX4 fpr1∆::MET15 ura3::pGAL1-HO:URA3 his3::pADH1-RAD52(T412A)-mCherry:HIS3	This study
HY2097	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 PDS1-myc:LEU2 his3::pADH1-GFP- RAD51(S125A):HIS3	This study
HY2098	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 rad51∆::kanMX4 PDS1-myc:LEU2 his3::pADH1-GFP- RAD51(S375A):HIS3	This study
HY2177	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 cdc28-as1 RAD52-HA:URA3	This study
HY2178	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 RAD52-HA:URA3	This study
HY2179	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 clb2 Δ ::kanMX4 RAD52-HA:URA3	This study
HY2180	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 clb3 Δ ::kanMX4 RAD52-HA:URA3	This study