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General Approach 

We represent hypotheses of stochastic molecular dynamics in terms of 'directed graphs' 

(1-3). A graph consists of nodes and connecting directed edges. The nodes correspond to 

distinct states of a single promoter molecule, the directed edges to possible transitions 

between them. The stochastic dynamics of the system (promoter molecule) are modeled 

as flow of probability mass across the graph ('stochastic process'). 

 We obtained mathematical expressions for the flux (rate of flow) of probability mass 

across the graph on the Markov assumption ¾ i.e., the future evolution depends on the 

present state of the promoter alone, and not its prior history (4). (This lack-of-memory 

property is shared between deterministic and Markovian stochastic processes.) 

 We focus on stationary processes (‘steady state dynamics’), where promoter state 

probabilities are time-independent: for every node the flux of probability mass into and 

out of the node is equal. (Only in steady state are state probabilities constrained by and a 

reflection of the biochemical assumptions, viz. graph topology and transition kinetics.) A 
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steady state or 'stationary' distribution of probabilities always exists (see below), and is 

uniquely defined when the graph is strongly connected, i.e., when every node can be 

reached from any other node via a string of directed edges (1). All models discussed in 

the sequel are represented by strongly connected graphs. 

Promoter State Transitions 

The stochastic promoter state dynamics are defined by the transition functions 

𝑝"#(𝑡 + ℎ, 𝑡), indicating the conditional probabilities that the promoter will be in state j at 

time 𝑡 + ℎ, given it is in state 𝑖 at time 𝑡. We assume that the transition functions depend 

on the promoter's present state, 𝑖, but not its past ¾ and on ℎ, the distance between both 

time points, and not time itself; i.e., 

𝑝"#(𝑡 + ℎ, 𝑡) = 𝑝"#(ℎ, 0) ≡ 𝑝"#(ℎ) 

(assumption of a time-homogeneous Markov process).  

 The perhaps deepest and far reaching implication of the Markov assumption is that it 

mathematically entails the second law of thermodynamics (5): the existence of a function 

(total entropy) whose value only increases, viz. during processes that violate detailed 

balance and therefore are irreversible, or else remains constant. Detailed balance, thus, 

corresponds to thermodynamic equilibrium, statistical irreversibility to entropy 

production (see below). 

 The promoter may transition from its initial state 𝑖 at time 0 to state 𝑗 at time 𝑡 + ℎ 

via state 𝑘 at time 𝑡. Summing over all 𝑘 gives 

𝑝"#(𝑡 + ℎ) =0𝑝"1(ℎ)𝑝1#(𝑡)
1

 

(Chapman-Kolmogorov equation). With 𝑃3 = 4𝑝"#(𝑡)5 the square matrix of transition 

functions, the Chapman-Kolmogorov equation may be written in matrix form: 

																																					𝑃378 = 𝑃8𝑃3     [3]. 

Although usually introduced as an independent assumption, the time-homogeneous 

Markov assumption implies continuous differentiability of the transition functions (6). 

That is, the equation 

𝑃378 − 𝑃3
ℎ =

(𝑃8 − 𝑃:)𝑃3
ℎ  
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(note that 𝑃: equals the identity matrix, which follows from [3] with ℎ = 0) tends to 

																														𝑑𝑃3/𝑑𝑡 = W𝑃3    [4] 

for ℎ → 0, where W = 𝑑𝑃:/𝑑𝑡. W is called the ‘generator’ of the process. We may refer 

to its elements 

𝑤"# = lim
8→:

𝑝"#(ℎ) − 𝑝"#(0)
ℎ  

as 'transition rates' (although 'transition rate constants' would be more accurate). The 

diagonal elements of W are given by 

																												𝑤## = −∑ 𝑤"#"D#      [5]. 

Equation 5 is a consequence of probability mass conservation (see below).  

 We now show that differentiability of the transition functions implies that the flux of 

probability mass from state 𝑖 to state 𝑗 is a linear function of 𝑝#(𝑡), the probability of 

promoter state 𝑗 ∈ {1, … , 𝑛} at time 𝑡. 

 Let 𝒑(𝑡) = L𝑝M(𝑡), … , 𝑝N(𝑡)O
P, where the superscript T indicates that 𝒑(𝑡) is a 

column and not row vector. From the definition of the transition functions follows, 

𝒑(𝑡) = 𝑃3𝒑(0)	. 

Differentiation and insertion of [4] into the results yields  

𝑑𝒑(𝑡)
𝑑𝑡 = W𝒑(𝑡)	. 

This set of coupled linear differential equations is called 'the master equation' of the 

process.  

 With 𝟏 = (1,… ,1), the row vector whose components are all 1, conservation of 

probability mass may be expressed as 𝟏𝒑(𝑡) = 1 for all 𝑡. Differentiation of 𝟏𝒑(𝑡) = 1, 

and insertion of the master equation into the result yields 𝟏W𝒑(𝑡) = 0. This is true for 

any 𝟏𝒑(𝑡) = 1. With 𝒑(𝑡) = (1,0, … ,0)P, 𝒑(𝑡) = (0,1, … ,0)P etc. now follows equation 

[5]. 

 In steady state, the master equation becomes 

         W𝝅 = 𝟎    [6], 

where 𝝅 = (𝜋M, … , 𝜋N)P is the vector of steady state (stationary) probabilities 𝜋" of 

promoter states 𝑗, and 𝟎 = (0,… ,0)P is the zero column vector. Equation [5] implies that 
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W is singular. Therefore, a non-trivial solution to equation [6], 𝝅 ≠ 𝟎, always exists. It is 

uniquely defined, provided the graph is strongly connected (7). Furthermore, 𝒑(𝑡) → 𝝅 

for 𝑡 → ∞ (8). 

 Equation [6] shows that 𝝅 is the basis vector with unit length (i.e., 𝟏𝝅 = 1) of the 

kernel of W. We used Mathematica to obtain 𝝅 and calculate activator fidelities, 𝑓. 

Alternatively, 𝝅 may be calculated using the Matrix-Tree theorem (1, 7). 

Model 1 

The generator of Model 1 for correct promoter binding is 

WM = Y−𝜅 𝑘[
𝜅 −𝑘[

\	. 

(The generator for incorrect binding is obtained by replacing 𝑘[  with 𝑘#.) 

𝝅 =
1

(𝜅 + 𝑘[)
4𝑘[𝜅 5	, 

which is easily verified. The probability of the transcriptionally active state is 

  𝜋]^ = 𝜋_ = 𝜅/(𝜅 + 𝑘[)   [7]. 

A corresponding equation holds for incorrect promoter binding. On the assumption that 

the rate of transcription linearly depends on 𝜋]^, we obtain for the activator fidelity 

𝑓M =
𝜅 + 𝑘#
𝜅 + 𝑘[

	. 

Model 2 

The generator for Model 2 is 

W_ = `

−(𝜅 + 𝜆)
𝜅

𝑘[
−(𝑘[ + 𝛼)

0
𝛽 																	𝛽0

0
𝜆

															𝛼
																𝑘[

−(𝑘[ + 𝛽)
𝑘[

𝜅
−(𝛽 + 𝜅)

d	. 

From the kernel vectors of W_ for correct and incorrect DNA binding we obtain 

𝑓_ = 𝑓M
𝑘#(𝛽 + 𝜆) + 𝑀(𝛽 + 𝜅 + 𝜆)
𝑘[(𝛽 + 𝜆) + 𝑀(𝛽 + 𝜅 + 𝜆)

	
𝑘[𝜆 + 𝛼(𝛽 + 𝜅 + 𝜆)
𝑘#𝜆 + 𝛼(𝛽 + 𝜅 + 𝜆)

	, 

where 𝑀 = 𝛼 + 𝛽, 𝛼 and 𝜆	are the rate constants for nucleosome removal in the presence 

and absence of the activator, respectively, and 𝛽 is the rate constant for nucleosome 
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removal. Since (by definition) 𝑘# > 𝑘[ , 𝑓_ increases for decreasing 𝜆, 𝑀, and 𝜅. When all 

three tend to zero 

𝑓_ → 𝑓:_	. 

In contrast, for 𝑀 → ∞, 

𝑓_ → 𝑓M	. 

From the kernel vector of W_ with 𝛼 = 𝜆, we obtain for 𝜋]^ = 𝜋g 

𝜋]^ = (𝛼/𝑀)(𝜅/(𝜅 + 𝑘[)   [10]. 

The analogous equation holds for incorrect DNA binding (𝑘[ → 𝑘#), from which it 

follows that 𝑓_ = 𝑓M. 

Model 3  

For Model 3 (activation by nucleosome removal; Fig. 3A), the probability of the active 

state is 𝜋]^ = 𝜋g + 𝜋h. In the following, we assume 𝜆 = 0, which simplifies the algebra 

and increases activator fidelity, 𝑓g. From the generator of Model 3, which is the same as 

for Model 2, we obtain  

      [11], 

where 𝐿 = 𝜅 + 𝛽 and 𝑄 = 𝛽/𝑀. By contradiction it may be proved that 

𝑓g ≤ 𝑓M	. 

Suppose there exist 𝐿,  𝑘#, and 𝑄 ≤ 1, such that 𝑓g/𝑓M > 1. With equation [11] it then 

follows that 

. 

Multiplying out the brackets, subtracting equal terms from both sides of the inequality 

and dividing by 𝐿 yields 𝑘[ + 𝑄𝑘# > 𝑘# + 𝑄𝑘[  and thus 𝑄(𝑘# − 𝑘[) > 𝑘# − 𝑘[ . Hence 

𝑄 > 1 for 𝑘# ≠ 𝑘[ , in contradiction to 𝑄 ≤ 1. Thus 𝑓g ≤ 𝑓M for all 𝐿 and all 𝑘#. 

Model 4 

With rate constant as indicated in Fig. 3D, the generator of Model 4 is 

f3 = f1
L +Qki
L + ki

L + kC
L +QkC

(L +Qki )(L + kC ) > (L +QkC )(L + ki )
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. 

To simplify the algebra, we assume 𝜆, 𝜂 = 0 (the rates of nucleosome removal and TBP 

binding in the activator-unbound promoter state), which increases activator fidelity, 𝑓h. 

We thus obtain from the kernel of Wh: 

, 

where 𝑅 = 𝜁/𝑧 and 𝑁 = 𝜁 + 𝑧, and, as above, 𝐿 = 𝛽 + 𝜅 and 𝑄 = 𝛽/𝑀. 

 Maximal fidelity is reached as the activator on-rate, 𝜅, the nucleosome kinetics, M, 

and TBP-DNA binding kinetic, N, become infinitely slow; i.e., for 𝑀,𝑁, 𝜅 → 0 and 

constant Q and R,  

        [12]. 

Detailed Balance and Reversibility 

A stochastic process is said to be in 'detailed balance' if and only if 

𝑤"#𝑝#(𝑡) = 𝑤#"𝑝"(𝑡), 

for all 𝑖, 𝑗, and all 𝑡. That is, the flux of probability mass between any two nodes is 

balanced. 

 Detailed balance implies steady state (stationarity), 𝑑𝒑(𝑡)/𝑑𝑡 = 𝟎. This is easily 

proved by observing that 

𝑑𝑝"(𝑡)
𝑑𝑡 =0𝑤"#𝑝#(𝑡) − q0𝑤#"

#

r 𝑝"(𝑡) =0L𝑤"#𝑝#(𝑡) − 𝑤#"𝑝"(𝑡)O = 0
##

	, 

where the first equality follows from the master equation and the generator property 

W4 =

−κ kC 0 β 0 0

κ −(kC +α ) β 0 0 0

0 α −(kC + β +ζ ) κ z 0

λ 0 kC −(β +κ ) 0 z

0 0 ζ 0 −(kC + z) κ

0 0 0 η kC −(z +κ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

f4 = f1
ki
2Q + 1+ (1−Q)R( )(z +κ )L + ki L +Q(N +κ )( )
kC
2Q + 1+ (1−Q)R( )(z +κ )L + kC L +Q(N +κ )( )

f4→
ki
3

kC
3
= f0

3
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∑ 𝑤#"# = 0, and the last equality from detailed balance. The reverse, however, is not true: 

steady state does not guarantee detailed balance (i.e., equilibrium) ¾ e.g. Model 2 (Fig. 

1B) with 𝛼 > 𝜆. 

 In detailed balance, there is no way to determine the direction of time, for there is no 

net flux of probability mass between any two nodes. Both forward and backward 

direction of any sequence of events are stochastically indistinguishable (8). A process in 

detailed balance is therefore called 'reversible'; a process that violates detailed balance is 

called 'irreversible'. 

Criterion for Detailed Balance 

Whether a stationary process is in detailed balance may be inferred from its generator; for 

the following can be proved (8): 

 A stationary process on a directed graph is in detailed balance if and only if for any 

closed loop of transitions, multiplication of the rate constants (generator elements, edge 

labels) going around the loop yields the same product regardless of direction (clockwise 

and counterclockwise). This is called Kolmogorov's criterion or ‘cycle condition’ for 

detailed balance (1, 8). 

 The probability of a clockwise transition cycle in Model 2 (Fig. 2A) is given by 
𝜅

(𝜆 + 𝜅)
𝛼

(𝑘[ + 𝛼)
𝑘[

(𝛽 + 𝑘[)
𝛽

(𝜅 + 𝛽)	, 

and of an anticlockwise cycle by 
𝜆

(𝜆 + 𝜅)
𝛼

(𝜅 + 𝛽)
𝛽

(𝛽 + 𝑘[)
𝑘[

(𝑘[ + 𝛼)
	. 

The two probabilities are equal if and only if 𝛼 = 𝜆. Detailed balance follows with 

Kolmogorov's criterion. 

 We note that stationary processes on 'trees' ¾ graphs without closed loops ¾ are 

necessarily in detailed balance; for the absence of loops trivially ensures that 

Kolmogorov's criterion is fulfilled. 

Entropy Production 

By introducing the master equation for Markov processes (see above) into the time-

derivative of Gibbs’ entropy function, 𝑆 = −𝑘t ∑ 𝑝"𝑙𝑛L𝑝"O" , it is found that 𝑑𝑆/𝑑𝑡 may 
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be decomposed into the sum of two contributions: entropy production, 𝑑#𝑆/𝑑𝑡, due to 

irreversibility, and entropy flow, 𝑑v𝑆/𝑑𝑡, due to heat exchange with the environment (5, 

9). For Model 2, entropy production is given by 

𝑑#𝑆(𝑡)
𝑑𝑡 = (𝜅𝜋M − 𝑘[𝜋_)𝑘t𝑙𝑛 Y

𝜅𝜋M
𝑘[𝜋_

\ + (𝛼𝜋_ − 𝛽𝜋g)𝑘t𝑙𝑛 Y
𝛼𝜋_
𝛽𝜋g

\ 

															+(𝑘[𝜋g − 𝜅𝜋h)𝑘t𝑙𝑛 Y
𝑘[𝜋g
𝜅𝜋h

\ + (𝛽𝜋h − 𝜆𝜋M)𝑘t𝑙𝑛 Y
𝛽𝜋h
𝜆𝜋M

\	. 

where 𝜋M, . . . , 𝜋h are the stationary (steady state) probabilities of promoter states 1, . . . ,4, 

respectively; 𝑘t is the Boltzmann constant. All terms on the right side are equal to zero if 

the system is in detailed balance; otherwise 𝑑#𝑆/𝑑𝑡 > 0. (The subscript i, here, refers to 

the change in entropy due to irreversibility ¾ i.e., entropy production ¾  and should not 

be confused with i for incorrect DNA binding, above.) 

Fano Factor and Transcriptional Bursting 

As a measure of transcription noise, we use the Fano factor, 𝔽y, i.e., the variance of 

mRNA abundance divided by its mean. The assumption of a time-homogeneous process 

implies that calculated noise is intrinsic, rather than total, noise.  

 The nodes of the graph, now, represent pairs of numbers (𝑗,𝑚), where 𝑗 indicates the 

promoter state and m the number of mRNA molecules (3, 10). The latter, 𝑚, runs from 0 

to infinity; the number of nodes is countably infinite, and the master equation 

encompasses infinitely many equations. A simple tool, the probability generating 

function (11), allows us to reduce this infinite set of differential equations to a finite set 

amenable to linear algebraic operations (3, 10), as detailed below.  

 At any given moment in time, one of the following changes may occur: (a) the 

promoter 'jumps' into another state, (𝑖,𝑚) → (𝑗,𝑚), with transition probability per unit 

time 𝑤"#; (b) an mRNA molecule is produced, (𝑖,𝑚) → (𝑗,𝑚 + 1), with transition 

probability per unit time 𝜇# for promoter state i; or (c) an mRNA molecule is degraded, 

(𝑖,𝑚) → (𝑗,𝑚 − 1), with transition probability per time 𝑚d, where 𝛿 is a constant. 

 Let 𝒑𝒎(𝑡) = L𝑝(1,𝑚, 𝑡), … , 𝑝(𝑁,𝑚, 𝑡)OP, where 𝑁 is the total number of promoter 

states and 𝑝(𝑗,𝑚, 𝑡) is the probability of state (𝑗,𝑚) at time 𝑡; 𝐸 = L𝛿#"𝜇#O, and 𝐼 =

L𝛿#"O, where 𝛿#" is the Kronecker symbol (i.e., 𝛿#" = 1 for , and 𝛿#" = 0  for 𝑖 ≠ 𝑗). i = j
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Both 𝐸 and 𝐼 are square matrices. For instance, for the two-state promoter model of Fig. 

1A, 

 and  . 

 Furthermore, let  and  be the 'step operators' with  and 

. The master equation of the process, then, is 

, 

where W, as above, is the generator for the promoter state transitions (12). (The index m 

runs from 0 to infinity.) 

 In steady state, 𝑑𝒑𝒎(𝑡)/𝑑𝑡 = 𝟎, and the master equation, after some rearrangements, 

becomes 

    [14], 

where 𝝅𝒎 is 

,  with . 

In the following we derive the first two moments of the probability distribution for 

the stochastic mRNA abundance (stochastic variable R), which are required to calculate 

the noise of mRNA expression, using vector-valued generating functions (10, 13). The 

approach has been to develop to calculate all moments (14); and there are also methods 

for obtaining the entire distribution (15).  

 Let , where . G is called the 'generating function' of the 

stationary distribution  (3, 10, 11). Multiplying both sides of the master 

equation [4] for steady with 𝑥� and summing over all 𝑚 gives 

, 

and, after some rearrangements, 

  [15]. 

With , we obtain 

E = 0 0
0 µ

⎛

⎝
⎜

⎞

⎠
⎟ I = 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

L−1 L+1 L−1pm(t) = pm−1(t)

L+1pm(t) = pm+1(t)

d pm
dt

(t) = W −mδ I − E + EL−1 + (m +1)δL+1[ ] pm(t)

mδ I −W+ E[ ]πm = δ (m +1)πm+1 + Eπm−1

πm = π (1,m),...,π (N,m)( )T πmm∑ = π

G(x) ≡ xmπmm∑ x ∈[0,1]

{π0,π1,...}

δ x dG
dx
(x)−WG(x)+ EG(x) = δ dG

dx
(x)+ ExG(x)

(1− x)E −W[ ]G(x) = δ (1− x) dG
dx
(x)

x =1
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; 

thus,  (which also directly follows from the definition of G). Differentiation of 

equation 15 yields 

  [16]. 

For , we obtain 

, 

and with , 

      [17]. 

Note that the components of r, are 

. 

Thus,  is the average number of mRNAs in steady state, given the promoter is in state j. 

Summing over all j, provides the expectation, , of the random variable R: number of 

mRNAs. That is, the average number of transcripts across a population of (haploid) cells 

is 

. 

 It can be shown that for all real eigenvalues 𝛾 of W, 𝛾 ≤ 0 (7). Thus, since 𝛿 > 0	by 

definition, there is no 𝒖 ≠ 𝟎 with . Therefore,  is regular (one-to-

one) with inverse , and r is uniquely determined. From equation 17 we thus 

obtain 

     [18]. 

 Differentiation of equation (16) yields 

. 

For , and with , the last equation becomes 

. 

WG(1) = 0

G(1) = π

−EG(x)+ (1− x)E −W[ ]dG
dx
(x) = −δ dG

dx
(x)+δ (1− x) d

2G
dx2

(x)

x =1

(δ I −W) dG
dx
(1) = Eπ

r ≡ dG(1) / dx

(δ I −W)r = Eπ

rj = mπ ( j,m)m∑
rj

E(R)

E(R) = 1r

(δ I −W)u = 0 (δ I −W)

(δ I −W)−1

r = (δ I −W)−1Eπ

−2E dG
dx
(x)+ (1− x)E −W[ ]d

2G
dx2

(x) = −2δ d
2G
dx2

(x)+δ (1− x) d
3G
dx3

(x)

x =1 v ≡ d2G(1) / dx2

(2δ I −W)v = 2Er
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Again, v is uniquely determined, for  is regular: 

      [19]. 

The components of v, are 

, 

and therefore, 

. 

Since, , the variance of R, is 

 

we obtain 

 . 

The Fano factor of RNA expression, therefore, is given by 

. 

Solutions for r and v (equations [18] and [19]), and thus 𝔽y, were calculated using 

Mathematica. 

 For Model 1 (Fig. 1A) we thus obtain 

, 

where 𝛿 is the rate constant for mRNA degradation. (It is often claimed that the Fano 

factor equals burst size, 𝜇/𝑘[ . The equation above shows that this is incorrect. Only for 

𝜅, 𝛿 ≪ 𝑘[ ≪ 𝜇, does the Fano factor approximately equal burst size.) The second term 

captures the deviation from Poissonian expectation. When 𝜋]^ = 1, that is 𝑘[ = 0, the 

gene is conducive to transcription at all times, and therefore not transcribed in bursts. 

Bursting becomes increasingly manifest, and 𝔽y increases, with increasing 𝜇 and 

decreasing 𝜅 ¾ as pauses between transcriptional bursts become longer and pauses 

between transcription events within bursts become shorter. 

 The last equation may also be written as 

(2δ I −W)

v = (2δ I − Γ)−1(2Er)

v j = m(m −1)π ( j,m)m∑

1v = E R(R −1)( ) = E(R2 )−1r
var(R)

var(R) = E(R2 )− (1r)2

var(R) = 1v +1r − (1r)2

FR =
1v +1r − (1r)2

1r

FR =1+
µkC

(κ + kC )(κ + kC +δ )
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. 

The graph of this function is plotted in Fig. 1D. For 𝜅 → 0, when 𝑓M → 𝑓: and 𝜋]^ → 0, 

𝔽y → ∞ for constant 𝑣[. 

 Stochastic simulations of sample paths were calculated in Python. 

Supplemental Figures 

 

 

Fig. 1S. Additional proofreading steps further attenuate noise. Transcription noise as a 

function of relative activator fidelity, 𝑓(𝜅, 𝜇)/𝑓:, for Model 4 (green) with different 

parameter values for TBP binding (4, 4�, 4′′) and Model 2 (blue, 2). All parameter values 

were as indicated in the legends to Figs. 2 and 3, except 𝜁 = 2, 𝑧 = 2 (4�); 𝜁 = 2, 𝑧 = 10 

(4′′). As in Fig. 3, 𝜁 = 10, 𝑧 = 10 (4). 
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