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Supporting Information Text12

Derivation of Eq.(4) of the main text13

The theory outlined here is based on the mean-field treatment of microswimmer suspensions by Shelley and co-workers (1–3),14

and by Subramanian and Koch (4). We closely follow the method of Stenhammar et al. (5).15

We consider a suspension of N microswimmers in a volume V at a finite number density n = N/V . The suspension is
assumed to be dilute so that the only relevant interparticle interactions are defined by the far-field dipolar hydrodynamic fields
generated by the microswimmers. The starting point of our theory is a mean-field, Smoluchowski-like equation

∂

∂t
Ψ + ∂

∂xα
(ẋαΨ) + Pαβ ∂

∂pβ
(ṗαΨ)

= −λΨ + λ

4π

∫
dp Ψ [1]

for the one-particle distribution function Ψ(x,p, t), which defines the probability of finding a microswimmer at the position x
with the orientation given by a unit vector p at time t. The probability distribution function is assumed to be normalised∫

dxdp Ψ(x,p, t) = 1. [2]

Within the mean-field description, each microswimmer obeys the following microscopic equations of motion

ẋα = vsp
α +N UαMF , [3]

ṗα = N Pαβ(Wβγ +BEβγ)pγ , [4]

where Pαβ = δαβ − pαpβ is the projection operator, and δαβ is the Kronecker delta; Greek superscripts denote Cartesian
components of vectors. The position of a microswimmer changes in time due to its self-propulsion with the swimming speed vs
and due to its advection by the velocity field UMF , generated by the other swimmers

UαMF (x, t) =
∫
dx′dp′ uαd (x− x′,p′)Ψ(x′,p′, t), [5]

where

uαd (x,p) = κ

8π
xα

|x|3

[
3(x.p)2

|x|2 − 1
]
. [6]

The velocity field ud(x,p) is generated at a position x by a force dipole located at the origin and oriented along the unit vector16

p. The strength of the dipole is given by κ = Fl/µ, where F is the magnitude of both dipolar forces, l is the dipolar length,17

and µ is the viscosity of the suspending fluid. Within the convention utilised here, κ > 0 corresponds to bacteria (pushers).18

The orientation of a microswimmer changes due to two mechanisms. First is its passive rotation caused by the velocity
gradients generated by the other microswimmers at its position. This mechanism is encoded in Eq. (4), where

Wβγ = 1
2

(
∂

∂xγ
UβMF −

∂

∂xβ
UγMF

)
, [7]

Eβγ = 1
2

(
∂

∂xγ
UβMF + ∂

∂xβ
UγMF

)
, [8]

are the vorticity and strain rate tensors. The parameter B in Eq. (4), related to the aspect ratio of a microswimmer, determines19

the type of orientational dynamics exhibited by a microswimmer: in an external shear flow, long and thin needles (B = 1)20

orient along the flow direction, while spheres (B = 0) rotate with a constant angular velocity. A bacterium is expected to21

interpolate between these limiting behaviours. The second mechanism is a random change in the microswimmer orientation22

(tumbling) with a rate λ, and is represented by the right-hand side of Eq. (1).23

First we observe that Eq. (1) can be solved by setting the one-particle distribution function to a constant. The value of the
constant is set by Eq. (2), yielding Ψ(x,p, t) = 1/(4πV ). This solution corresponds to a homogeneous and isotropic suspension.
To assess its stability, we introduce a small perturbation around that state, Ψ(x,p, t) = 1/(4πV ) + δΨ(x,p, t), and linearise
Eq. (1) around the homogeneous and isotropic state, yielding the following equation of motion for the perturbation

∂

∂t
δΨ + vsp

α ∂

∂xα
δΨ− 3B n

4π p
αpβ

∂

∂xα
δUβ

+ λ δΨ− λ

4π δρ = 0, [9]
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where we have introduced the velocity and density fluctuations

δUα(x,p, t) =
∫
dx′dp′ uαd (x− x′,p′)δΨ(x′,p′, t), [10]

δρ(x, t) =
∫
dp δΨ(x,p, t), [11]

and assumed that the fluid is incompressible. To reduce Eq. (9) to an algebraic form, we introduce the following ansatz

δf(x,p, t) = eχt

(2π)3

∫
dk δΨ̂(k,p)eik.x, [12]

where the sign of the real part of the temporal eigenvalue χ determines the linear stability of the homogeneous and isotropic
base state. Upon substitution of Eq. (12) into Eq. (9), individual Fourier modes decouple, and we obtain

χδΨ̂ + vsik
αpαδΨ̂− 3B n

4π p
αpβikαδÛβ

+ λδΨ̂− λ

4π δρ̂ = 0, [13]

where δρ̂ is the Fourier transform of the density fluctuations, while the velocity fluctuations are now given by

δÛα(k) =
∫
dp ûαd (k,p)δΨ̂(k,p), [14]

where ûd is the Fourier transform of the dipolar field, Eq. (6),

ûαd (k,p) = −iκ (k · p)
k2

[
δαβ − kαkβ

k2

]
pβ . [15]

The density fluctuations δρ̂ decouple from the velocity fluctuations and do not lead to an instability (2, 5). We therefore drop
them from Eq. (9) that can now be formally solved for δΨ̂. Substituting this solution into Eq. (14) gives

δÛα = iB
n

4π δÛ
β

∫
dp

3pβ(p · k)uαd (k,p)
λ+ χ+ ivs(p · k) . [16]

Performing the integral yields the following equation for the temporal eigenvalue

α = F (x), [17]

where we have introduced

α = vsk

3Bnκ, x = vsk

λ+ χ
, [18]

and

F (x) =
x
(
3 + 2x2)− 3

(
x2 + 1

)
arctan(x)

6x4 . [19]

To proceed, we observe that a good uniform approximation to F (x) is given by

F (x) ≈ 1
3
(

5
x

+ x+ 3
2

) , [20]

which is obtained by combining the asymptotic behaviour of F (x) as x→ 0 and x→∞. Using this approximation in Eq. (17),
we finally obtain for the temporal eigenvalue

χ = −λ+A(α)Bnκ, [21]

where

A(α) = 36α2

2− 9α±
√
−639α2 − 36α+ 4

. [22]

In Fig. S1 we compare this approximation to A(α) extracted by solving the eigenvalue problem, Eq. (17), numerically. The24

agreement between the two approaches is semi-quantitative, and we, therefore, base our further analysis on Eq. (22).25
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As can be seen from Fig. S1 and Eq. (21), in an infinite system, the most unstable eigenvalue corresponds to α = 0. Using
the upper-branch value of A(0) = 1/5, we obtain the critical number density at the instability as

n∞c = 5λ
Bκ

, [23]

which has been derived previously (4, 5). To mimic the effects of confinement on the stability of the suspension, we limit the
smallest available wavenumber to kmin = 2π/H, where H is the smallest dimension of the confining geometry. Solving

Re
{
−λ+A

(
vskmin
3Bnκ

)
Bnκ

}
= 0, [24]

yields the critical density in confinement

nc(H)
n∞c

= 1 + 3
10
vskmin
λ

+ 1
5

(
vskmin
λ

)2
. [25]

This is Eq.(4) of the main text, where we switch from the critical number density ratio nc(H)/n∞c to the critical volume26

fraction ratio φc(H)/φ∞c , and use the average run-time τ = λ−1.27

We want to stress that this approach gives only a qualitative estimate of the influence of confinement on the instability28

threshold as it does not impose the no-slip boundary conditions on the confining surfaces and ignores the wall-bacteria29

interactions discussed elsewhere (6–10).30

Comparison of φ-dependency of low shear viscosity at three gap size31

Figure 4a of the main text shows the φ-dependency of the effective viscosity measured at a shear rate of ≈ 0.04/s and a gap32

size H = 500µm. We show here in figure S2 results for other gap size and shear rates values in the low shear regime. While33

error bars of the viscosity values measured at the lowest shear rate 0.04/s and smallest gap size H = 240µm are significantly34

large to draw any conclusion, all other datasets unambiguously discard the H−2-dependency predicted by ALCT (11).35
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Fig. S1. A(α) vs α: Comparison between the numerical solution of Eq. (17) (circles) and the analytical approximation, Eq. (22), (dashed line).
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Fig. S2. The viscosity of E. coli suspensions measured with three gap size H = 240, 500, 730 µm at a shear rate γ̇ ≈ 0.04s−1 (a), ≈ 0.08/s (b), and ≈ 0.15/s (c), as
a function of volume fraction. The viscosity is normalised to the viscosity of the buffer η0(cserine) = (0.87 + 2.7 × 10−4cserine) cP, with cserine the concentration of serine
used to prepare the solutions. Error bars are obtained from data analysis of individual measurements as in figure 3 of the main text. Dotted lines are guides to the eye.
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